
 

Available online at www.sciencedirect.com 

Sci enceDi r ect  

Transportation Research Procedia 00 (2018) 000–000  
www.elsevier.com/locate/procedia 

 

2352-1465 © 2018 The Authors. Published by Elsevier B.V.  
Peer-review under responsibility of WORLD CONFERENCE ON TRANSPORT RESEARCH SOCIETY  

World Conference on Transport Research - WCTR 2019 Mumbai 26-31 May 2019 

Does selection of link influence the O-D matrix estimation 
from link counts? An experience in Bhubaneswar City 

Sai Kiran Annama *, Debasis Basub, Bhargab Maitrac  
RCGSIDM, Indian Institute of Technology Kharagpur, Kharagpur-721302, India 

School of Infrastructure, Indian Institute of Technology Bhubaneswar, Khordha-752050, India 
Civil Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur-721302, India 

Abstract 

Traffic link counts are predominantly used to estimate/update the Origin-Destination (O-D) matrix. The selection of these link 
locations is based on defined rules that require knowledge of a prior O-D matrix or flow pattern of the network. However, where 
both prior O-D matrix and link flow information are not available, the traffic count locations are selected heuristically by the 
experts. The present study aims to understand variation, if any, in the selection of links for traffic counts and the impact of link 
selection on estimated O-D matrix when the decision is made by different experts for the same study area. Links counts from 
locations selected by five experts were used to estimate O-D matrix. It was observed that primary links such as entry/exit links, 
major arterial roads, and links connecting major intersections were common amongst the selection sets chosen by the experts 
while the sub-arterial links varied across the selection sets. The O-D matrices estimated based on different input link counts were 
compared pairwise using Wilcoxon signed-rank test. Statistically significant differences were observed between some of the 
estimated O-D matrices indicating the influence of selection set on O-D matrix estimation. Therefore, the study highlights the 
importance of considering multiple set of links for O-D matrix estimation.  In the present work a mid-sized urban network of 
Bhubaneswar city, India is taken as a case study. The O-D matrix was estimated simultaneously for car and motorized two-
wheelers.  
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1. Introduction 

Rapid urbanization and subsequent growth of private vehicle ownership in limited urban spaces have caused an 
imbalance between demand and supply of transportation infrastructure in emerging nations such as India 
(Sadhukhan et al., 2016). This imbalance has aggravated traffic congestion, delay, and vehicular emissions, and 
consequently started affecting the quality of urban life (Cheranchery et al. 2018). Aptly, urban transportation 
problems have been the focus in several emerging nations (Pucher et al., 2007). Efficient transportation planning 
and traffic management are the key to overcome urban transportation problems. For formulating solutions to urban 
transportation problems, travel demand pattern in the form of Origin-Destination (O-D) matrix is a basic input 
(Yang and Zhou, 1998). Although the O-D matrix is an essential input for transport planning and management 
studies, several cities in emerging nations do not have O-D matrix (Almasari and Al-Jazzar, 2013). The traditional 
way of developing O-D matrix from household surveys requires significant financial resources and time (Ehlert et 
al., 2006) and therefore, is not preferred by most of the city planning authorities in emerging nations. On the other 
hand, development of O-D matrix from traffic count and sample O-D data is becoming popular as it requires 
relatively less financial resources and time (Bera and Rao, 2011; Viti, 2008). 

The research related to the development of O-D matrix from traffic counts and sample O-D data has been carried 
out in many facets. Several techniques have been developed for estimating O-D matrix using link counts and sample 
O-D data (Robillard, 1975; Tamin and Willumsen, 1989; Bell, 1991; Nielson, 1998). These techniques have been 
used in several software packages such as TransCAD, CUBE, VISUM, etc. which are commercially available and 
can be used readily by transport planners for estimating O-D matrix. Additionally, several works have been 
conducted on the selection of an optimal number of links for traffic counts (Yang and Zhou, 1998; Chung, 2001; 
Ehlert et al., 2006). The link selection rules proposed by these studies require a prior O-D matrix or flow pattern of 
the network (Viti, 2008). However, the majority of cities in emerging nations do not have a prior O-D matrix 
(Almasri and Al-Jazzar, 2013). Therefore, for studies which involve real networks with no pre-existing traffic 
counters or O-D matrix, experts or researchers often use some intuitive and rule-of-thumb criteria for the selection 
of traffic count links (Almasri and Al-Jazzar, 2013; Savrasovs and Pticina, 2017).  In all these studies, only one set 
of links is selected by the expert and the traffic counts at those locations are used for estimation of O-D matrix. In 
such contexts, it is important to understand if there is any variation in the selection of links by different experts for 
the same network and its impact on O-D matrix estimation. With this background, this paper aims to investigate two 
issues (i) Variation, if any, in the selection of links for the traffic counts by different experts; and (ii) impact of 
variation in link selection on O-D matrix estimation. The work is demonstrated with reference to Bhubaneswar, a 
mid-sized city in India. 

The remainder of the manuscript is organized as follows. A brief description of study area is given in Section 2, 
while the methodology used in the present work is explained in section 3. The database development is discussed in 
section 4. Section 5 includes a detailed discussion on results. Finally, the study outcomes are summarized in Section 
6. 

2. Study Area 

In the present work Bhubaneswar City, the capital of Odisha state, India is taken as the case study. The 
population of the city is about 0.88 million (Chandramouli, 2011). The municipal area of Bhubaneswar city (under 
Bhubaneswar Municipal Corporation, BMC) is spread over 135 sq. km and the area covered under Bhubaneswar 
Development Authority (BDA) is about 233 sq. km. As of 2011, the length of road network within BMC was 
reported to be 1265 km, which included a 36 km National Highway stretch passing through the city. The study area 
boundary has been delineated by Nandankanan area in the north and BMC boundaries in the south, east, and west.  

The city traffic comprises of various modes such as motorized two-wheelers (MTW), private cars, auto-
rickshaws (three-wheeler passenger vehicle), buses, commercial vehicles, and non-motorized modes. The car 
ownership is relatively low in the city. In 2013, only 16 % of the registered vehicles were cars while 74% of the 
registered vehicles were motorized two-wheelers (MTW) (Bhide, 2015). The city public transport (bus) services 
started its operations in 2010 and served 33,000 passengers per day in 2013. Motorized three-wheelers (locally 
known as auto-rickshaws) are extensively used as a common-carrier mode in the city with an average ridership of 
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160,000 passengers per day (Housing and Urban Development Department, 2014). These three-wheelers ply in 
fixed routes along the major corridors in the city. While estimating the O-D matrix of the city, it is important to 
estimate it mode-wise for cars and MTW simultaneously and also to preload the flows of buses and three-wheelers 
on the network to emulate the real traffic scenario.  

3. Methodology 

The methodology followed in the present study is presented in four components namely, (i) selection of links, (ii) 
estimation of O-D matrices, (iii) validation of estimated matrices, and (iv) comparison of estimated O-D matrices.  
This section includes a detailed discussion on these components. The methodology framework of the present work is 
shown in Fig. 1 and discussed below. 

 

  

Fig. 1 Methodology Framework  
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3.1. Selection of Links    

Initially, Yang and Zhou (1998) proposed four basic rules namely (i) O-D Covering rule, (ii) maximal flow 
fraction rule, (iii) maximal flow-intercepting rule, and (iv) link independence rule, for selecting optimal number of 
traffic counting stations based on the Maximum Possible Relative Error (MPRE) with respect to true O-D matrix. 
This true O-D is unknown in most cases, and an upper bound matrix based on the prior O-D matrix is often used as a 
reference O-D matrix. Chung (2001) considered budget constraints by incorporating an upper limit for number of 
links selected. In continuation with the previous studies, Ehlert et al. (2006) assumed pre-existing detectors in the 
network and developed a tool with additional weighted importance of link locations for specific O-D flows. This is 
an efficient tool to find additional locations for new detectors when the prior O-D matrix is available, and detectors 
pre-exist on certain links in the network. In emerging nations such as India, more often urban areas do not have any 
prior O-D matrix and traffic counters. Therefore, in cases where prior O-D is not available, researchers/ planners use 
some intuitive and rule-of-thumb criteria for the selection of traffic count links to estimate the O-D matrix (Viti, 
2008).  

The present work aims to investigate the variations, if any, in the selection of links for traffic counts by multiple 
experts, to estimate O-D matrix for the same study area. Five experts (transport planners familiar with the study 
network) were requested to select a set of locations for traffic counts in the study area. The number of links to be 
selected by the experts was predetermined to ensure that O-D matrix estimation was not influenced by the number of 
links. The trip information loss is a function of number of links selected (Khan and Anderson, 2016). Assuming a 
5% loss of trip information as acceptable limit, 30% of links in the network (45 links) were selected by the experts. 
Each expert was also provided with all necessary information such as traffic analysis zones, road network 
characteristic (road class, number of lanes, divided/undivided carriageway, etc.), land-use pattern, and demographic 
information. The links selected (45 links each) by different experts may or may not be same. Therefore, all the links 
selected by experts were combined and the traffic counts were conducted on all the links selected.  

3.2. Estimation of mode-wise O-D matrix 

Over the years, researchers have used various techniques for estimating O-D matrix based on traffic counts. 
Although a detailed review of these models is available in the literature (Bera and Rao, 2011; Viti, 2008), a 
summary of research works of these approaches is given in Table 1.   

Table 1.  Overview of previous applications of OD estimation techniques 

Approach Authors 

Gravity (GR) model Robillard (1975), Duffus et al. (1987) 

Gravity-Opportunity (GO) Tamin and Willumsen (1989), Gonçalves and Ulyssea-Neto, (1993),Tamin et al. (2003)  

Information Minimization (IM) and Entropy 
Maximization (EM) Approach 

Willumsen (1978), Van Zuylen and Willumsen (1980), Bell (1983) 

Statistical Approaches  (Maximum Likelihood (ML), 
Generalized Least Squares (GLS) and Bayesian 
Inference (BI)) 

Bell (1991), Maher (1983), Bierlaire and Toint (1995), Spiess (1987), Cascetta (1984), 
Cascetta and Nguyen (1988), 

Bi-Level Programming Spiess, 1990, Yang et al., 1992 

Neilsen’s Two Approaches Nielson (1998), Almasri and Al-Jazzar (2013), Khan and Anderson (2016) 

Neural Networks Gong (1998) 

Fuzzy Based Approach Xu and Chan (1993a, b), Reddy and Chakroborty (1998) 

Multi-Vehicle ODM Estimation Baek et al. (2004), Wong et al. (2005) 

 
Among various approaches mentioned in Table-1, Nielson’s approach was successfully employed on real urban 

road network (Khan and Anderson, 2016; Almasri and Al-Jazzar, 2013). Moreover, this method can produce 
reasonable estimates even with an old O-D matrix or a sample O-D matrix as input as the estimate reply more on the 
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available link counts and allow a substantial variation in the seed O-D matrix. Additionally, this technique also 
addresses the inconsistency in the traffic counts (Khan and Anderson, 2016).  Therefore, in this paper, the Multiple 
Path Matrix Estimation (MPME) method, as proposed by Nielsen (1988) is used for O-D matrix estimation. The 
input information required are seed O-D matrix (sample O-D matrix from surveys), and traffic link counts. Although 
the details of this technique are available in Nielson (1998), a brief overview of the technique in the context of the 
present work is given below. 

Nielsen’s model uses an iterative (or bi-level) process that changes to and fro between a traffic assignment stage 
and a matrix estimation stage. The traffic flow between any O-D pair is the summation of expected flow in each 
route connecting the O-D pair multiplied by the probability to choose that route. The expected traffic along each 
route is defined as the mean of expected traffic on each traffic link count location along the route.  Nielson’s 
Multiple Path Matrix Estimation (MPME) utilizes traffic counts information along all the routes between each O-D 
pair. Therefore, any inconsistencies in traffic counts in some routes are corrected by adjusting the total expected 
traffic on the routes between the O-D pair and the average expected traffic on each route. The O-D matrix is then 
estimated iteratively till the average expected traffic along each route and the sums of the expected traffic on the 
routes between the concerned zone-pair have converged. Therefore, error due to any inconsistency in the traffic 
counts is minimized in the case of MPME.  

3.3. Validation of estimated matrices 

It is necessary to validate the estimated O-D matrices before using them further. Yang et al. (1991) used 
maximum possible relative error (MPRE) between the estimated O-D matrix and the true (or target) O-D matrix as a 
measure to validate the estimated matrix with respect to a true matrix. Later Gan et al. (2005) modified MPRE and 
used Expected Relative Error (ERE) as a measure of validation. However, both these measures require the 
knowledge of a prior O-D matrix. Bierlaire (2002) used an alternative measure called Travel Demand Scale (TDS) 
to validate the estimated matrix. Although TDS is independent of prior O-D matrix, the value of TDS depends 
heavily on the route choice assumptions. Other statistical measures such as (i) Root Mean Square Error (RMSE) to 
quantify the total error in percent, (ii) Mean absolute error (MAE) to check for over or under prediction, and (iii) 
Total Demand Deviation (TDD) to understand the quality of estimated O-D matrix are commonly used when 
true/target values are known (Bera and Rao, 2011). Although no specific thresholds for these measures were 
suggested, the smaller values of errors indicate a higher quality of the estimated O-D matrix (Bera and Rao, 2011). 
However, in situations when the true values are not known, these statistical measures cannot be used. In the absence 
of true or target O-D, Savrasovs and Pticina (2017) used expert opinion to validate the estimated O-D matrix. 
Researches also used the difference in estimated flow values and input flow values of link flow to validate the 
estimated O-D matrix (Saraswathy and Isaac 2013, Almasri and Al-Jazzar (2013). In the present study, the estimated 
O-D matrices were validated based on the assignment of traffic link flows on the links for which count data is 
available but was not used as input. The estimated matrices are considered to be acceptable when the average error 
is less than 10% (Almasri and Al-Jazzar, 2013). In this study, User Equilibrium assignment technique was used to 
incorporate the effect of congestion in the network (Xie et al. 2011). N-conjugate Frank-Wolfe algorithm was 
employed for this purpose, which is an improvised algorithm of user equilibrium which reduces the computation 
time by increasing the rate of convergence towards the solution, even though requiring more memory for 
computation. However, it was shown that considering the value of N to be 2, it results in a bi-conjugate Frank-Wolfe 
Assignment, which has far less memory requirement than the conventional Frank-Wolfe Assignment techniques 
(Daneva and Lindberg, 2004). 

3.4. Comparison of O-D matrices 

The comparison of matrices was made to identify variation in the matrices obtained from different input link 
given by experts. The comparison was carried out in two stages (i) based on the total trips and trips between each O-
D pair of different matrices, and (ii) based on the errors obtained during validation of these matrices. 
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 Based on the total trips and trips between each O-D pair of different matrices 3.4.1.
The total trips of two estimated matrices were compared using Total Demand Deviation (TDD) (equation 1). To 

calculate the maximum error, the denominator is taken as the minimum of total trips amongst the matrices. 

100||% 21 ×
−

=
T

TTTDD    (1) 

Where 
T1 - sum of total trips of O-D Matrix 1 
T2 - sum of total trips of O-D Matrix 2   
T   - minimum of T1, T2 
 
The trips between each O-D pair of two estimated O-D matrices are compared using Wilcoxon Sign-rank Test. 

This is a non-parametric statistical test used in several studies to compare two related samples from the same 
population (Woolson, 2007; Corder and Foreman, 2014; Khan and Anderson, 2016).   

 Based on the errors obtained during validation of these matrices 3.4.2.
The O-D matrices estimated based on different input links selected by the experts are assigned on the network. 

The difference between the assigned flows and the observed links on the input links and the validation links is used 
to compare the performance of the estimated matrices when assigned onto the network.   

4. Database Development 

The database development for the present work is summarized under (i) traffic analysis zones (ii) network 
development (iii) classified traffic counts and sample O-D matrix. 

4.1. Traffic Analysis Zones 

The Traffic Analysis Zones (TAZs) have been formed based on (a) administrative boundaries (Census zones) (b) 
land-use pattern (c) road network and screen lines. The city was divided into 43 Traffic Analysis Zones (TAZs), out 
of which 38 TAZs are internal and five are external.  TAZ no. 1 to 38 are internal zones and TAZ no. 39-43 are 
external zones. Fig. 3 shows the TAZs of the study area.  
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Fig. 2. Traffic Analysis Zones  

4.2. Network Development 

The road network of Bhubaneswar city was developed on a GIS platform. The road network included National 
Highway, State Highway, Arterial roads, Sub-Arterial, and collector roads in the study areas. Local roads/streets 
were ignored from the network and compensated by zone connectors. These zone connectors are only utilized at the 
beginning and end of a trip. The link information was obtained from a citywide survey. The attribute values of the 
link such as link ID, capacity, free flow speed, and other relevant information were assigned to the network. The 
major part of the city traffic comprises of a heterogeneous mix of private vehicles and a relatively lower share of 
public transport. The road links and intersection composition in the network are summarized in Table 2.  

              Table 2. Network Information    

Road type (functionality) No of Links  Intersection Type Number 

Arterial 48 Controlled 4-leg  14 

Sub-Arterial 105 Uncontrolled 4-leg 3 

  Controlled 3-leg  13 

  Uncontrolled 3-leg 24 
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Until 2010, the city’s public transportation need was primarily catered by shared three-wheeler passenger 
vehicles (locally known as shared auto-rickshaw service), after which Govt. of India introduced city buses under 
Jawaharlal Nehru National Urban Renewal Mission (JnNURM) scheme (Bhide, 2015).  Currently, 130 buses are 
deployed over 18 different routes to serve the city during 7:00 am and 9:00 pm with a headway ranging from 15 
mins to 40 mins. Shared three-wheeler service is a para-transportation mode having a carrying capacity of about 4-7 
passengers (depending on the size of the vehicle) and ply on fixed routes. There are ten major routes in the city 
where the shared three-wheelers operate with an average headway as low as 15 seconds during the peak hours.  

Both buses and shared three-wheelers operate on fixed routes. The volume of shared three-wheelers is governed 
by the headway of the service and the volume of buses on links depends on the schedule of the bus service. The 
volume of buses and shared three-wheelers are preloaded onto the network to replicate more realistic scenarios. The 
city bus and shared-auto service routes are shown in Fig. 2. 

 

Fig. 3. City bus and shared-auto operating routes 

4.3. Classified Traffic Volume and Sample OD Matrix 

Based on the selection sets provided by the experts a total of 57 unique locations were selected for traffic link 
counts, and are presented in Fig. 4.  
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Fig. 4.  Data Collection Locations 

Volume studies were conducted at all the 57 locations for a duration of 16 hours (6:00 a.m. to 10:00 p.m.) using 
videographic surveys. Later, mode-wise traffic counts on these links were extracted from the video data. The O-D 
surveys were also conducted simultaneously at 25 locations to obtain a sample O-D pattern of the study area. These 
25 locations were selected judiciously to capture maximum trip information while considering the safety and 
feasibility of roadside surveys. Around 35,000 road users were intercepted at roadside during the O-D surveys. From 
the volume surveys, it was observed that the traffic composition was highly dominated by motorized two-wheelers 
followed by car. Therefore, it was necessary to estimate the O-D matrix of these two modes simultaneously to 
incorporate the congestion effect. The mode-wise O-D matrices (each 43x43) estimated based on the O-D survey 
were used as seed matrices for the estimation of mode-wise final O-D matrices.  

5. Analysis and Results 

This section includes the outcomes of the study with regards to (i) variations in selection sets chosen by experts 
(ii) estimation of O-D matrices and (iii) comparison of estimated O-D matrices 
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5.1. Variation in selection sets chosen by experts 

To understand the variation in the selection set of links for traffic counts by different experts, their responses 
were compared. The set of 45 links each selected by experts were not identical. Out of 45 links selected by each 
expert 32 links were found common across all the selection sets. The similarity among any two selection sets ranged 
between 80% - 88 %. A further investigation revealed that the common links selected by the experts are mainly the 
primary links such as (i) all the entry and exit links (contribute to trip information corresponding to external zones) 
(ii) major arterial roads (connect larger number of O-D pairs in the city and thereby, maximizes the information 
obtained from the link counts), and (iii) links connecting major points of interest and major intersections in the study 
area (provide information regarding highly important O-D trips in the network). The differences in selection sets 
were essentially observed in the sub-arterial roads. Each sub-arterial link provides information involving only a few 
TAZs; these are useful to enhance the structure of O-D matrix. The differences in selection of sub-arterials maybe 
attributed to selection of a small subset from a high number of sub-arterial links, multiple combinations of links 
resulting in similar information, and difference in perception across experts to enhance the O-D matrix. Therefore, it 
can be inferred that while deciding the selection sets for traffic link counts the experts mostly include the primary 
links (which contribute majorly to the O-D pattern structure of the network) and deviations are mostly observed in 
the selection of sub-arterial roads. The selection sets of the five experts based on number of arterials and sub-
arterials are summarized in Table 3. The similarity (in terms of number of links) across the selection sets is reported 
in Table 4. The similarity among any two selection sets for arterial roads ranged between 72% - 84 %, while for sub-
arterials roads it was found to be in the range of 50%-65%. The Fig. 5 illustrates an example by comparing the 
selections sets of expert 1 and expert 2.  

 

Table 3 Number of Arterial and Sub-Arterial links selected by experts 

 Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 

Arterials 21 23 20 22 21 

Sub-arterials 24 22 25 23 24 

 

Table 4 Pairwise similarity in number of Arterials (A) and Sub-Arterials (SA) selected by experts 

 Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 

Expert 1      

Expert 2 A- 21, SA -16     

Expert 3 A- 18, SA- 21 A- 20, SA-20    

Expert 4 A- 20, SA-19 A- 21, SA-19 A- 18, SA-19   

Expert 5 A- 20, SA- 18 A- 19, SA-19 A- 18, SA-21 A- 20, SA-20  
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   Fig. 5 Comparison of links selected by Expert 1 and Expert 2 

5.2.  Estimation of O-D matrices 

As discussed in section 3.2, the Nielson’s MPME approach was used for estimating the mode-wise O-D matrices 
from different selection sets of link counts. The modes considered for the present study were car and motorized two-
wheelers (MTW). Passenger car units (PCU) value of 0.75 was assigned for motorized two-wheelers (IRC, 1990). 
Additionally, to consider the impact of other modes such as public and paratransit modes, their flow values were 
preloaded onto the network. Mode-wise seed O-D matrix and mode-wise traffic counts were assigned to the 
network. Link information such as flow, capacity, and travel time were also associated with the model. Any zero 
value cells in the seed matrix would not get updated and remain zero. Therefore, between few O-D pairs where trips 
were expected a positive value (one) was assigned, in place of the initial zero and matrix was estimated. Multiple 
iterations (maximum 300) were performed until the observed flow and estimated flow values converged. 

O-D matrices were estimated for five selection sets. For estimation of mode-wise O-D matrices, the set of 45 
links selected by the respective expert was used as input or calibration links, and remaining ten links for which link 
counts are available were used as validating links (total 57 unique link counts are available from the volume survey). 
For example, in Trial 1, the mode-wise links counts of 45 links selected by expert 1 were used as input for 
estimating mode-wise O-D matrices, and the remaining links were used for validation.  

The average and maximum difference between the actual and estimated flow values for car and motorised two-
wheelers for calibration and validation links are shown in Table 5. The values are within the acceptable limit of 10% 
(Almasri and Al-Jazzar, 2013). All results obtained from the five different input set of links selected by different 
experts are under the acceptable limit so all the obtained matrices are potential solutions.  
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Table 5. Average and maximum errors of link volumes of cars and motorized two-wheelers (MTW) (in percentage) 

 Average Error Maximum Error 

 
Calibration Validation Calibration Validation 

 
Car MTW Car MTW Car MTW Car MTW 

Trial 1 5.26 5.82 8.16 7.89 21.92 20.48 26.13 25.15 

Trial 2 5.85 6.29 7.16 8.18 19.65 20.48 26.14 27.35 

Trial 3 5.43 6.12 9.01 7.98 19.26 20.48 23.58 21.76 

Trial 4 6.05 6.61 8.12 8.16 24.65 20.48 31.23 27.07 

Trial 5 5.67 6.47 8.14 6.92 20.06 20.48 27.05 26.21 

5.3. Comparison of estimated O-D matrices 

To understand the influence of the selection set on the estimated O-D matrix, initially mode-wise O-D matrices 
were estimated with respect to each set of links selected by experts and then a pairwise comparison of the estimated 
O-D matrix was performed. 

Total Demand Deviation (TDD) % is used to check the difference in total trip information. The results are 
summarized in the following Table 6 for car and Table 7 for motorized two-wheelers. The maximum difference 
between any selection sets is 1.58%, which indicates that selection sets most likely did not have impact on overall 
trip information. 

Table 6. Car TDD (in percentage) 

 
ODM1 ODM2 ODM3 ODM4 ODM5 

ODM1 0.00 

    ODM2 0.14 0.00 

   ODM3 1.44 1.58 0.00 

  ODM4 0.15 0.29 1.29 0.00 

 ODM5 0.21 0.35 1.22 0.06 0.00 

Table 7. Motorised two-wheelers TDD (in percentage) 

 
ODM1 ODM2 ODM3 ODM4 ODM5 

ODM1 0.00 

    ODM2 0.31 0.00 

   ODM3 0.96 1.28 0.00 

  ODM4 0.15 0.16 1.11 0.00 

 ODM5 0.09 0.23 1.05 0.07 0.00 

 
In addition to TDD, the Wilcoxon signed-rank test statistics was used to test the matrices for any difference in the 

O-D pattern using individual O-D pair. The results are summarised in Table 8 and Table 9. Interestingly, some 
significant difference was observed in a few cases at 95 % level of significance (α= 0.05). This indicates that 
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selection set influences the O-D pattern even though the overall trips remained similar. Although all the selection 
sets have resulted in an acceptable O-D estimation, it is interesting to note that a difference is O-D pattern can be 
observed. Considering the results it was observed while overall trip information remained similar for the different 
selection sets, it was likely that they influenced the O-D patterns.  

Table 8. Car - Wilcoxon signed-rank test Statistics (significance value)  

 
ODM1 ODM2 ODM3 ODM4 ODM5 

ODM1 0 

    ODM2 .567 0 

   ODM3 .059 .621 0 

  ODM4 .002 .118 .654 0 

 ODM5 .026 .016 .371 .107 0 

Table 9. Motorised Two-Wheelers - Wilcoxon signed-rank test statistics (significance value)  

 
ODM1 ODM2 ODM3 ODM4 ODM5 

ODM1 0 

    ODM2 .234 0 

   ODM3 .022 .497 0 

  ODM4 .230 .891 .325 0 

 ODM5 .346 .229 .024 .145 0 

 
In previous studies, an estimated O-D matrix is considered acceptable when average error on the validation links 

is within the tolerance limit (10%) (Almasri and Al-Jazzar, 2013). In the present study, matrices estimated from all 
five different selection sets resulted in acceptable errors when assigned on the network. However, the average and 
maximum errors of assigned link volumes (Table 5) varied across the different O-D matrices estimated. Considering 
that pairwise comparison of the estimated matrices indicated their statistically significant difference, the variation in 
average and maximum errors can be judiciously used to determine a superior link selection set and thereby an 
appropriate O-D matrix. In addition, it should be stressed that O-D matrix estimated using a single set of links can 
be evaluated only based on the threshold for acceptable average error in the absence of a reference and target matrix. 
However, when multiple set of links are used as inputs the estimated matrices may be compared based on the 
average and maximum errors of assigned link volumes in addition. This clearly illustrates the advantage of 
considering multiple link selection sets over a single link selection set for O-D matrix estimation. 

The O-D matrices estimated using the five selection sets were assigned to the network for comparing the average 
error for all 57 links (calibration and validation links). The results are presented in Table 10. Based on the average 
error, none of the five selection sets were optimal for both car and motorized two-wheeler (MTW). The matrix 
estimated from selection set 1 produced better result for car while selection set 3 produced better result for MTW. In 
such cases, a final selection could be made by giving due consideration to maximum error. In the present case, 
mode-wise O-D matrices estimated from selection set 3 (trial 3) can be considered as a solution as it has least 
average error for MTW (second best for car) and also least maximum error for both car and MTW among the five. 

Additionally, a mean O-D matrix of five estimated O-D matrix is also assigned on the network and the 
performance in terms of average and maximum error on the links is used to compare with the five estimated 
matrices. Interestingly the mean O-D matrix resulted in the least average error for car, marginally second least for 
MTW and least maximum error for both car and MTW in comparison with all the estimated O-D matrices.  
Therefore, the mean O-D matrix can be used as the final O-D matrix. 
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          Table 10. Average and maximum error of all links in percentage (%) 

 Average Error Maximum Error 

 
Car MTW Car MTW 

Trial 1 5.96 6.51 26.13 25.15 

Trial 2 6.08 6.63 26.14 27.35 

Trial 3 6.07 6.45 23.58 21.76 

Trial 4 6.42 6.89 31.23 27.07 

Trial 5 6.11 6.55 27.05 26.21 

Tmean 5.83 6.48 22.13 20.57 

6. Conclusion: 

The present study brought out several interesting findings in the context of O-D matrix estimation using link 
counts and a sample O-D matrix. In such works usually observed traffic counts on only one set of links selected by 
the expert(s) is used as input for estimation of O-D matrix. In the context of present study the set of links selected by 
five experts were found to vary. The variation was predominant for lower order links (sub-arterials) which are 
relatively large in number in a city as compared to higher order links (arterial roads). The O-D matrices estimated 
based on different input links selected by experts were found to be statistically significantly different in some cases. 
This clearly indicates that estimating O-D matrix based on one set of links selected heuristically by expert(s) may 
not be rational, highlighting the need for rethinking in selection of links.  

It is difficult to judge the quality of O-D matrix without any reference/target matrix. Therefore, the quality of 
matrix is assessed based on the performance when assigned on the network. As the O-D matrix estimated is 
sensitive to the link selection, it is more rational to estimate multiple O-D matrices based on different set of links 
selected and select an O-D matrix which minimizes the errors in link flows when assigned on the network. When O-
D matrix is estimated for multiple modes simultaneously, it may happen (as observed in this study) that no single 
selection is best across the modes. In such cases, the maximum error in addition to average error may also be 
considered while making the decision. Additionally, it may also be beneficial to compare the performance of a 
representative O-D matrix (such as mean O-D matrix) with respect to the average and maximum errors before 
deciding the final O-D matrix. Altogether the findings indicate that the selection of links and resultant matrices vary 
significantly depending on the expert. Thus the study infers that for any given network, it is advisable to consider 
multiple selection set of links, estimate corresponding O-D matrices and subsequently select the O-D matrix based 
on the errors when assigned on the network. Although the results and observations are case specific, the findings 
reported in the work are expected to be of interest to transport planners who are working on development of O-D 
matrix from link counts in other cities.  
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