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1. INTRODUCTION 

The purpose of this paper is first to provide a theoretically 
valid foundation for combining two current approaches to the modeling of 
travel choice behavior, viz., the entropy maximizing approach (1,2) and the 
random utility maximizing approach(3,4), and second to show that the 
stochastic network equilibrium model with logit-based loading proposed by 
Fisk(5) is naturally derived from the random utility theory. Then a solution 
algorithm of the stochastic network equilibrium problem based on the 
contraction mapping theorem will be proposed. 

Random utility and Entropy models appear to be quite different. This is 
because the random utility model is probabilistic in nature and deals with 
discrete events and utility characterized by attributes of alternatives, 
while the entropy model, although its behavioral interpretation in terms of 
a relation to utility has not been discussed so far, is deterministic in 
nature and treats continuous flows. So strong criticism that its theoretical 
ground is merely analogous to the statisticial theory or no more than ad hoc 
computational procedures, has been leveled at it. 

On the other hand, however, from the view point of network equilibrium 
models, the entropy model including cumulative cost functions seems to be 
capable of predicting various flow patterns incurred according to trip 
makers' information for their route choices. The traditional equilibrium 
model deals with too extreme conditions from a behavioral view point in the 
sense that all routes utilized between each O-D pair must have the same route 
costs, and all routes with higher costs are never used. Such conditions are 
overly simplistic and not supported by the random utility theory. On the 
contrary, it has not been considered that the random utility model is able to 
account for the Wardrop equilibria. 

With these ideas in mind, our purpose is first to show that the 
relationship between entropy and utility maximization approaches is far more 
foundamental than that has been believed so far. Indeed, both approaches are 
essentially identical and are two different representation methods of the 
same choice problem. The conjugate theory gives us more rigorous and general 
results to interpret this equivalency than any one that currently exists 
(including Williams (6), Anas (7) and Leonardi (8 ). A theoretical 
interpretation for the solutions to ontoropy maximization models is provided 
by smith (9), however, his approach is different from the viewpoint that is 
taken in this paper in that his theory is based on the cost-efficiency 
principle developed by himself. 

The next section establishes a Correspondence relationship which shows 
that the entropy maximization model can be derived within the theoretical 
framework of the random utility theory, and that its extreme value function 
exactly corresponds to the expected maximal utility (EMU) that each 
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individual (decision-maker) derives from a set of alternatives. 

The expected maximum utility has some important properties. One of those 
is the similarity with the constant elastisity substitution (CES) function, 
that is, if the dispersion parameter included in the EMU approaches 
infinity, then the EMU function exhibits the L-letter utility function (i.e. 
The Leontief utility function). Then, the EMU function describes the strict 
utility maximization behavior. In other words, if one defines the strict 
utility as the negative travel costs, then the EMU function accounts for the 
behavior of pure cost-minimizer. In section 3, using this property together 
with the conjugate theory, we derive the network equilibrium model equivalent 
in its form to the stochastic network equilibrium (SNE) model proposed by 
Fisk (5) within the random utility framework. Thus, this paper may serve to 
show that the random utility framework can interpret the Wardrop equlibria as 
being a special case of the EMU function. Furthermore, it will be shown 
that Fisk's model is equivalent to the SUE model by Danganzo (10). 

As a computation procedure for the SNE model the successive average (SA) 
method proposed by Powell and Sheffi (11) is well known. Their method is 
based on the Blum's theorem. In section 4 we propose a procedure based on 
the Contraction Mapping theorem, in which the convex combinations parameter 
is determined so as to satisfy the contraction mapping for successively 
induced flow variables. This method is different from the SA method in the 
underlying theory, but is similar in that the in each iteration the update 
values are determined by the convex combinations of the previous link flows 
and the transformation values of the previous ones. 

2. CONJUGATE CORRESPONDENCES BETWEEN THE SATISFACTION FUNCTION 
AND THE ENTROPY FUNCTION 

2.1 Random Utility Model and the Satisfaction Function 

We will here briefly review the random utility model and address the 
relationship between the expected maximum utility and choice probability 
formula, the properties of the expected maximum utility. 

Let M denote the relevant set of alternatives for each individual and 
suppose that the utility of alternative m EM to individual i comprises two 
parts as is defined in eq.(1). 

tim vmi+ymi 	 (1)  

where vmi is the measurable(strict) utility of alternative m for individual 
i and ymi  represents the unmeasurable utility of alternative m for individual 
i or the error term and is the random variable. In order to simplify the 
notation, hereafter, the subscript denoting to individual will be dropped. 
The multinomial logit(MNL) model is derived by assuming that each ÿm  is 
independently and identically distributed over the population for each 
individual according to the Gumbel distribution with the distribution 
function: 

	

Pr (M] = exp[-exp{-  e(y-a) }l 	 (2) 

where a represents the mode; e is the parameter associated with the 
variance a 2  as is given by 

e 2= n2/(6a2) 	 (3) 

Then the choice probability pm  for alternative m is given by 

	

Pm exp(evm)/sjexp(evj) 	 (4) 
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and the expected maximum utility is obtained as 

E[max.U j]= e 
7 	

ln E iexp(ev j)+ a+ i/e 	 (5) 

where y is Euler's constsnt. Since the selection of the mode parameter 
is arbitrary and does not affect the choice probability, we can set it so 
that s(v) is represented as 

s(v)= éln E jexp(ev j) 	 (6) 

Hereafter, we will call s the satisfaction(SF) function following 
Daganzo(10). The SF function has many interesting properties, but only those 
useful for later analysis will be listed below without proof except for the 
limiting property(property 4). 

property 1 : Derivative (Wiliams(6)) 

as(v)/ av]  Pj 

property 2 : Convexity (Daganzo(10)) 

s(v) is convex with respect to v 

property 3 : Nondecreasing submodularity (Leonardi(8)) 

s(L U{j})-s(L)>s(T U{j})-s(T)>0 

for all L,T,j, 	L5T, j$T 

property 4 : Limiting behavior 

(i) lém m  s(v) = max.j vi 

(ii) lié s(v) o 	= E v j/IMI 

(iii) limv  *m  s(v) = vi 	j e M 

(proof) see Appendix 

2.2 Graphical Explanation of Conjugate Theory 

To establish a Correspondence relationship between entropy and SF 
functions, let us introduce the conjugacy theory which has been developed in 
the convex analysis. The basic idea of conjugacy theory grows out of the 
fact that there are two ways of viewing a classical curve or surface like a 
conic, either as a locus of points or as an envelope of tangents. 	More 
generally, this implies that any continuous,convex function can be defined as 
a closed convex set of points and the closed convex set in the real values 
set is represented as the intersection of the closed half-spaces containing 
it. This property gives the general notion of duality. More formally, the 
definition of the convex conjugata function of f is as follows (12). 

Definition. Let f be a convex function defined on a convex set F in a norm 
space X. The conjugate set F*  is defined as 

F*  ={x*  E X*: supx eF[<x,x*>  - f(x)]< m } 

j e M 
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Then the function f*  defined by 

f*  = supf* a F* [<x,x*> -f(x)] 
	

(7) 
or 	

-f*  = inff* E F* [f(x) - <x,x*>] 
	

(7') 

is said to be the conjugate convex function of f or simply the conjugate of 
f. 

In the case of satisfaction function, the strict utility correspond to the 
point variable, while the choice probability is essentially the slope 
variable as is shown in the derivative property. So the theory of conjugacy 
suggests that the satisfaction function can be redefined via choice 
probabilities. A graphical depiction will help to clarify this theory more. 

To get an intuitive understanding for a correspondence relation between 
the entropy and the SF function , we shall consider a simple binary choice 
situation that trip makers would be confronted with and observe how the 
epigraph of the satisfaction function s(v) is converted into another 
equivalent function defined by the choice probabilities. 

The satisfaction function is illustrated in Figure 1 (a). In this figure 
the horizontal axis takes the value v which is the value of measurable 
utility of the first alternative vl  subtracted by that of the second 

alternative v2. 	From the property 4(iii),the curve s(v) may close 
asymptotically to the fourty-five degree line as the value of strict utility 
of the first alternative is tending to the infinity. Conversely, as vl 
becomes relatively smaller compared with v2, s(v) approaches asymptotically 
to the horizontal axis. 

To find the conjugate function s(v), we must find sup{<v
* 
 ,v>- s(v)]. In 

the first figure, we want to maximize <v*,v>-s(v) or equivalently minimize 

the s(v)-<v*,v> for a given v*. For this value v*, <v*,v>-r=k is a equation 
of a hyperplane through the intersect k. So as k varies, the solution(r,k) 

of the equation <v*,v>-r=k describes a parallel closed hyperplane . The 

number s*(v*) is the supremum of the value of k for which the hyperplane 

intersects the epigraph of s(v). Thus the hyperplane <v*>-r=s*(v*) is a 
support hyperplane of the epigraph. 

To minimize the difference between s(v) and <v*,v> ,we move the 
hyperplane vertically until it supports the epigraph of s. 	Thus, we can 
see that the intersect of this hyperplane on the vertical axis would give us 
a negative conjugate function. 

From the derivative property of the satisfaction function, the slope of 
the function implies the choice probability and furthermore it corresponds to 

the conjugate variable v*. Figure 1 (b) depicts a choice probability 
distribution for the first alternative over the same horizontal axis as the 
upper figure. 	If vl  equals v2, the choice probability for each alternative 

is the same, one over two. If vl  becomes smaller than v2, the slope of s(v) 

becomes smaller, so the choice probability for the first alternatives becomes 
smaller. On the other hand, the greater vl  becomes as compared with v2, the 
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o 
(a) Satisfaction Function 

V=V1  -V2 

* 
V =P,=1 

* 	aS(V,0)  V -P'- 3V 

o 
(b) Choice Probability Distribution 

P1 =1 

V=V,-V2  

 

-S*(V )=-a  *1P1 1nP1  

(c) Negative Conjugate of SF Function 

Fig.l Conjugacy between Satisfaction Function and Entropy 

P =0 
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greater increase of the frequency the first alternative is selected. So we 
get the curve depicted in Figure 1(b). 

Next, if we draw the curve of -s* against the value of the vertical axis 
of Figure 1 (b), that is, choice probability, we can get the bottom figure. 
When we compare Figure 1(c) with Figure 1(a) and 1(b), the following 
relations are obvious. When choice probabilities for both alternatives are 
the same, according to Figure 1 (a) the intersect of the supporting 
hyperpane on the vertical axis has the greatest value. When the choice 
probability that the first alternative is selected becomes smaller, the 
intersect of the supporting hyperplane also becomes small, and finally equals 
zero at the point when the slope of s(v) is zero. On the other hand, when 
the choice probability for the first alternative approaches one, the 
intersept of the supporting hyperplane equals zero and we get Figure 1 (c). 
At first glance, we notice that this figure appears to be quite similar to an 
entropy curve. If we assume the satisfaction function has the log-sum form, 
then it can be assured that this graph indeed corresponds to the well-known 
entropy curve. 

2.3 Conjugate Correspondences 

To make the notion of conjugate correspondence between the entropy and 
the SF function precise, we begin by derivating the entropy formula from the 
SF function. Since the SF function is convex, the negative conjugate 
function is obtained by solving the following mathematical program defined on 
a strict utility space V which is assumed to be a nonempty set. 

[DO] For any given v e V*, 

min : o (v)=s(v)-<v,v*> , s.t. v eV 	 (8) 

The optimal solution 0 for this program must satisfy the next equation. 

vj-exp(evj)/Ejexp(evj)=0 	j e M 	(9) 

E v*j= 1 	 (10) 

It is apparent that the conjugate variable v*j for the strict utility vj 

corresponds to the choice probability Pj. Since the conjugate function 

s*(v*) is given as the optimal value function defined by conjugate variables, 
by substituting vj satisfying the relation (9) for the objective function in 

(8) , we can get the following entropy formula. 

* 	* 

4,(0)=-- Ejvjln v~ -s*(v*) 	 (11) 

If we let the entropy function be H and the conjugate variable vj* be pj, 
then the First Conjugate Correspondence can be expressed as : 

1H(p) = s(0)- E•p•0• 
> > > 

(12) 

The first Correspondence shows that the strict utility consistent with 
given choice probability distribution should be determined by the problem 
[DO] and that even if the strict utility is determined by [DO] , the SF 
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function includes the unmeasurable part which is not interpreted by the 
expectation of measurable utility <p,v>, and is equivalent to an uncertainty 
measure, the entropy. These imply that [DO] is useful for estimating 
parameters included in the strict utility and that from the behavioral 
viewpoint the entropy (more precisely the entropy divided by the dispersion 
parameter) is interpreted as the expectation of unmeasurable utility (i.e., 
the expected surplus). 

Next, let us consider the conjugate function of s*(v*).-- namely, the 
conjugate function of the negative entropy which is the conjugate of the SF 
function. Since the negative entropy is a convex function, we can formulate 
the conjugate problem in a similar way to [DO]. That is, 

[PO] For given p*EP*  

* 
max. r (P)= E

jpjPj-
s (p) s.t. 	E pi= 1 	 (13) 

The optimal solution P for this program has to satisfy the next logit 
formula. 

* 	* 
pj=exp( 6 pj)/ Ejexp(epj) 	 (14) 

* 
That p• corresponds to the strict utility v• is apparent. Expressing the 
objective function by p• which satisfies the equation (14), we get the 
conjugate function of fhe negative entropy, and can show that it is 
equivalent to the SF function. That is, 

s*  * (p*) =s (v) 	 (15) 

Thus, we have the Second Conjugate Correspondence : 

s(v)= Ejpjvj  + s  H(p) 	 (16) 

The second correspondence shows that the choice probability consistent 
with a given strict utility level should be given by the logit formula and 
that from the behavioral viewpoint the entropy maximization model (13) is 
interpreted as the process of maximizing the total expected utility 
comprising the expectations of measurable utility and unmeasurable utility. 

3. FORMULATION OF THE STOCHASTIC USER EQUILIBRIA 

3.1 Notations on Networks and Aggregate SF Measures 

We begin by describing the basic notation for representing the route 
choice problem for each traveler. If I and J denote the relevant sets of 
origins and destinations, respectively, then the decision problem for each 
traveler from i el to j EJ is the choice of a route r from the relevant set 
Ri • of feasible routes from i to j so as to maximize his utility or minimize 
his disutility. 

Let fijr  denote the path flow on each route rcRij, the vector f the 

resulting flow pattern on the network, and let qi• denote the number of 0-D 
trips from i to j . then, we define the feasible -flow pattern F by 
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F={ f>0 I E rfijr qij, for all i e I, j eJ} 	(17) 

The network itself is represented by a direct graph that includes sets of 
consecutively numbered nodes N and links A. If we let the flow on link a be 
xa  and the cost on that link be ca  , then the relationship between flow and 
travel cost for link a is characterized by the link performance function , 
ca=ca(xa), and the travel cost on a particular path is expressed as: 

cijr Ea d ij.arca(xa) 

where a ij,ar=1 if link a is a part of route r connecting O-D pair i-j, and 

6 ij,ar =°, otherwise. Using the same indicator variable, the link flow can 

be expressed as a function of the path flow, that is, 

xa 	E  i Ej Er 
s 
 ij,arfijr' 
	a e A 	(19) 

By considering relation (19), an alternative expression for the route cost 
is also possible by using the flow pattern, f, 

cijr(f)= Ea 6ij,ar ca(f) 
	

(20) 

The above expression is followed hereafter. 

In order to describe the route-choice decision for a traveler entering 
the network at i destined for j, it may be appropriate that we define the 
strict utility value that governs the route choice for each traveler among 
the feasible route set Rij  by 

vijr -cijr 	 (21) 

Then, the satisfaction measure for each trip between O-D pair ij can be 
obtained in a manner identical to the previous section as: 

Sij  (c) = é In E rexp(— a cijr) 	 (22) 

It should be noted that Si  S. is defined in terms of route costs in spite of 
the strict utility and it significant within the finite domain of the 
dispersion parameter. Defining the overall measure of satisfaction on the 
network as the sum of the satisfaction for individual trips, the law of large 
numbers ensures that the overall satisfaction S is given by 

S(c) = E i  Ej gijSij (c) 	 (23) 

We will call S the aggregate Satisfaction (ASF) measure. 

From the limiting behavior of SF function (Property 4 indicated in 
section 2.1), at a =0, the ASF function reduces to the linear SF function 
defined by the following equation. 

Sijo  = - Er  cijr/IMI= -cij 	 (24) 

This implies that since alternative routes are no longer distinguishable 
regarding to utility of choice, route-choice behavior might be maximally 
dispersed. 	On the other hand, at the opposite extreme, namely, as 
approaches to infinity, the SF function describes the strict utility 
maximizer. Within the present context, this means that all travelers might 
choose the cheapest route with perfect information (a2.oas 8,.). More 

(18) 
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formally, this situation is reflected in the following limiting form of the 
SF function. 

Sijm = max[-c.. ]= mrn[cijr] 	 (25) 

it is appropriate to comment that eq.(25) must hold regardless of flow 
level because that route costs are a function of flow levels and thus 
describes behavior of a pure cost- minimizer who always seeks to find the 
cheapest route. 

3.2 The Conjugates of the ASF Functions 

As is indicated in 3.1. these are three different forms of SF functions. 
Our central results here show that the stochastic user equilibrium model 
consistent with the random utility framework is naturally derived by taking 
the conjugate of each of these different forms of SF functions and by 
embedding these conjugate functions into a unified conjugat function. 

We begin by constructing the conjugate function of an aggregate SF measure 
S with a positive, finite dispersion parameter. By definition, the negative 
conjugate function for the ASF measure defined as a function of cost 
variables is obtained by solving the next minimization problem. 

[D1] For any given c E C*, 

* 
min. '(c )= S(c)- EiEjErcijrcijr 	 (26) 

* 

optimal s~oution of this program must satisfy the following logit formula. 
where ci• is the conjugate variable corresponding to the path flow. The 

-cijr q..exp(-0c..13 	E rexp(-ecijr) 	(27) 

For clarity of notation the sign denoting the optimal is omitted from the 
above expression. This practice is followed hereafter in this paper, From 
eq.(27) it is apparent that the negative conjugate variables (-c r ) 
correspond to the path flow fijr and satisfy the feasible flow condition 

(17). 	As a result, program [D1] is expressible as: 

[Dl] For any f E F, 

min: o(c)=S(c)-  E faca(f) 	 (28) 

Since the conjugate function is given as the extremal value function of a(c), 
the conjugate function S is given by 

1 
-S (f)= - Ei E jErfijrin fijr + 

é 
E iE j gijln qij 

Defying the network entropy associated with the route choice as: 

H(f)= -e E iEjEr f.. ln fijr 

then the conjugate of the ASF function can be expressed by the next equation 
by using H(f) and making the secot.d term constant. 

* 1 	1 
S(f)=- H(f)+K, 	K=--0 EiEj gijln qij 

(29)  

(30)  

(31)  
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Next,we consider getting the conjugate function of S*. This can be done 
by solving the following maximization program. 

* * 
[P 1] For any given f cF 

max. r (f) = EirjErfijrfijr + e  H(f)-K 	 (32) 

The optimal solution of this program has to satisfy the following logit 
formuia. 

* 
fijr=gijexP(efij r )/E r eXP(efij r ) 

* 
The above equation ensures that the conjugate variables f•• 	of path flow 
correspond to the negative path costs, and program [P 2] is3expressible as: 

[P 2] For any given c e C, 

max. r (f)= 
é 

 (f) - E axaCa, 	s.t. f e F (34) 

It can be easily shown that the extreme value function of this program is 
equivalent to the ASF measure S. We notice at first glance that the Problem 
[P2] is equivalent to the entropy model proposed by Wilson(1). But it should 
be noted that the model presented here neither requires the total-cost 
constraint ,nor accounts for a as being the Langrange multiplier. Since the 
model is directly derived from the SF function, e is interpreted as the 
dispersion parameter which is deeply concerned with the traveler's decision 
on their route choices. 

Now we proceed to the analysis for the case when the dispersion 
parameter e asymptotically approaches an infinite value. The satisfaction 
measure for this case is not continuous as is shown in eq.(25). 	The 
conjugate problem is given by [P 3] by making a ij = min cijr. 

* * 
[P 3] For any given c e C, 

* 
min. o(c)= E iE j Ercijrcijr E i E jE rf ijr x ij c 

The solution for this program has to satisfy the following relations. 

if cijr Xij , then cijr =f ijr 

if cijr  X 	
, then cijr  =H 

Again, the conjugate variables correspond to the path flow, consequently, we 
can see that program [P 3] is rewritten as the following form. 

[P 3'] For any given f e F, 

min. o (c)= E axaca  E iEjErf ijr X  ij 
	 (37) 

However,in this case the extremal value function is not explicitly derived 

conjugate variables (i.e. the path no* or link flow variables). 	However, 
from solution (36) because that a i • is not explicitly expressed by the 

relations (36) show the behaviour of pure cost-minimizer, and as is shown by 
Smith(9) and Miyagi(13),it can be proved that if each traveler seeks to find 
the minimum cost route at any flow level,then their behavior can be described 
by the well-known minimization problem of cumulative cost function, as is 
defined by 

(33) 

(35)  

(36)  
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X 
min. E

a 
 ( ca(x)dx 

o 

Furthermore, the cumulative cost function is a function of the path £low, 
that is the conjugate variable. Accordingly, we can expect that Sm (f) 
amounts to the sum of cumulative cost function with the flow satisfying 
relation (36),î.e., the user equilibrium flow. 

Consequently, the conjugate of St (f) is defined as below because of the 
cumulative cost function being convex. 

* * 
[P 4] For f eF 

* Xa 
max. r (f) = E iEjErfijrfijr E a Jo ca(x)dx (39) 

This programe yields the conjugate relation between fijr  and a route cost 
btween O-D pair ij. 

fijr Ea d ij,arcâ cijr 

* 
As a result, the conjugate of S,(f) is obtained as: 

c 
Sm(c) =Ea  ` câ(t)dt 

ca,min 

3.3 Formulation of the SUE model by the ASF measure maximization approach 

We combine two different forms of ASF measures S(c), S,(c), into a more 
general class of ASF measure, W' (c). Let us suppose that this can be done 
by adding these measures. 

W' (c) = S(c)+S„ (c) 
III c 

= 1 In E r  exp(-ecijr)+ E a  l câ(t)dt 	(42) 

JJ ca,min 

W'(c) is a convex function, and includes the first term representing the 
disutility which is a negative value of the percieved travel cost and the 
second term representing the travel cost. This function generates the 
following the surplus maximization problem without no explicit constraints. 

c 
max. W (c)=- 

 

1 In E rexp(- a cijr)- E a) câ(t)dt 	(43) 

ca,min 

For taking the negative of the disutility for travel, it represents the 
utility and the value subtracted by the travel cost means the surplus for 
travel. 	It is clear from the functional form in eq.(43) that the 
maximization problem here includes the case of a =q, and is equivalent to 
the SUE program by Daganzo(10). 	The conjugate of W (c) is straightforward 
from the development shown in 3.2, and is given by 

(38) 

(4 0) 

(41) 
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minimization problem to the original 

x 
E 4 ca(x)dx , s.t. f e F (46) 

X 
Z(f)=-

1
E i E j Er f ijrin(f ijr/qij) +E a lcâ(x)dx 	 (44) 

0 

Z(f) is also convex. The first term of Z(f) corresponds to S(c), the 
disutility, and the second corresponds to S,(c), the travel cost. Again, we 
have the following surplus maximization problem with the feasible flow 
constraints. 

1 	 xa 
max. Z(f)=- ~EiEjEr fijrin(fijr/gijr)- E a) ca(x)dx, s.t. f e F (45) 

0 

This problem is essentially the same as the maximization of W (c): it is no 
more than the problem represented by flow variables instead of cost variables 
and includes the case of the dispersion parameter being zero. Furthermore 
this program is indeed the SUE model by Fisk (5 ). Thus two SUE models, 
max.W(c), min.Z(f), which are quite different at first glance, have a strict 
correspondence within the framework of the conjugate theory and are 
consistent with the random utility theory. 

4. ALGORITHM 

4.1 General Discription of Algorithm 

Consider the following equivalent 
maximization program (45). 

min.Z(f)= aEiEjEkfijkln fijk+ 

It is evident from the form of Z(f) that this problem is 
programe and yields a unique solution defined by 

fijk= gijexp(- e c ijk(f) )/ E rexp(- e cijr(f)) 

a strict convex 

(47) 

Each component fijr of the resulting flow pattern f is always positive, and 

is a decreasing function of its corresponding cost cijr(f) as long as the 

dispersion parameter e is finite. Furthermore, as is shown in the previous 
section ,as e-m , the solution f continuosly approaches to the Wardrop 
equilibrium solution f . However, the typical iterative procedures of 
finding the equilibrium flow such as the convex combinations method based on 
the Frank-Wolfe decomposition principle can not be easily applied to this 
program according to the reasons suggested by Sheffi(14). 

In spite of this difficulty, equation (47) shows the possibility of 
existance of solution procedures which guarantee to converge to the unique 
solution since the equation characterizes f as the fixed point of continuous 
transformation from F into itself. Even if we rewrite eq.(47) in terms of 
the link flow as is shown as : 

xa= E iEjEkgijexp[- a (Ea a ij,akca(xa))l/ E kexp[- e (Ea a ij,akca(xa))] 	(48) 

the essential feature of having the fixed point is unchanged. 

In its general form the classical method of successive approximation 
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applies to an equation of the form x=T(x) where T is the transformation from 
X on which x is defined into itself. The Contraction mapping theorem 
ensures the existance of the unique vector x satisfying x=T(x) and that x 
can be obtained by the method of successive approximation starting from an 
arbitary initial vector x e  X(15). The transformation T is said to be 
contraction mapping if there is an arbitary k , o < k<1, such that 

IIT(y)-T(x)ll < k Hy-xll 	for all x,ye X 
	

(49) 

The algorithm described in this section is based on the contraction mapping. 

The outline of the algorithm is as follows. Select an initial feasible 
solution xo, which is the link flow vector calculated by the Dial method with 
prespecified link costs. Let y denote the link flow vector generated by the 
transformation T which is carried out by the Dial algorithm(16) with costs 
updated by the previous link flow x _1. Thus we define the transformation T 
as being constructed by the Dial algorithm. Then if the next inequality 
holds for xn_1  and the candidate of the next solution y, 

II T(y)-T(x) II 	k Il xn xn-111 

we determine the updated solution as x =y. If this is not so, that is, for a 
candidate of the next solution, xn y, fhe following inequality holds, 

U T(Y)-T(xn-1) II > kil xn xn-lll 	(51) 

then by using a step size parameter i satisfying 

	

s II T(Y)-T(x) II 	< k II xn xn-lll 	 (52) 

the updated solution is determined through the convex combinations 

xn (1-i)xn_1+ By 	 (53) 

By this operation, the following inequality relation holds. 

II T(Y)-T(xn-1)  II 	< k 11 y-xn-1II 	(54) 

It should be noted that the above inequality relation for ensuring 
contraction mapping does not always hold for the improved solution xn, except 
for the choice function being linear. Thus this method does not guarantee 
that the updated solution always decreases its norm compared with the 
previous one. However,as will be shown in 4.2, this method is expected to 
converge. 

4.2 Convergence of Algorithm 

To show how the algorithm converge, we begin by assuming the case that 
contraction mapping does not hold among the initial solution xo, its 
transformation yo  and the transformation of yo, T(y0). Suppose that for 
T:xo  + yo  and T:xl  a Y1 	- 

IIT(Y0)-T(x0)II > kllxl-xo) . 0< k< 1 

holds, in which x1=y0  is assumed, then, by using the step size parameter i 
satisfying 

s II T(Y0)-T(xo) II < k II xl-xo  ll 

the next point is recalculated as: 

(50) 
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x1 (1-a) o+ß yo 
This operation gives the inequality relation 

II T(Yo)-T(xo) II < k II Y0- xoll 

For the simplicity of interpretation, suppose that for the succeeding steps 
the inverse inequality always holds between the previous solution xqq_ , a 
candidate of the desired point yn generated by the transformation T(xn_i) 
such that 

II Yn 	(xn-1) ll > k II xn xn-1 II 

By the same operation as the first step, the step size parameter a is 
introduced and the following relation is assumed to hold: 

II 	Yn -T(xn_1) II < k II Y,rixn_l II 

where xn (1- a )xn_l+ ß yn_ , Since the step size parameter determined at each 
iteration is always smaller than one, we set it constant as being a value 
less than one. Then we have the following sequence of inequalities. 

For the first step 

II T(yo) -T(x0)II -< k II y~ xo II 

For the second step 

II T(Y1)-T(xi) II <_ k II Y1 -x111 

< k(IYl-yô (1- a ) (yo- xo) II 

< k II Yl-yo II +k(1- a) II 1,0-x0 II 

= {k2+k(1- a )} IIyo xo II 
Since similar inequality relations hold for succeeding steps, for the nth 
step the inequality relation as below holds. 

II T(Yn_l)-T(xn_l) II < k II Yn-l-xn-1 II 

< k I Yn-1-Yn-2+(1- a ) (Yn-2—  n-2) II 

< k II Yn_l-Yn-211+ k(1- a ) II Yn_2 xr _2 I I 
= k (1+k- a) n-1 II Yo- xo I 	(55) 

Consequently, suppose n+= , then it is expected that if the constant term in 
the right-hand side of eq.(55) approaches zero such that 11 yn -T(xn_1)II, 

II xn xn-1 II and II Yn-1 xn-1ll approach zero. As the results, 

T(xn-1) =y -1' T(xn) =xn hold and we have the fixed point. 	However, 
if k>a holds at each iteration, the convergency of this algorithm will fail 
because the constant term becomes greater than one. For this method to 
converge, it requires less value of k than that of a. It is difficult to 
find such a constant value, however, if we change the k-value according to 
determined by eq.(52) at each iteration , the algorithm steps are expected to 
almost exactly converge. 
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5. CONCLUSION 

The main results developed in this paper include (1) establishing the 
correspondence relation between the entropy maximization model and the random 
utility model, (2) deriving the user equilibrium model within the context of 
conjugate correspondence developed here and (3) proposing a computation 
procedure based on the contraction mapping method. All of these results are 
expected to serve for making possible further research. Hence it is 
appropriate to touch on a few of the remaining problems of each result 
mentioned above for further research. 

The correspondence relation has been developed here under the assumption 
that the error term of random utility is distributed according to the Gumbel 
distribution. These correspondence relations may hold under the more general 
form of random utility distribution such as the general extreme distribution 
proposed by McFadden, but which should be examined. 

The user equilibrium model derived from the conjugate correspondence has 
been formulated by bearing a single transportation model in mind. Such a 
structual assumption serves to motivate the basic theory in terms of its 
simplest decision problem such as route-choice behavior. The fundamental 
theory does not depend on this assumption and it is directly extendable to a 
class of multimodal network equilibrium as is derived by the author(17). 
However, since in the previous formulation on the multimodal network 
equilibrium, a conveinient technique for deriving the user equilibrium is 
taken, the extension should be done in considering this point. The remaining 
problem is how the joint congestion effect created by the interaction of each 
mode should be incorporated into the framework of conjugacy theory. 

Finally, we address the computation procedure presented here. 	Problems 
arise in selection of value of k and whether the efficientpaths in the Dial 
algorithm should be fixed or not. The first problem may be avoidable if one 
sets it as a variable value according to the -value at each iteration. 
However, the efficiency of convergence may decrease. Another way of 
selecting the k-value is to set it appropriately prespecified constant such 
that when the value of the dispersion parameter is large, one makes the k-
value small and for the opposite, one sets the k-value larger. Such a 
selection method has no theoretical background, and is no more than 
experimental. This method has similar characteristics to the method of 
successive average by Powell and Sheffi, but has some cases of rapid 
convergence. As for the second problem, from the view point of convergency 
it is preferable to fix the efficient paths. However, for the large value of 
the dispersion parameter, the equilibrium flow pattern generated by this 
assumption does not correspond to the usual Wardrop equilibria. To get the 
equilibrium solution consistent with the Wardrop equilibria, one should 
assume the efficient paths are unfixed, but the efficiency of convergence may 
remarkably decrease. 
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APPENDIX: Proof of Property (4) of s(v) 

(i) 11  s(v)anax.j  vi 

Let us suppose that vi= max.kvk  and IMI >1. We want to show that 

lim s(v)=vi. First, from the nondecreasing submodularity, 
e+m 

1 a ln[exp( Nip) < s ln[exp( e vj+ e vi) < 

1 ln[exp(e vj+ e vl+ e v2) ] <....< 1 lnEkexp(e vk) = s(v) 

Thus we have vj< s(,). From the assumption together with the nondecreasing 
submodularity, 

eIn zit  exp(evk) < e ln[IMI exp(e vj)] = lnIMI/e +vj 

Consquently, the following inequality holds. 

vj  < 1 
ë 	
s (v) < lim { 1nIMl/e 

m 	
e 

0, 

Thus we have 

lim s(v)=vi= maxk  vk  
e-•m 

+ Vi} =vj 
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be calculated by L'Hopital's rule: 

lim
o 
h( e)=s(v)-Eiviexp(evi)/ E jexp(evi) 

as e+m, At e =0, the value of function is indeterminate, but lim 	h(e) can 
8+0 

(ii) lim o s(v)= Ekvk/ IMI 

Consider the behavior of the function 

h(e)={ es(v)-ln Ej exp(evi))/e 

=s(v)- E~v~pj 

Thus, evaluating this expression at a =0, we have 

lim h(e)=s(v)- E.v•/ IMI 
e+o 	 J 

(iii) limy +m s(v)=vi 
J 

First of all, we rewrite s(v) as the form 

s(v)= ln[exp(e vi) {l+ E k# Jexp(e (vk vJ)) } 

=vi+ éln Ek#7exp[e(vk vi)] 

Accordingly, the relation desired is straightforward as : 

1imyJ+m s(v)=1im J 
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