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Abstract 

Accurate Traffic flow prediction relies on correctness of the values received from detectors. It is often the case that 
detectors are not working correctly and provide with incorrect values. The aim of this work is to predict the traffic 
flow variables at the failed detectors using deep learning techniques such as neural network and autoencoders.  
The major contributions are using neural network to model the complete network of detectors and use of 
autoencoders to reduce model size by exploiting spatial correlation between detectors. To the best of our knowledge 
deep learning has never been applied incase of detector failure.  
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1. Introduction 

Arterial Traffic Management Systems (ATMS) use a network of sensors and inductive loop detectors to measure 
volume, occupancy and speed of vehicles. These are then used to calculate the traffic signal timings at the intersections. 
For efficient working of ATMS it is essential that the data ATMS receive from detectors is correct. This is at times 
not the case due to detector failure.  

Detector failures are difficult to identify in reality, most often uncovered by direct reporting of such case. Common 
practice involves performing handshakes which comprise of sending a signal to the detector and waiting to receive 
acknowledgement. There are multiple techniques [1] - [6] for real time failure detection but they are rarely used in 
practice due to complexity of scheme. 
 
When a detector failure is identified, the ATMS has to “lock” the detector i.e. keeping it’s status as on all the time and 
running the phase involving that detector for the maximum time. This is highly inefficient because these timings are 
seldom retimed and the actual demand maybe less than the allocated maximum green time. 
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In the past, several machine learning and data mining approaches have been applied for traffic flow prediction [7]-
[10]. However, in this paper we aim to tackle the problem of predicting traffic flow variables at failed detectors. The 
paper employs some of the widely known deep-learning techniques such as Artificial Neural Networks (ANN) and 
Autoencoders (AE) for traffic flow prediction. To the best knowledge of the authors, deep learning has not been 
applied for prediction of traffic volume and occupancy in case of detector failure. 
 
The rest of the paper is structured as follows. Section 2 dwells more into the data, justifies the metric of performance 
and presents multiple deep-learning approaches to model the traffic flow. Section 3 gives direction for future work 
while section 4 provides concluding remarks. 

2. Deep Learning for Predicting Traffic Volume and Occupancy 

2.1 Site and Data Description 

All analysis in this paper were performed on data collected from detectors installed at Maroochydore, Sunshine Coast, 
Queensland, Australia for a period of one year starting from 1st April, 2017 to 31st March 2018. 

 
Fig. 1. Maroochydore, Sunshine Coast. The figure shows the 27 detectors pinned in red on which the analysis was 
conducted. 

 
Maroochydore is an urban center of 55.5 sq. km area consisting of 27 intersections with a total of 232 loop detectors 
combined. The detectors measure the traffic volume and loop occupancy for different lanes which is used by ATMS 
for determining signal phase timings. The historical data from STREAMS [11] is aggregated at 15 mins interval 
throughout the day for a complete year.  
The dataset does not contain label for failed detectors. We manually analyze the variation of traffic volume over 
different months and complete year to find anomalous detectors. The detectors which had either of these abnormality 
were classified as failed –  
(i) Abrupt changes in volume in consecutive 15 min intervals over the day for multiple days 
(ii) The graph of daily volume over the year shows sudden change. It is observed at many detectors for prolonged 
period of time. This could be due to partial failure in which case the detector only reports a fraction of the actual 
volume.  
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The detectors which were identified as failed in the above analysis were labelled and their data for the complete year 
was removed from the training dataset. 
 
The above method for classifying detector failure is sensible but not exhaustive, later in the paper we also look at 
cross-correlation of detector readings which also serve as a sound method of identification of detector failure. We also 
observe that the detectors which our analysis fail to model accurately are precisely the ones which are uncorrelated 
with their neighboring detectors. 
 
2.2 Metrics of Performance 
 
The traffic signal timings are calculated based on the traffic volume and occupancy measured. Hence accurate 
prediction of volume and occupancy is important. To determine the accuracy of models prediction, the following 
metrics for volume and occupancy were used. 
 
(A) Volume 
Volume measurements at arterial intersections vary a lot depending on lane at which the detector is located. The high-
volume detectors present on through lanes have volume ranges of up to 300 vehicles (per 15 min) compared to low-
volume detectors present on turning lanes with range around 20 vehicles (per 15 min). 
 
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
Fig. 2. Shows cumulative plot of fraction of car with given volume between period 6AM - 8PM for the complete year. 
 
To calculate the effectiveness of the model we use a piece-wise loss function which uses mean absolute error (MAE) 
for low volume range and mean relative error (MRE) for high volume ranges. The point of division between low and 
high volume values was decided based on the cumulative graph of number of vehicles versus volume. 
 
The time interval of 6AM to 8PM was chosen because it witnesses the maximum variation of volume at detectors. 
 
(B) Occupancy 
 
Occupancy is measured as a percentage hence absolute difference is used as evaluate the effectiveness of our model. 
We use two intervals of prediction ± 5% and ± 10% from measured occupancy as the prediction interval and report 
the accuracy based on both metrics. 
 
We defined the accuracy of the proposed models as the number of predicted value that lie within the allowed tolerance 
of prediction around the measured (actual) value. 
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2.3 Input Variables 
 
The three most important variables in determining the volume/occupancy at any detector is time, day and month. The 
traffic pattern on weekdays is different when compared to that on Saturday or Sunday as shown in Fig. 3. 

 
Fig. 3. Variation of volume at detector M7321/VD08 from 5th June (Mon) to 11th Jun (Sun) 

 
There is a strong dependence of traffic flow on the season which can be easily captured using the month as another 
input parameter to our model [12] - [13].  

 
Fig. 4. Variation of volume at detector M7159/VD02 throughout the year. 
 
Apart from these inputs, holidays witness different traffic flow patterns compared to non-holidays. We create a list 
of public and school holidays for the year April 2017 to March 2018 and added day type as another input (0 - normal 



 Author name / Transportation Research Procedia 00 (2018) 000–000  5 

day, 1 - school holiday, 2 - public holiday) [14] 
 
2.4 Artificial Neural Network Models 
 
This analysis was done in three steps of increasing complexity, i.e. single intersection, corridor of 5 intersections 
and complete network. Neural networks were used to predict the volume and occupancy at all detectors given the 
primary inputs (time, day, month and day type). We also analysed models that use past intervals traffic flow data 
along with primary inputs for prediction. These models used last 15-min (t-1), last 30-min (t-2) and last 60-mins (t-
4) volume and occupancy. 
 
We started with intersection M7142 on Maroochydore road which has 16 detectors. Regarding the structure of the 
model we needed to determine number of hidden layers and number of units per layer. We choose number of units 
from {32, 64, 128, 256, 512} and number of hidden layers from {1, 2, 3, 4, 5, 6, 7, 8}. After performing grid search 
we obtained the best architecture as mentioned in table 3. All models were trained at epoch = 500, learning rate = 
0.01 using stochastic gradient descent as optimiser and mean squared error as the loss function. 
 
The dataset for basic model consisted of a year of data at all detectors at M7142. After shuffling the dataset, 2000 
rows were chosen for testing and the rest for training purpose (10%-90% split between testing and training). 
 
Two testing strategies were used, first for partially failed detectors which were known beforehand we used the 
timespan when they were working and tested on them and second by artificially simulating detector failure. Detector 
failures were simulated by starting with 0 value at the failed detector at the start of the day (t0=0) and consequently 
using the models output at the failed detectors as the past interval (t-1) detector reading for the next interval. Only 
values at the failed detectors were updated using the model’s output. Since we did not have actual reading for failed 
detectors we had to heavily rely on this artificial simulation for testing and comparison. But later in our analysis we 
show that we could predict the flow at a detector reliably using the readings from nearby detectors due to heavy 
cross-correlation. 
 
For models using past interval data (e.g. Basic & (t-1) ) for prediction of next interval, we chose 30 random days and 
ran the model for throughout the day using the above mentioned procedure. The summary of the results is 
mentioned in table 1. 

Table 1. Showing results of all models at a single intersection 
Location Model Volume Accuracy Occupancy Accuracy 

 ≤ 20 veh/15 
min 

> 20 veh/15 
min 

Total ± 5 % ± 10 % 

Single 
Intersection 

Basic 88.7 79.2 85.1 71.5 88.2 
Basic & t-1 89.6 84.8 87.8 75.7 91.7 
Basic & t-2 90.4 85.9 88.6 76.6 92.5 
Basic & t-4 91.0 85.8 89.0 76.5 92.5 

 
The second part of the analysis involved building similar models for a corridor of intersections. This aim was to 
understand the scalability of models to multiple intersection and observe whether model is able to learn the spatial 
correlation between detectors at nearby intersection. The corridor chosen consisted of roads Duporth Ave and Horton 
Parade with 5 intersections namely M7147, M7148, M7118, M7150 and M7198. The training and testing procedure 
used was the same as for single intersection. The summary of results are mentioned in table 2. 
 
Observing the results of both single intersection as well as corridor of intersections, one could see that the model is 
able to pick up the spatial relations between detectors. 
For the third part of the analysis we trained neural networks for predicting the traffic flow variables at all the 232 
detectors. Both basic model and basic & t-1 models were tested (basic & t-2 model and basic & t-4 models were 
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unnecessarily large and hence not mentioned in the results) 
 
Table 2. Showing results of all models at single intersection, corridor and network 

Location Model Volume Accuracy Occupancy Accuracy 
 ≤ 20 veh/15 

min 
> 20 veh/15 

min 
Total ± 5 % ± 10 % 

Single 
Intersection 

Basic 88.7 79.2 85.1 71.5 88.2 
Basic & t-1 89.6 84.8 87.8 75.7 91.7 

Corridor Basic 86.9 79.0 84.1 70.7 87.4 
Basic & t-1 89.3 82.9 86.3 73.1 89.9 

Network Basic 82.9 78.1 81.6 68.1 84.5 
Basic & t-1 86.7 82.6 85.0 72.3 88.7 

 
The dataset contained missing data values for some detectors and after removing those days we were left with around 
160 days of clean data. Again 2000 random data rows were taken for testing basic model and 30 random days were 
chosen for models utilizing historical data. (Approx. 20%-80% split between testing and training). 
 
Key observations from this table were that model accuracy does not decrease much when going from a single 
intersection to a complete network. This means that neural networks are able to learn spatial relations between 
detectors fairly accurately.  
 
There is a significant increase of 3 percent on going from Basic model to Basic & t-1 model. This means that past 
interval data is very meaningful to predict the next interval. Adding more 15-min interval improves the prediction 
accuracy only marginally at the cost of larger model size and training time. 
 
Fig. 5. Measured vs predicted for all detectors at intersection M7167 on 17th April, 2017 (Monday). 

The model generalises well even for multiple detector failures. One of the key testing involved shutting down all the 
detectors at an intersection and using the model for prediction. Figure 5 shows the result of shutting down all 8 
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detectors at the M7167 intersection. 
 
Another test for robustness was whether model is able to predict well on the weekends. Figure 6. shows the result of 
model predictions at 3 detectors of M7160 on a Sunday. 
Fig. 6. Detector Failure at three detectors of M7160 on 11th November, 2017 (Sunday). 
 

The result confirms that the model is able to accurately predict the traffic flow on weekends as well. There was still 
one issue with training models on complete network. The model size (and training time) is quite large. Table 3 shows 
the best architecture found in the grid search process for different models. 
 
Table 3. Best Architecture found for each model through grid search 

Location Model Volume Accuracy Occupancy Accuracy 

Hidden 
Layers 

Hidden 
Units 

Hidden 
Layers 

Hidden 
Units 

Single 
Intersection 

Basic 4 128 5 128 
Basic & t-1 4 128 5 128 

Corridor Basic 5 128 5 128 
Basic & t-1 5 128 5 128 

Network Basic 7 256 6 256 
Basic & t-1 6 256 5 256 

 
There is a 8-fold increase in number of parameters on going from 4 layers of 128 hidden units each (output size 16 
and input size 20, Total parameters are 20*128 + 128*128*3 + 128*16 ~ 53.7K parameters) to 6 layers of 256 hidden 
units each (output size 232 and input size 236, Total 447.5K parameters). This reflected similarly in training time as 
mentioned in table 4 
 
Table 4. Training time comparison for models at single intersection, corridor and network 

Model Training Time Training Time 

Single Intersection Basic & t-1 [128,128,128,128] 10-12 min 

Corridor Basic & t-1 [128,128,128,128,128] 15-20 min 

Network Basic & t-1 [256,256,256,256,256,256] 90-120 min 

 
The training was done on 1.8GHz dual-core Intel Core i5 with 4GB of memory 
 
As one can see that training neural networks on complete network requires 10-fold increase in training time. Note 
that time is for a single model and we train 40 models in grid search process (5 values of hidden units, 8 values of 
hidden layers). Hence the complete grid search process would have taken around 80 hours to complete.  
 
The later part of our work involved visualizing correlations among detectors and using Autoencoders to reduce the 
model size without compensating a lot on the model accuracy. 
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2.5 Autoencoder Models 
 
Autoencoders are neural networks trained to attempt to copy their input to their output [16]. The network consists of 
two parts, encoder whose purpose is to learn a latent and compressed representation of the input [15] and a decoder 
which uses this representation for reconstructing the input. Autoencoders are used for various tasks like denoising 
[17] - [18], dimensionality reduction [19] and information retrieval etc. 

 
Using the last 15 min volume/occupancy to predict the next time horizon causes the input size to be large (number 
of detectors + basic inputs). If we observe the detectors closely we find out that many detectors show the same trend 
in volume/occupancy variation.  Correlation coefficient is a numerical measure of correlation between two variables. 
It assumes value in range -1 (strong disagreement) to +1 (strong agreement). It is defined as 

 

where  is the covariance between x and y whereas  and  represents standard deviation of variable x 
and y. We calculated the correlation coefficient between all 232 detectors for the same 160 filtered days.  
Fig. 7. Showing correlation coefficient matrix between 232 detectors (detectors at same intersection are adjacent) 

In the above figure the blue lines represent detectors which are negatively correlated with all other detectors. On 
closer inspection it was found out that these are precisely the erroneous detectors. There were 18 detectors in that 
category and were removed from further analysis. 

                   
Fig. 8. Showing correlation coefficient matrix for remaining 214 detectors (left - unsorted, right - sorted) 
 
The figure on right is obtained by sorting the rows and columns of matrix on the average correlation with other 
detectors. A large region of red on bottom right suggests that most of the detectors are very strongly correlated with 
each other. This observation supports our use of autoencoders to learn a compressed representation of the detector 
values and use it along with time, day and month to predict the traffic flow at next interval. 

ρxy = co v (x , y)
σx ⋅ σy

co v (x , y) σx σy
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In order to reduce model size, we split it into two parts – (i) encoder model and (ii) the prediction model. The 
encoder model uses Autoencoders to reduce the input size of 232 detectors to some smaller dimension by learning a 
compact representation. The prediction model is an ANN as before with lesser number of parameters since it uses 
the compressed representation of encoder model as input. 
 
One advantage in training comes from the fact that the new model can be trained in separately rather than in an end-
to-end fashion. The autoencoder is trained by minimizing input reconstruction loss (L2 loss between input and 
decoder output). The output of the encoder is the compressed representation of the detector values which we are 
interested in.  
 
Both single layer autoencoder and deep autoencoder were used to learn the compressed representation of detector 
values. For single layered autoencoder we tried the following values for hidden layer sizes {5, 10, 15, 20, 30, 50, 
100, 150}. For deep autoencoder we tried {3, 5} as the number of hidden layers with {5, 10, 15, 20, 30, 50, 100, 
150} as the hidden layer sizes. We made sure than the configuration chosen had middle layer as the bottleneck and 
that the encoder and decoder part were symmetric in structure. 
The table 5 shows the best architecture for both autoencoder as well as their reconstruction accuracy. One observation 
from the results is that deep autoencoder is able to able to compress the input into much smaller feature vector (size 
30) compared to single layer autoencoder (size 100) without compromising too much on reconstruction accuracy. 
 
Table 5. Reconstruction Accuracy of different autoencoders (AE) 

Model Reconstruction Accuracy 
Type Architecture  ≤ 20 veh/15 min > 20 veh/15 min Total 

Single-Layered AE [232,100,232] 91.2 90.5 91.0 
Deep AE [232,100,30,100,232] 90.7 89.3 90.2 

 
The testing dataset used was 2000 random rows from 160 days (Approx. 20%-80% split between testing and 
training) and the same metric was used for accuracy.  
 
The model prediction required a two step process now, (i) taking input of all detectors at time t and compressing it 
using autoencoder and (ii) using this compressed representation along with basic inputs to predict traffic flow at time 
t + 15 min. 
 
Table 6. Accuracy of final models using both AE and ANN compared with only ANN model 

 
Using autoencoders for compressing the input causes the model accuracy to reduce by approx. 2%. On the other hand, 
if we look at the training time of AE + ANN models we see substantial improvement in training time (10-fold 
reduction). This was the tradeoff involved in the process of selecting smaller models. 
 
Below are the comparative plots of all three models (Only ANN, Single Layer AE + ANN and Deep AE + ANN) on 
3rd October 2017 (Tuesday) and 4th March 2018 (Sunday) 
 

Model Volume Accuracy Occupancy 

  ≤ 20 veh/15 min > 20 veh/15 min Total Accuracy ± 5 % ± 10 % 

Only ANN 86.7 82.6 85.7 73.3 90.2 

Single Layer AE 
+ ANN 

84.1 80.3 83.9 71.2 88.5 

Deep AE 
+ ANN 

84.3 79.6 83.2 70.6 88.2 
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Table 7. Comparison of training time of AE + ANN models compared to only ANN model 

Model Architecture of NN Training Time 
Only ANN [256,256,256,256,256,256] 90-120 min 

Single Layer AE + ANN [128,128,128] 15 min (AE) + 10 min (NN) 
Deep AE + ANN [128,128,128] 12 min (AE) + 10 min (NN) 

 

         
Fig. 9. Showing comparison between all three models on 3rd October Tuesday, 2017 

                 
Fig. 10. Showing comparison between all three models on 4th March Sunday, 2018 
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The model performs very accurately in case of simulated detector failures. The model also predicts accurately on 
failed detectors (which were manually identified) within their working timespan. Since the dataset didn’t have true 
readings at these failed detectors (for the failure timespan) we had to rely on simulated detector failures for testing. 
But we expect the model to predict well in the failure timespan as well since the model exploits strong detector 
cross-correlation.  
 
3. Future Work 
�

In this work, we could not analyse the time-dependent relation between detectors because the data available was 
aggregated in 15 min intervals. More sophisticated and accurate models could be built on datasets with finer 
resolution in time. We aim to look at one such real-time open dataset provided by Brisbane City Council. This data 
is collected from the SCATS (Sydney Coordinated Adaptive Traffic System) for each cycle. 
 
It would be interesting to analyse the patterns in traffic for long weekends i.e. continuous holiday for 3-4 days due to 
public holidays on Thursday/Friday or Monday/Tuesday which according to knowledge of authors has not been 
taken into consideration in any models so far. 
 
Another aspect of the work could be identification of anomalous days based on comparing the observed value to the 
model output. 
 
4. Concluding Remarks 
 
We observed that neural networks are very powerful models when it comes to predicting non-linear relations 
between detectors and basic inputs. Neural networks along with autoencoders reduces the model size substantially 
without compromising on accuracy. Though we aimed at modelling single detector failure, the model generalises 
well even for complete intersection failure. 
 
There is an increase of 3-4% in accuracy if we use the last 15-min traffic flow as input to model. This serves as an 
evidence that the model is able to discover spatial correlation between detectors. The further increase in accuracy on 
adding more 15-min intervals is not substantial. This is because the temporal relations are very weak considering the 
interval size. 
 
The final aim of predicting volume and occupancy incase of detector failure was to use those values to calculate signal 
timing at intersections. Now since we didn’t have cycle by cycle volume/occupancy data at detectors but rather 
aggregated data at 15 min intervals we could treat the model’s prediction as an average over 15 min horizon. Signal 
timings could then be calculated taking the model’s prediction and using number of cycles in that 15 min interval. 
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