World Conference on Transport Research - WCTR 2019 Mumbai 26-31 May 2019 Analysis of the Trajectories of Left-turning Vehicles at Signalized Intersections

Osama Abdeljaber ${ }^{\text {a }}$, Adel Younis ${ }^{\text {a }}$, Wael Alhajyaseen ${ }^{\text {b* }}$
${ }^{a}$ Research Assistant, Deprtment of Civil and Architectural Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
${ }^{b}$ Faculty, Qatar Transportation and Traffic Safety Center, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar

Abstract

Road traffic crashes are increasingly noticed as a global threat, causing over a million fatalities every year. Typically, signalized intersections are considered as hot spots within a highway system where conflicts accumulate, and traffic crashes are likely to occur. An important step towards improving the safety performance at signalized intersections is to understand the turning manoeuvres of vehicles. In view of that, the current paper aims at providing further insight into the behaviour of left-turning vehicles (right-hand traffic rule) at signalized intersections in the State of Qatar. At first, a total of 44 trajectories of free-flowing vehicles were manually extracted from a recorded video for a single approach of Lekhwair signalized intersection in Doha City, State of Qatar. After that, the extracted trajectories were statistically analysed in an attempt to explore the factors affecting the path of left-turning vehicles at signalized intersections. The results suggest that the characteristics of the extracted paths are significantly related to the vehicle's entry speed, minimum speed throughout its turning manoeuvre, and the lateral distance between the exit point and the curb (i.e., targeted exit lane). Provided that the speed parameters can be fairly an indication to the driving behaviour, it can be concluded that the driver's attitude plays an important role in drawing the manoeuvre of a turning vehicle as does the preselection of the exit lane. Finally, the effort presented in this paper can be regarded as a way forward towards understanding the behaviour of turning vehicles at signalised intersection in the State of Qatar.

© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of WORLD CONFERENCE ON TRANSPORT RESEARCH SOCIETY.
Keywords: Signalized intersections; Vehicle trajectories; Left turning vehicles, Traffic safety; Conflict analysis.

1. Introduction

Traffic safety is increasingly an issue of global concern. Recently, it has been estimated that road traffic crashes cause around 1.4 million fatalities and 73.25 million disabilities worldwide per annum (Gao et al., 2016). Globally,

[^0]the annual cost estimation for deaths, injuries, and disabilities due to road crashes is approximately 518 billion dollars: this makes up around 1.5% of the gross national product for middle-income countries (Gao et al., 2016). Intersections are recognized as the most complex locations within a highway system, in which conflicts are intuitively generated and thus traffic crashes are more likely to occur (Zhang et al., 2016). Despite them constituting a small part of the highway system, intersections are deemed crash prone locations due to the large number of conflict points between traffic streams moving in different directions. Intersection-related crashes share over 50% of all crashes in urban areas and 30% of those in rural regions (Zhang et al., 2016). Turning traffic has a major role in the safety performance of intersections due to the nature of their manoeuvres which are usually characterized with significant variations in path and speed depending on drivers' targeted exit lane, their instinctive judgment, intersection geometry, and other factors (Ma and Yang, 2008). As left-turning vehicles (right-hand traffic rule) pass the stop line to the intersection zone, their driving routes are often changed randomly leading generally to serious conflicts and unsmooth driving, which in turn impacts on the safety performance (Liu et al., 2013). Therefore, analyzing the trajectories of left-turning vehicles can significantly help in identifying proper countermeasures to improve the safety performance of signalized intersections.

Several studies have been conducted in the past few decades to grasp, as possible, the turning behavior of vehicles at signalized intersections. In general, significant characteristics concerning the intersection layout and the turning vehicle were highlighted (Reed, 2008; Sando et al., 2009; Stover and Koepke, 2002; Stover, 2008). As an example, Alhajyaseen et al. (2013) underlined that the trajectory of the turning vehicle is strongly related to the intersection's geometric layout (e.g., intersection angle), the vehicle's type, and speed. However, it is well-agreed that the turning maneuver of vehicles is a further complex phenomenon whose variability extends to be related to highly-dynamic factors (Gu et al., 2017; Kaysi and Abbany, 2007). For instance, the turning behavior was observed to depend on the inter- and intra-subject factors concerning drivers such as perception of traffic environment, information processing, and the ability to react correctly and to cooperate with others (Moussa et al., 2012; Sun, 2005). Moreover, the driver behavior in built up areas is largely a function of the geometry and layout of the roads, their usage, their location - in other words, urban morphology (Alexander et al., 2002). Other factors such as the waiting time of the turning vehicles (Alexander et al., 2002), relative speed of the vehicles in conflict (Liu et al., 2014), and gaps (Pollatschek et al., 2002) were observed to impact on the decision behavior of turning vehicles.

In this paper, the trajectories of 44 left-turning free-flowing vehicles were extracted from a recorded video of a signalized intersection in the State of Qatar. Spline fitting was used to extract the parameters governing the shape of the turning trajectories. After that, the extracted parameters were statistically analyzed to understand and model the factors affecting the trajectories of left-turning vehicles.

This document is organized as follows: Section 2 discusses the data collection and trajectory extraction process. Section 3 explains the parameters extracted from the resulting trajectories. The statistical modeling of the extracted parameters is described in Section 4. Finally, Section 5 concludes the paper.

2. Data collection

The south approach of Lekhwair signalized intersection in Doha City, State of Qatar was videomonitored for a duration of two and hours. The video was recorded at a frame rate of 30 fps and a resolution of 3840×2160 pixel. A total of 44 trajectories of left-turning vehicles were extracted from the recorded video. These trajectories are shown in image coordinates in Fig. 1 and in real coordinates in Fig. 2. It is worth mentioning that, here, all extracted trajectories correspond to freeflowing vehicles unimpeded by traffic or pedestrians. In the following sections, these

Fig. 1. The extracted trajectories in image coordinates.

Fig. 2. The extracted trajectories in real-world coordinates.
trajectories are analyzed to obtain the key parameters governing the trajectory characteristics. A stochastic model is then created to develop relationships among the extracted parameters.

3. Extraction of trajectory parameters

According to (Alhajyaseen et al., 2013), the trajectory of a left-turning vehicle at a signalized intersection can be represented by a spline consisting of five segments. The spline starts with a straight line followed by an Euler spiral having a curvature profile that varies almost linearly with a gradient of $1 / A_{1}^{2}$. This spiral is followed by a circular segment with a curvature of $1 / R_{\min }$. The end of the spline consists of another Euler spiral having a nearly linear curvature profile with a gradient of $-1 / A_{2}^{2}$ followed by a straight line. As shown in Fig. 3, there are four main locations that define the beginning and end of each Euler spiral and circular segments. These locations are basically the points of discontinuity along the curvature profile of the vehicle's path. Another important parameter can be identified, which is the lateral distance D_{e} between the exit point of the second Euler spiral and the left-hand side curb (Fig. 3). This distance reflects the exit lane of a left-turning vehicle.

A Matlab code was written to fit the aforementioned spline to each of the extracted paths in order to identify their governing parameters ($R_{\text {min }}, A_{1}, A_{2}, D_{e}$). The code applies the nonlinear programming solver "fmincon" available in Matlab Optimization Toolbox to compute the optimal location of the four key points described in Fig. 3 so that the error between the tracked path and the fitted spline is minimized. Four constraints were imposed to enforce continuity of the fitted spline at the four points. Also, another four constraints were applied to ensure that no sudden jump exists at the key points of the curvature profile. The fitting of the two Euler spirals was conducted according to the approach proposed in Bertolazzi and Frego (2011).

Fig. 4 displays examples of four splines fitted to their actual extracted paths. Moreover, the figure shows the curvature profile of the fitted splines along with the speed profiles of the corresponding trajectories (obtained by applying finite central difference on the extracted trajectories). In addition to $R_{\min }, A_{1}, A_{2}$, and D_{e}, another two important parameters were extracted from the speed profiles, which are the entry speed $V_{\text {ent }}$ (measured at the beginning of the first Euler spiral) and the minimum speed along the trajectory $V_{\text {min }}$.

Fig. 3. Components of the spline used for trajectory curve fitting.

Fig. 4. Examples of the curve fitting process showing the fitted splines and their curvature profiles along with the speed profiles.

4. Statistical analysis

The Matlab code explained in Section 3 was used to estimate the six parameters of the extracted trajectories. The probability distributions of these parameters are displayed in Fig. 5. As shown in the figure, a normal distribution was fitted for each parameter. One-sample Kolmogorov-Smirnov test (95% confidence level) showed that each of the six parameters follows a normal distribution, of which the mean and standard deviation are presented in Table 1.

The results given in Table 1 demonstrate the geometric variations of the extracted paths. As shown in Fig. 2, the monitored approach of the intersection has a single-entry lane and three exit lanes. Therefore, a considerable variation can be observed in the distribution of the exit points D_{e} since the drivers are allowed to exit the intersection from any of these three lanes. However, the distribution of D_{e} shows that around 70% of the drivers preferred the middle lane. Also, it can be noticed that the coefficient of variation increases along the trajectory from 8.82% at the first Euler spiral to 11.02% at the circular segment to 26.9% at the exit Euler spiral. In other words, the variation of the spline segments close to the exit point are much higher than that of segments near the entry point. This significant variation can be attributed to the large size of the intersection and the fact that the exit approach has three lanes, as opposed to the single left-turning lane at the entry approach.

Fig. 5. Probability distribution of the six extracted parameters across the 44 trajectories.

Table 1. Mean, standard deviation, and coefficient of variation of the parameters' distribution.

Statistic	$R_{\min }(\mathrm{m})$	$A_{1}(\mathrm{~m})$	$A_{2}(\mathrm{~m})$	$D_{e}(\mathrm{~m})$	$V_{\text {ent }}(\mathrm{km} / \mathrm{hr})$	$V_{\min }(\mathrm{km} / \mathrm{hr})$
μ	28.14	36.28	21.08	5.13	46.75	31.92
σ	3.10	3.20	5.67	1.30	5.03	3.29
$\operatorname{CoV}(\%)$	11.02	8.82	26.9	25.34	10.76	10.31

4.1. Modelling of the variations in paths

Based on the parameters computed from the extracted trajectories, three multiple regression models were created to identify the factors affecting the paths of left-turning vehicles at the monitored approach. The output variables of the model were the distributions of $R_{\min }, A_{1}$, and A_{2}, while the explanatory variables were the entry speed $V_{\text {ent }}$, the minimum speed $V_{\min }$, and the distance from the exit point to the curb D_{e}. Assuming a normal distribution, the mean of the $i^{\text {th }}$ output variable P_{i} can be written as:

$$
\begin{equation*}
\mu\left(P_{i}\right)=\beta_{0, i}+\beta_{1, i} D_{e}+\beta_{2, i} V_{\mathrm{ent}}+\beta_{3, i} V_{\mathrm{min}} \tag{1}
\end{equation*}
$$

where μ is the mean of the normal distribution and $\beta_{0, i}, \ldots, \beta_{3, i}$ are the model coefficients obtained by the maximum likelihood method. IBM SPSS Statistics package (2008) was used to compute the parameters of the three models. The results are shown in Table 2.

Table 2. Coefficients of the three multiple regression models.

Explanatory variables	$R_{\text {min }}(\mathrm{m})$				$A_{1}(\mathrm{~m})$				$A_{2}(\mathrm{~m})$			
	β	Std. error	t-value	Sig.	β	Std. error	t-value	Sig.	β	Std. error	t-value	Sig.
Constant	15.111	3.494	4.325	0.000	32.445	5.336	6.080	0.000	-4.269	7.178	-0.595	0.555
D_{e}	1.128	0.258	4.366	0.000	0.680	0.395	1.723	0.093	2.571	0.531	4.842	0.000
$V_{\text {ent }}$	-0.212	0.073	-2.911	0.006	0.089	0.111	0.796	0.431	0.022	0.150	0.147	0.884
$V_{\text {min }}$	0.537	0.116	4.644	0.000	-0.119	0.177	-0.673	0.505	0.349	0.238	1.468	0.150
Sample size	44				44				44			
Adjusted R^{2}	0.552				0.293				0.473			

The resulting models show that the geometric variations of the extracted paths, represented by the fitted spline parameters $R_{\min }, A_{1}$, and A_{2}, are significantly dependent on the variables D_{e}, V_{ent}, and $V_{\min }$. The computed t-values show that there is a significant correlation between the radius of the circular curve $R_{\min }$ and all three output variables. Furthermore, it can be observed the variable A_{2}, associated with the second Euler curve, depends mostly on the variable D_{e} which reflects the exit lane. However, the output A_{1} (i.e. the parameter of the entry Euler spiral) relatively exhibited a lower correlation with the three explanatory variables. Provided a free-flowing trajectory, the speed parameters can somehow indicate the aggressiveness of the drivers and therefore, it can be said that the driver's behaviour and the selected exit lane influence on the trajectory of the turning vehicle.

4.2. Comparison between simulated and observed tracks

Monte-Carlo simulation with 500 trials was conducted using the models explained in Table 2. In each trial, the three models were used to compute $R_{\min }, A_{1}$, and A_{2} based on random values of D_{e}, V_{ent}, and $V_{\min }$ which were generated according to the normal distributions described in Fig. 5 and Table 1. The resulting spline parameters were then used to obtain the simulated trajectories shown in Fig. 6. As shown in the figure, three cross-sections were considered along the path of left-turning vehicle. The distribution of the simulated paths was computed along each cross-section. Similarly, the distribution of the observed trajectories was analysed along the same cross-sections. Both observed and simulated distributions are displayed in Fig. 7. After that, Kolmogorov-Smirnov test (with 95\% confidence level) was conducted to compare between the observed and simulated distributions. It was found that the simulated distributions at the three cross-sections are not significantly different from the observed counterparts.

Fig. 6. Simulated paths of left-turning vehicles.

Fig. 7. Comparison between observed and simulated distributions at: (a) cross-section 1, (b) cross-section 2, and (c) cross-section 3.

5. Conclusion

In this paper, a total of 44 trajectories of left-turning vehicles were extracted from a recorded video of a signalized intersection located in Doha City, State of Qatar. The trajectories were then statistically analysed in order to identify the factors that impose the variation in paths of the left-turning vehicles at the monitored intersection. Wide variations in the paths of turning vehicles lead to larger conflict areas and thus more safety risks. The results showed that the geometry of the vehicle's path depends significantly on the entry speed, minimum speed throughout the manoeuvre, and the lateral distance between the exit point and the curb (i.e., choice of exit lane). The demonstration of the significance of the speed parameters suggests the likely effect of the driving attitude on the turning vehicle's path. Nonetheless, in order to provide deeper insight into the turning behaviour at signalized intersections in the state of Qatar, it is highly recommended to analyse a larger number of trajectories extracted from several intersections.

Acknowledgements

Special thanks are due to Dr. Deepti Muley for providing the recorded video used in the current paper.

References

Alexander, J., Barham, P., Black, I., 2002. Factors influencing the probability of an incident at a junction: Results from an interactive driving simulator. Accid. Anal. Prev. 34, 779-792. https://doi.org/10.1016/S0001-4575(01)00078-1
Alhajyaseen, W.K.M., Asano, M., Nakamura, H., Tan, D.M., 2013. Stochastic approach for modeling the effects of intersection geometry on turning vehicle paths. Transp. Res. Part C Emerg. Technol. 32, 179-192. https://doi.org/10.1016/j.trc.2012.09.006
Bertolazzi, E., Frego, M., 2011. Fast and accurate clothoid fitting. Proc. 14th Int. Conf. Artif. Intell. Stat. 15, 434-442. https://doi.org/10.1145/0000000.0000000
Gao, J., Chen, X., Woodward, A., Liu, X., Wu, H., Lu, Y., Li, L., Liu, Q., 2016. The association between meteorological factors and road traffic injuries: A case analysis from Shantou city, China. Sci. Rep. 6, 37300. https://doi.org/10.1038/srep37300
Gu, Y., Hashimoto, Y., Hsu, L.T., Iryo-Asano, M., Kamijo, S., 2017. Human-like motion planning model for driving in signalized intersections. IATSS Res. 41, 129-139. https://doi.org/10.1016/j.iatssr.2016.11.002
IBM, 2008. SPSS: Statistical Package for the Social Sciences. Data Anal. Softw. Packag.
Kaysi, I.A., Abbany, A.S., 2007. Modeling aggressive driver behavior at unsignalized intersections. Accid. Anal. Prev. 39, $671-678$. https://doi.org/10.1016/j.aap.2006.10.013
Liu, M., Lu, G., Wang, Y., Wang, Y., Zhang, Z., 2014. Preempt or yield? An analysis of driver's dynamic decision making at unsignalized intersections by classification tree. Saf. Sci. 65, 36-44. https://doi.org/10.1016/j.ssci.2013.12.009
Liu, P., Xu, C., Wang, W., Wan, J., 2013. Identifying factors affecting drivers' selection of unconventional outside left-turn lanes at signallised intersections. Iet Intell. Transp. Syst. 7, 396-403. https://doi.org/10.1049/iet-its.2011.0229
Ma, W., Yang, X., 2008. Coordination design of left movements of signalized intersections group. Tongji Daxue Xuebao/Journal Tongji Univ. 36, 1507-1511.
Moussa, G., Radwan, E., Hussain, K., 2012. Augmented Reality Vehicle system: Left-turn maneuver study. Transp. Res. Part C Emerg. Technol. 21, 1-16. https://doi.org/10.1016/j.trc.2011.08.005
Pollatschek, M.A., Polus, A., Livneh, M., 2002. A decision model for gap acceptance and capacity at intersections. Transp. Res. Part B Methodol. 36, 649-663. https://doi.org/10.1016/S0191-2615(01)00024-8
Reed, M., 2008. Intersection Kinematics: A Pilot Study of Driver Turning Behavior Obscuration By A-Pillars, Report No. UMTRI-2008-54. https://doi.org/UMTRI-2008-54
Sando, T., Ph, D., Moses, R., 2009. Influence of Intersection Geometrics on the Operation of Triple Left-Turn Lanes. J. Transp. Eng. 135, 253259. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000005

Stover, V.G.., Koepke, F.J., 2002. Transportation and Land Development.
Stover, V.G., 2008. Issues Relating to the Geometric Design of Intersections. Proc. 8th Int. Conf. ACCESS Manag.
Sun, R., 2005. Cognition and multi-agent interaction: From cognitive modeling to social simulation, Cognition and Multi-Agent Interaction: From Cognitive Modeling to Social Simulation. Cambridge University Press. https://doi.org/10.1017/CBO9780511610721
Zhang, G., Qi, Y., Chen, J., 2016. Exploring Factors Impacting Paths of Left-Turning Vehicles from Minor Road Approach at Unsignalized Intersections. Math. Probl. Eng. 2016, 1305890. https://doi.org/10.1155/2016/1305890

[^0]: * Corresponding author. Tel.: +974 4403-6679; fax: +974 4403-4302.

 E-mail address: wyaseen@qu.edu.qa

