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Abstract 

This article proposes reliable mathematical models for the assessment of signalized intersections from bicycling perspective under 

mixed traffic conditions. For investigation purposes, extensive data sets (related to the geometrical, operational and built-

environmental characteristics) are collected from 70 intersection approaches located in seven Indian cities. Each approach has been 

rated by 200 on-site bicyclists based on their perceived satisfaction levels on a Likert scale of 1–6 (excellent–worst). Using these 

ratings as the array of dependent variable, Spearman’s correlation analysis has been carried out and eight intersection attributes 

having significant influences on the bicycle service quality are identified (such as the effective approach width, peak hour volume, 

crossing pedestrian volume, and average delay, etc.). Subsequently, three efficient techniques namely, associativity functional 

network (FN), genetic programming (GP) and step-wise regression are utilized to develop highly reliable service prediction models, 

called bicycle level of service (BLOS) models. Of all, the FN technique has produced the most efficient BLOS model with 

coefficient of determination (R2) values of 0.917 and 0.915 in its training and testing stages respectively. On the other hand, the 

regression technique has produced the least complex model. The service qualities of signalized intersections are classified into six 

levels A–F (excellent–worst) by using a letter-graded scale defined in this article. Results have shown that about 86% intersection 

approaches offering BLOS ‘C’ or inferior. Thus, the redesigning works supported by the outcomes of this research may be carried 

out for the improvement of existing signalized intersections. 
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Nomenclature 

ai   coefficient of variable x at ith degree of shape function 

b   bias parameter 

BLOSmax  maximum value of overall BLOS score 

BLOSmin  minimum value of overall BLOS score 

BLOSSA  overall perceived BLOS score for a signalized approach 

BLOSSA, Norm normalized value of overall BLOS score 

C   cycle length 

C’   set of constants 

CPV  crossing pedestrian volume across the path of through bicyclists 

D   average stopped time delay incurred by through bicyclists 

dmax   maximum depth of GP tree 

E   Nash–Sutcliffe efficiency coefficient 

ej   error in jth data 

En   sum of squared errors for n data sets 

Eλ   auxiliary function 

f   GP function 

F   set of functional elements 

g   green period 

g/C   green time over cycle length 

m   degree of shape functions 

p   significance level 

pc  crossover probability 

PHV   peak hour volume 

pm  mutation probability 

pr  reproduction probability 

PT   on-street parking turnover 

R2   coefficient of determination 

s   number of input variables 

SDP   surrounding developmental pattern 

v1, v2  random variables 

VTurn   volume of turning vehicular traffic across the path of through bicyclists 

w   gene weight 

WEff   effective approach width 

X   vector of independent variables 

x1, x2,…, xs  FN model inputs 

xs+1   FN model output 

y   typical output variable 

αk, x0   constant terms 

ρ   Spearman’s rho 

ϕ   shape function 

ϕi   shape function with degree i 

1. Introduction 

Road intersections are the at-grade junctions where two or more roads meet or cross. To safeguard the traffic and 

pedestrian movements at these hazardous and bottleneck points, one of the most effective attempts usually adopted is 

signalization. Pre-timed, partially actuated, and fully actuated are various signalization techniques used to control the 

traffic movements. The service quality of signalized intersections from bicycling perspective is largely determined by 
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their geometrical properties, traffic flow characteristics, and built-environmental conditions. A thorough understanding 

of these variables is a matter of utmost concern for the planning and designing of bicycle-friendly intersections. 

Previous studies carried out in the state-of-the art have primarily focused on the service quality analyses of signalized 

intersections operating under homogeneous traffic flow conditions, which prevails in developed countries. This kind 

of traffic operation symbolizes a lane-disciplined flow of identical vehicles (cars), which is completely different from 

that in developing countries. The road traffic in the later context is heterogeneous in nature which symbolises a mixed 

flow of small and big vehicles (2-wheelers, 3-wheelers, 4-wheelers, and heavy vehicles, etc.) with a weak lane 

discipline. The unavailability of separate bicycle signal and bicycle lane facilities on the approaching legs at many 

intersections enforces the bicyclists to mobilize at their own risk. Such a loose structure of the regulatory system makes 

the operational characteristics of bicyclists substantially different and complex from that in developed countries. Thus, 

the efficiency of signalized intersections under heterogeneous traffic conditions cannot be accurately analysed with 

the help of heterogeneous traffic flow models.  

In response to the above gap, the present study has been undertaken with the following two major objectives: (1) 

to figure out the variables having significant effects on bicycle through movements at signalized intersections under 

heterogeneous traffic conditions, and (2) to develop reliable bicycle level of service (BLOS) models for quantifying 

the efficiency of the mentioned facility. To accomplish these objectives, the bicycling environments persisting at 70 

signalized intersection approaches are thoroughly analyzed. These intersections are identified from the diversified road 

environments of seven Indian cities. From these sites, a wide range of data including intersection attributes, personal 

characteristics of total 14,000 on-site bicyclists, and perceived satisfaction scores (BLOS scores) are collected. 

Subsequently, variables having significant influences on the intersection efficiency are identified, and modeled using 

the genetic programming (GP), associativity functional network (FN), and step-wise regression techniques. GP and 

FN are two highly reliable artificial intelligence (AI) techniques, which have numerous advantages over various other 

prediction tools available at present. These tools are problem-driven in nature, which do not assume or impose any 

particular kind of relationship (e.g., linear and exponential) among the input and output variables beforehand. This 

principle has made these techniques extremely suitable to deal with high dimensional problems with a large amount 

of input data. The goodness-of-fit and validation criteria of developed models are assessed in terms of various 

statistical parameters, and the best model is reported. The crucial outcomes of this study will largely help the traffic 

planners and engineers to quantify and enhance the bicycle-friendliness of urban signalized intersections carrying 

heterogeneous traffic. 

2. Background studies 

Davis (1987) proposed the first-ever mathematical model for the assessment of road intersections namely, 

Intersection Evaluation Index (IEI) model. This model is a function of main-street traffic volume, cross street traffic 

volume, type of signalization, and various geometric factors (presence of left- and right-turn lanes, number of through 

lanes, curb radii and sight distance). The 2000 version of American Highway Capacity Manual (HCM-2000) 

considered controlled bicycle delay (s/bicycle) as the only measure of effectiveness for estimating the BLOS of 

signalized intersections (TRB, 2000). However, Crider et al. (2001) reported that the safety and comfort levels of 

bicyclists traveling through road intersections are largely influenced by conflicts with turning vehicles, exposure to 

the conflicts with vehicular traffic, and the crossing delay. 

Landis et al. (2003) applied the step-wise regression method to model the service levels experienced by through 

bicyclists at signalized intersections. This model included intersection crossing distance and three attributes of the 

subject approach namely, number of lanes, traffic volume, and sum total width of the outside lane and bicycle lane (if 

present). TRB (2010) incorporated a minor modification in this model and documented the revised model in HCM-

2010. In this revised model, the traffic volume on the subject approach was replaced with the sum total volume of the 

through, left and right-turn demand flow rates. The Charlotte Department of Transportation (CDOT) developed a LOS 

methodology to assess the design features that affect the quality of bicycle crossings at signalized intersections 

(Steinman and Hines, 2004). The influencing variables included intersection crossing distance, roadway space 

allocation (i.e., crosswalks and bicycle), corner radius dimension, and traffic signal characteristics.  

Carter et al. (2007) proposed a Bicyclist Intersection Safety Index (Bike ISI) model for the assessment of bicycle 

through movement at road intersections. This model considered several parameters such as main-street and cross-
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street traffic volumes, main-street speed limit, presence of turning vehicles across the path of through bicyclists, 

number of right turn lanes, presence of bicycle lane, presence of signalization (yes or no), and on-street parking 

activities on the main approach. Strauss et al. (2013) revealed that the presence wider crosswalks and bus stops 

increases bicyclists’ injury occurrence at signalized intersections, while the provision of raised medians decreases the 

same. Jensen (2013) proposed a cumulative logit-based BLOS model for predicting the riding quality of bicyclists 

moving straight ahead at signalized intersections. This model considered various parameters such as width of bicycle 

facility at stop line, type of crossing facility for bicyclists, and type of bicycle facility before the intersection. 

However, no standard BLOS model is available for the reference of road authorities in developing countries. To 

date, only Beura et al. (2017) have developed a step-wise regression-based BLOS model for the assessment of bicycle 

through movement at signalized intersections carrying heterogeneous traffic. Input variables of this model are specific 

to the intersection approach of interest and include approach width per direction (m), peak hour traffic volume 

(Passenger Car Units per hour or PCUs/h), pavement condition index, average stopped time delay (min/bicycle), land 

use pattern, and on-street parking turnover. Thus, the effects of other parameters like cross-street traffic volume, 

turning vehicular volume, crossing pedestrian volume, and the green time over cycle length, etc. need further 

investigation. Another limitation of this model is that limited quantity of data set is used for its training and testing, 

i.e., 25 and 10 approaches respectively. In light of this, the present study has carried out extensive data collections and 

an in-depth investigation of the intersection BLOS under said conditions. 

3. Brief descriptions of Modelling Tools 

Of the three modelling tools used in this study, the step-wise regression analysis is a well-known statistical tool, 

whose analytical procedure follows three major steps. First, several combinations and/or transformations (e.g., square, 

square root, inverse, exponential, logarithmic, etc.) of input variables are carried out. Second, each variable is included 

in the analysis either in its original form or its modified form (combined, transformed or both), and its coefficient is 

estimated. Third, the significance (p-value) of each coefficient is tested. These steps are repeated until the best 

combination of all variables is obtained. Subsequently, the best model is selected for implementations. The principles 

of GP and associativity FN techniques are discussed below. 

3.1. Genetic programming (GP) 

GP, introduced by Koza (1992), is an evolutionary approach that automatically evolves computer programs to 

develop predictive models without specifying their structures beforehand (McPhee et al., 2008). It applies the 

Darwin’s theory of natural selection to select and reproduce non-linear models. The modelling procedure starts with 

the formation of an initial population of a large number of individuals generated at random. Each individual resembles 

a tree structure, called GP tree. The nodes of a GP tree are constructed by selecting suitable elements either from a 

functional set (arithmetic operators, mathematical functions, Boolean operators, logical expressions or any other user-

defined functions) or a terminal set (variables, constants or both). 

Once the initial population is created, the objective function (root mean square error or ‘RMSE’ in this study) 

assesses the fitness of each individual. Unless the problem is so small and simple, all most all individuals of the initial 

population exhibit extremely poor fitness. Thus, GP attempts to create an offspring population of better-fitted 

individuals by implementing various genetic operations (reproduction, crossover and mutation) on them. These three 

operations are carried out at their respective frequencies pr, pc and pm respectively, where pr + pc + pm = 1. The 

“reproduction” process involves the direct duplication of high-fitness individuals of the initial population to the 

offspring population. The “crossover” operation involves the production of better-fitted individuals by exchanging the 

randomly chosen parts of two parental individuals. Fig. 1a illustrates a typical crossover of two parents ln{v1
2/(v2+2)} 

and exp(v1/v2
0.5) to produce the offspring ln(v1

2/v2
0.5) and exp{v1/(v2-5)}. The “mutation” operation involves the 

production of a better-fitted individual by randomly replacing a node of the parent with another element of the 

functional or terminal set. Fig. 1b illustrates a typical mutation operation on a parent exp(v1+v2) to produce an offspring 

exp(v1-v2). 
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Fig. 1. Typical evolutionary operations in GP: (a) crossover; (b) mutation. 

The GP formalism continues over several “generations”, and at each generation, the existing population is replaced 

by a new population of better-fitted individuals. This process terminates when either the maximum number of 

generations is reached or a threshold fitness value is achieved. Finally, the best-fit individual appeared at any 

generation is defined as the output of GP analysis. The mathematical expression of a BLOS model developed through 

the GP formalism can be presented as follow: 

  
Pred

BLOS , ,b w f X F X C       (1) 

Where, BLOSPred (predicted BLOS score) represents the model output, b is the bias parameter, w is the weight of 

gene f[X, F(X), C], f represents the GP function, X represents the vector of independent variables, F represents the set 

of functional elements, and C’ represents the set of constants. Here, w and b are estimated by the ordinary least squares 

method. 

 

3.1.1 Optimum values of GP algorithm parameters: The GP formalism is carried out and regulated by the optimum 

values of various algorithm parameters such as population size, number of generations, and the maximum depth of 
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GP tree (dmax), etc. As each problem has its own curvature of the solution space, the optimum values of GP algorithm 

parameters are specific to the problem at hand (Searson et al. 2010). However, no concrete guideline is available at 

present estimate the same. Thus, a stepwise selection procedure is adopted and the parameter to be optimised is 

scanned thoroughly in a wide range (Table 1), while keeping the values of all other parameters unchanged. At each 

trial, the model performance is tested, and the best value of the corresponding parameter is identified. Higher ranges 

of the parameters (as compared to Table 1) could also be adopted elsewhere keeping in mind that the computational 

cost and model complexity would be higher. The condition used to terminate the program execution is the maximum 

number of generations or a fitness value less than 0.0001, whichever is earlier. Further details on the GP formalism 

could be found in Koza (1992), McPhee et al. (2008), and Searson et al. (2010). 

     Table 1. Implemented ranges of GP algorithm parameters. 

Parameter Range 

Population size  100–1500 

Number of generations 100–500 

dmax 2–10 

pr 0.01–0.07 

pc 0.75–0.9 

pm 0.05–0.15 

3.2. Associativity functional network (FN) 

In the recent past, FN has evolved as a powerful alternative to the artificial neural networks (ANN) technique 

(Castillo et al., 2000a, 2000b). Unlike in ANN, where the best-fit model is developed by selecting the number of 

hidden layers and the number of neurons in each hidden layer through numerous trials, FN derives its initial topology 

based on the domain knowledge of the problem. Once the initial topology is established, the FN algorithm attempts 

to simplify it through the concepts of functional equations (Castillo et al., 2004). The simplified network is called as 

the equivalent FN of the initial network. Further, FN uses the data knowledge to estimate unknown neuron functions 

using which the predictive model of interest is derived. 

The present study has applied the concepts of associativity FN, which is the most recent and simplest form of FN. 

This approach uses the basic theory of functional equations to convert any multi-input network with s inputs (x1, x2,…, 

xs) and one output (xs+1) to an associative network of equal prediction ability (Castillo et al., 2000a). Fig. 2a presents 

a typical FN structure of three inputs (x1, x2, and x3) and one output (y), and its associative FN is presented in Fig. 2b. 

In Fig. 2b, ϕ represents the shape function (SF) of input variables, which can be any mathematical function. 

Fig. 2. Representation of (a) a typical FN structure; and (b) its associativity FN structure. 

 

The mathematical expression of an associative FN, f(x), built for any independent variable x is represented as: 

   
1

m

i ii
f x a x


     (2) 

a b 
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Where, m is the degree of SFs used, ai is the coefficient of variable x at ith degree, and ϕi is the SF with degree i. 

For a given problem with s inputs, all input functions f1(x1), f2(x2), f3(x3),… fs(xs) are derived using Equation 2 and 

integrated to estimate the output function fs+1(xs+1) as follow: 

       
s 1 s 1 1 1 2 2 s s

...f x f x f x f x
 

        (3) 

Accordingly, the error in jth observation (ej) is obtained as: 

       1 1 2 2 s s s 1 s 1,
...

j j j j
e f x f x j f x f x

 
       (4) 

To estimate the values of ai, the sum of squared error En for all n data sets is minimized as follows: 
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Where, x0 and αk are constant terms. 

Further, an auxiliary function Eλ is defined by using the Lagrangian multipliers as: 
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The minimum value of Eλ is then estimated by using the following two equations. 
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Where, k = 1, 2,… s + 1, and k = 1, 2,… m. 
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    (9) 

Finally, the above system of linear equations with k×(m+1) equations and k×(m+1) unknowns is solved to get the 

values of model coefficients. 

4. Site Selection and Data Collection 

The collection of sufficient amount of data from diversified road conditions is the key requisite for the appropriate 

analysis of bicycling environments. In India, the urban development along with the infrastructural growth unevenly 

differ from one city to another. The locations of roadways inside a city also largely affect its traffic flow and built-
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environmental characteristics. Thus, as many as 70 intersection approaches located in the central parts, suburbs and 

outskirts of seven Indian cities were considered for data collection purposes, which include: 

 

1. 25 approaches from Bhubaneswar city, the capital of Odisha state 

2. 14 approaches from Lucknow city, the capital of Uttar Pradesh state 

3. 7 approaches from Nagpur city of Maharashtra state, the largest city in central India 

4. 6 approaches from Rourkela, the third largest city in Odisha state 

5. 3 approaches from Kurnool, the seventh most populous city in Andhra Pradesh state 

6. 12 approaches from Tirupati, the ninth most populous city in Andhra Pradesh state 

7. 3 approaches from Anantapur, the tenth most populous city in Andhra Pradesh state 

 

Fig. 3a shows the geographic locations of investigated cities, and Fig. 3b shows the conditions of two typical 

signalized intersection approaches in Indian context. Selected approaches are the legs of T-type or 4-legged isolated 

urban intersections, where number of lanes on the major and minor approaches vary in the ranges of 1–4 and 1–3 

respectively. The peak hour volume on the major and minor approaches of these intersections vary in the ranges of 

395–4085 and 208–2110 PCUs/h respectively. Considered approaches are characterised by 3–14 m carriageway, 

nonexistence to 5 m median, and non-existence to 3.5 m shoulders. Various other statistics of these sites are given in 

Table 2 of the “Variable Selection, Model Development, and Results” section. Following sub-sections discuss about 

the various data sets collected in this study. 

     
 

(The red colored solid line represents the end of queue, and blue colored dotted line represents the stop line at signalized intersection) 

Fig. 3. (a) Location of studied cities; (b) typical intersection conditions prevailing in India. 

4.1. Geometrical data 

Listed below, several geometrical parameters are collected from each intersection, where all parameters are specific 

to the subject approach unless otherwise stated, and the direction of turning lanes (left or right) corresponds to the left-

hand drive conditions prevailing in India: 

 

 Number of lanes on the subject, opposing and conflicting approaches 

 One-way or two-way (1 or 2) 

 Effective width of the approach (m) 

 Presence (1 = yes, 0 = no) and widths (m) of shared-use path, paved shoulder, bicycle lane, sidewalk, parking 

lane, crosswalk, median, curb and gutter 

Bhubaneswar 

Rourkela 

Nagpur 

Anantapur 

Lucknow 

Kurnool 

Tirupati 

a b 
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 Intersection crossing distance (m) 

 Left-turn curb radius (m) 

 Sight distance (1 = adequate, 0 = inadequate) 

 Presence of exclusive left-turn lane (1 = yes, 0 = no) 

 Allowance for right-turn on red (1 = yes, 0 = no) 

 Number of legs at the intersection 

 

Of the above parameters, the left-turn curb radius was estimated from google earth, while all others were collected 

through field observations and geometrical measurements. The effective width of each approach was estimated as the 

total width of the approach including travel lanes, paved shoulder, and the width of paving between outermost lane 

stripe and outer edge of pavement minus the average width reduction due to encroachments, if any. 

4.2. Traffic flow and signalisation data 

The videography technique was implemented to collect various information on the signalization and traffic flow 

characteristics at studied intersection approaches. At a particular time, one approach of an intersection was selected 

for the data collection. As demonstrated in Fig. 3b, a longitudinal trap was made on the selected approach from the 

stop line of the intersection to the end of the queue to notify the entry and exit of vehicles at intersections. This aided 

the accurate estimation of several parameters including bicycle delay and platoon ratio (the ratio of percentage of 

vehicle arriving during green and percentage of time green). The length of queue was decided by visually observing 

queue lengths in a few randomly selected cycles. The video camera was mounted on a nearby high-rise building, foot-

over bridge, or any other rigid structure to record the unobstructed view of the trap on subject approach simultaneously 

with signal timings (if operated with traffic signals) and the traffic flows from conflicting and opposing approaches. 

The video recording was carried out for a period of two hours either during the morning or evening peak periods 

of Indian traffic (8:30–10:30 A.M. or 4:30–6:30 P.M.). Recorded videos were played on a large screen, and manual 

traffic volume count was carried out. The traffic volume on the subject approach was converted to PCUs/h by using 

the conversion factors given in Indian Road Congress (IRC) code of practice-106 (IRC, 1990). Subsequently, the peak 

one hour at each site was determined through the running average method. This hour was chosen as the analysis period 

as bicyclists encounter the most complex operational conditions during this time. Subsequently, various other 

parameters listed below were extracted from the peak one-hour video of each site, where all parameters are specific 

to the subject approach unless otherwise stated and the direction of turning movements correspond to the left-hand 

drive conditions prevailing in India: 

 

 Green period g (sec), cycle length C (sec), and the green time over cycle length g/C 

 Compositions and volumes of the through, left-turning, right-turning, and total traffic (PCUs/h) on all approaches 

 Volume of turning vehicular traffic across the path of through bicyclists (PCUs/h) 

 Conflicting traffic volume (PCUs/h) 

 Average platoon ratio 

 Average stopped time delay incurred by through bicyclists (s/bicycle) 

 Crossing pedestrian volume across the path of through bicyclists (ped/h) 

4.3. Built-environmental and other data 

As the built-environmental attributes are spatial in nature, those were observed within at least 100 m upstream of 

the stop line at an intersection approach. The list of all built-environmental and other data sets collected in this study 

include: 

 

 Visibility of signaling devices (1 = good, 2 = moderate, 3 = poor) 

 Surrounding developmental pattern (1 = highly commercial, 0.5 = moderately commercial, 0 = minimal 

commercial) 

 On-street parking turnover (1 = high, 0.5= moderate, and 0 = minimal) 
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 Pavement Condition Index (varies from 1 = excellent through 5 = worst) 

 Street-lighting condition (1 = good, 2 = moderate, 3 = poor) 

 Number of driveways 

4.4. Opinion survey of on-site bicyclists 

The face-to-face interaction method was implemented to gather various information on the socio-demographic 

details, travel-related characteristics, and perceived BLOS scores of on-site bicyclists. At each site, effective responses 

were obtained from as high as 200 bicyclists (14,000 in total) comprising of employees, homemakers, students and 

retirees. Bicyclists those who recently crossed the intersections participated in this survey. To obtain reliable responses 

from the participants, following two criteria were laid: (1) the exclusion of children under the age of 14 from 

participation, as they may lead to improper responses, and (2) the inclusion of participants having at least one year of 

bicycling experience in urban areas. The percentage variations of various important characteristics of surveyed 

bicyclists observed across all sites are as follows: 

 

 Gender: 47–49% females, and 51–53% males 

 Age: 31–33% young (14–25 years old), 56–59% middle-aged (26–60 years old), and 9–11% elderly (above 60 

years old) 

 Bicycling experience: 19–28%, 42–56% and 18–27% have 1–5, 5–10 and over 10 years of experience respectively 

 Daily average bicycling distance: 24–32%, 46–59%, 11–17% and 1–3% ride 1–5, 5–10, 11–20, and more than 20 

km/day respectively 

 User type: 39–44% regular and 55–61% occasional bicyclists 

 

As per census 2011, 48% of the total Indian population are females, while 52% are males. And, the total Indian 

population of 14 years old and over includes approximately 33% young, 57% middle-aged and 10% elderly persons. 

Thus, there was a considerable similarity between the survey sample demographics and national demographic 

statistics. Necessary information regarding the socio-demographic details and travel-related characteristics of 

participants were collected with the help of a simple questionnaire sheet. Participants were asked to rate the 

intersection approaches on a 6-point Likert scale where, 1 represents that the participants were extremely satisfied 

while crossing the intersection and 6 represents that they were extremely dissatisfied with it. These ratings were 

denoted as perceived BLOS scores. Total 14,000 BLOS scores were collected in this study, which had the mean and 

standard deviation of 3.64 and 1.02 respectively. The Cochran’s sample size formula (Cochran, 1997) was applied on 

this database to calculate the allowed errors in the estimation of mean perceived BLOS score. Results obtained at 95% 

confidence level concluded that the anxious error was considerably minimal and was well below 1%. This indicated 

that the amount of BLOS ratings collected in this study were sufficient for statistical analyses and BLOS model 

development. 

5. Variable Selection, Model Development, and Results 

The preliminary step of data analyses involves the identification of variables having significant influences on the 

perceived BLOS scores at investigated facilities. In the model development process, only significant variables are 

used as the set of dependent variables, while the insignificant variables are excluded from further considerations. The 

database included both continuous and ordinal (or categorical) variables. Thus, the Spearman’s correlation analysis 

was preferred for the identification of significant variables as it is suitable to deal with both continuous and ordinal 

variables. During this analysis, a wide range of variables related to the characteristics of intersection approaches and 

surveyed bicyclists was used as the set of independent variables, while perceived BLOS scores were used as the set 

of dependent variables. The variables related to bicyclists’ socio-demographic and travel characteristics were 

subjective in nature. Thus, suitable ordinal or categorical scales were defined to assess the influences of these variables 

on the perceived BLOS. For instance, the gender was defined as 0 = female and 1 = male. The age group was defined 

as 1 = young age, 2 = middle age, and 3 = elder age. The bicycling experience was defined as 1 = less than 10 years, 

2 = 11–20 years, and 3 = more than 20 years. The daily average bicycling distance was defined as 1 = less than 20 
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km/day, 2 = 20–50 km/day, 3 = 50–80 km/day, and 4 = more than 80 km/day. The user type was defined as 0 = regular 

bicyclist and 1 = occasional bicyclist. 

The Spearman’s correlation analysis revealed that, seven several attributes of the interaction approaches have 

significant (p < 0.001) influences on the facility BLOS. These variables include effective width of the intersection 

approach (WEff), peak hour volume on the approach (PHV), crossing pedestrian volume across the path of through 

bicyclists (CPV), volume of turning vehicular traffic across the path of through bicyclists (VTurn), average stopped time 

delay incurred by through bicyclists (D), on-street parking turnover (PT), and surrounding developmental pattern 

(SDP). On the other hand, the socio-demographic and travel-related characteristics of bicyclists did not have 

significant correlation with the perceived BLOS score. This concluded that the bicycle users irrespective their personal 

and travel-related characteristics perceived similar kind of service levels in the present context. Thus, the respective 

variables were excluded from further considerations. The descriptive statistics (range, mean and standard deviation) 

alongside the Spearman’s ρ and associated p-values of all significant variables are summarized in Table 2. These 

descriptive statistics ensure that the identified parameters are collected from widely diversified road environments, 

and the database is capable of developing a well-generalized BLOS model.  

     Table 2. Important attributes of signalized approaches and their statistics. 

Sl. 

No. 

Variable Unit or scale Range Mean Standard 

deviation 

Spearman’s ρ p-value 

1 WEff m 3–14 8.84 2.73 -0.483 < 0.001 

2 PHV PCUs/h 395–4086 1609.75 831.74 0.466 < 0.001 

3 CPV ped/h 33–1700 409.15 370.81 0.676 < 0.001 

4 VTurn PCUs/h 69–703 288.8 140.05 0.462 < 0.001 

5 D s/bicycle 15–52.2 27.29 8.79 0.569 < 0.001 

6 PT Scale-1* 0–1 0.46 0.34 0.625 < 0.001 

7 SDP Scale-2** 0–1 0.51 0.43 0.563 < 0.001 

8 
BLOSSA

*** 
Varies in the 

range of 1–6 

1.30–5.70 3.64 1.02 – – 

Note: *Scale-1 varies as 1 = high, 0.5= moderate and 0 = minimal, **Scale-2 varies as 1 = highly commercial, 0.5 = 

moderately commercial, 0 = minimal commercial, and ***BLOSSA represents the overall perceived BLOS for a 

signalized approach. 

A positive ρ-value indicates that the perceived BLOS score increases with increasing values of the concerned 

variable (i.e., service quality decreases); while a negative value indicates the reverse. Thus, it can be concluded from 

Table 2 that only WEff has a positive influence on the bicycle service quality, while all other parameters adversely 

influence the same. CPV, PT, and D are by far the most influencing variables in the present context as they have 

produced the highest three ρ-values. Two other variables namely, g/C and opposing traffic volume also had significant 

correlation with perceived BLOS score. However, these two were highly correlated with D with ρ-values of above 

0.8. Thus, D was only included in the model building process as it had the higher correlation with perceived BLOS 

score as compared to others (ρ = 0.569). 

5.1. Model development 

As the socio-demographic and travel-related characteristics of bicyclists did not have significant correlation with 

the perceived BLOS score, it was more meaningful to use the overall perceived scores (BLOSSA) obtained for 

individual approaches as the array of output variable instead of the perceived BLOS scores of individual participants. 

This reduced the initial database of 14,000 observations to 70 observations in total. Here, one observation was retained 

for each intersection approach. Of these observations, 70% were used for model training, and the reaming 30% were 

used for model testing. The splitting of total data into training and testing groups was done in such a way to cover 

wide variations in both groups. In other words, care was taken to retain similar statistical properties (range, mean and 
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standard deviation) of each variable in both groups. To accomplish this, a MATLAB (MathWorks, Inc., 2016) function 

namely, dividerand was used in this study. Subsequently, model development processes were carried out and the 

obtained results are presented below. 

5.1.1 Regression-based BLOS model: The best regression model was obtained with the following configuration: 

PHV/WEff, ln(VTurn,)×(1+SDP), CPV×(1+PT), and D2. The numerical values, statistics and significance of the 

coefficients obtained for these terms are given in Table 3. As observed, all terms (including the constant parameter) 

are associated with minimal standard errors, and their t-statistics are highly significant at the 95% confidence level (p-

value < 0.05). The mathematical expression of the evolved BLOS model is shown in Equation 10. This model has 

produced a satisfactory R2 value of 0.821 with training data sets. 
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     Table 3. Regression model terms and statistics. 

Model term Coefficient Standard error t-statistic p-value 

Constant 1.1344 0.2798 4.0533 0.0002 

PHV/WEff 0.0019 0.0006 3.0409 0.0039 

ln(VTurn)× (1+SDP) 0.1226 0.0313 3.9109 0.0003 

CPV×(1+PT) 0.00064 0.0001 4.6502 0.0000 

D2 0.00085 0.0001 6.0759 0.0000 

5.1.2 GP-based BLOS model: Optimum results for the GP analysis were obtained with a population size of 1400 

individual generated for 300 times, dmax of 8, tournament size of 7, and pr, pc and pm values of 0.02, 0.84 and 0.14 

respectively. The gene structure and its mathematical expression obtained for the optimal BLOS model is presented 

in Fig. 4. The values of gene weight (w) and the bias parameter (b) estimated at 95% significance level (p < 0.05) are 

0.0051 and -1.64 respectively. Thus, Equation 1 was used to derive the mathematical expression of the optimum BLOS 

model as follow, which produced a high R2 value of 0.906 with the training data: 
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5.1.3 FN-based BLOS model: All input and output variables were normalized within the range of [0, 1] to minimize 

their dimensional effect in the model building process. Further, an associative FN model, shown below, was derived 

from Equations 2 and 3 to predict the normalized values of overall BLOS scores (BLOSSA, Norm) within the range of 

[0, 1]. 

 
SA, Norm

1 1

BLOS
s m

ji ji

j i

a x
 


 
 
 

      (12) 

Where, s is the number of input variables, and all other notations are as defined earlier. 

For the present problem, the prediction performances of five SFs were investigated namely, polynomial, 

exponential, sin(.), cos(.) and tan(.). The maximum acceptable degree of SF was limited to ‘two’ to keep the structural 

expression of the BLOS model as simple as possible. At this degree, the listed SFs produced R2-values of 0.917, 0.905, 
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0.899, 0.880, and 0.878 respectively. Thus, the polynomial function was selected for model development. The values 

of constant parameter and coefficients of each input variable at degrees one and two were estimated and inputted in 

Equation 12 to obtain the following BLOS model, which has produced a high R2 value of 0.917 with training data 

sets: 

2

SA, Norm Eff Eff

2 2

Turn Turn

2 2 2

2
BLOS 0.1704 0.3488 0.2222 0.5452 PHV

0.8535 CPV 0.5001 CPV 0.2062 0.4492 0.5412

0.1865 0.0366 PT+0.1035 PT 0.1477 SDP 0.0662 SDP

0.4125 PHVW W

V V D

D

      

         

        

 

 (13) 

In the above equation, both input and output variables have their normalised values in the range of [0, 1]. The de-

normalised value of BLOSSA can be estimated as: 

 
SA SA, Norm Max Min Min

BLOS BLOS BLOS BLOS BLOS       (14) 

Where, BLOSmax is the maximum value of BLOSSA (5.70), and BLOSmin is the minimum value of BLOSSA (1.30). 

 
                                 Where, x1 = WEff, x2 = PHV, x3 = CPV, x4 = VTurn, x5 = D, x6 = PT, and x7 = SDP 
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Fig. 4. Gene structure of the GP-based BLOS model. 

5.2. Goodness-of-fit, testing, and ranking of developed models 

The prediction performances of developed BLOS models are presented in Figure 5, 5a for training data and 5b for 

testing data. As observed, the BLOSSA values predicted by GP and FN models are very much close to the ideal line of 

fit (linear fit of concatenate), while the regression model has comparatively inferior performance. Various statistical 

parameters are applied to assess and rank the developed models in terms of their goodness-of-fit and testing results. 

These statistical parameters include R2, Nash–Sutcliffe efficiency coefficient (E), average absolute error (AAE), mean 

absolute percentage error (MAPE), and root mean square error (RMSE). R2 and E measure the best-fit criteria of the 

model. Values of these parameters close to ‘one’ signify that the predicted and observed values of the output variable 
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are very much close to each other. The maximum values of these parameters are ‘one’, which are attained under ideal 

conditions only. On the other hand, AAE, MAPE and RMSE are the error measuring parameters, which measure 

various types of errors produced between the predicted and observed values of the output variable. Thus, their values 

are expected to be minimal for a good prediction model. Table 4 summarizes the prediction performances of all BLOS 

models in terms of these statistical parameters. As observed, both GP and FN models have over-performed the 

regression model with higher values of R2 and E, and lower values of error measuring parameters. The performances 

of both regression and GP models are good in training, but not as good in testing. However, the FN model has shown 

excellent performances with both data sets. Thus, the traffic planners and engineers may use this model to assess the 

efficiency of signalized intersections. Other two models may also be used for simpler calculations keeping in mind 

that the prediction results would be marginally inferior. 

 

Fig. 5. Prediction performances of signalized intersection models with (a) training data; (b) testing data. 

     Table 4. Prediction precision and ranking of BLOS models. 

Model Data R2 E AAE MAPE (%) RMSE 

Regression-based 

 

Training 0.821 0.821 0.350 11.478 0.414 

Testing 0.767 0.747 0.414 11.967 0.547 

GP-based 

 

Training 0.906 0.906 0.234 6.959 0.284 

Testing 0.869 0.844 0.321 8.385 0.429 

FN-based Training 0.917 0.917 0.227 7.005 0.282 

Testing 0.915 0.909 0.281 7.851 0.327 

5.3. Comparison with existing model 

The prediction performances of developed models are compared with a regression-based BLOS model previously 

developed by Beura et al. (2017). Other existing models discussed under “Background studies” section are not 

included in the comparison process as those are developed for the homogeneous traffic flow environment and it is 

obvious that those models will perform poorly in the present context. The prediction results of Beura et al. (2017) 

model with all data sets are as follows: R2 = 0.761, E = 0.679, AAE = 0.432, MAPE = 13.469 %, and RMSE = 0.557. 

Thus, all newly developed models have over-performed this model in terms of higher R2 and E, and lower prediction 

errors. Beura et al. (2017) model is trained and tested with limited quantity of data sets (25 and 10 observations 

respectively). Thus, the generalization ability of the model to the vast urban parts of a developing county is in doubt. 

On the other hand, the BLOS models proposed in this study are trained and tested with as high as 49 and 21 

observations. These data sets are collected from widely diversified road conditions prevailing in India. Thus, the 

analyses of bicycling environment carried out in the present study are more in-depth. Two new parameters namely, 
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turning vehicular volume and crossing pedestrian volume are identified to have considerable influences on the BLOS 

of signalized intersection approaches, which are not considered in the Beura et al. (2017) model. Thus, the major 

advantages of newly developed models include the better prediction ability and the consideration of all essential 

parameters. 

5.4. Estimation of BLOS classes (A–F) 

A service scale has been defined to convert the values of BLOSSA to letter-graded service classes A–F. The BLOS 

criteria have been classified into six levels (A–F) in order to remain consistent with various previous studies including 

TRB (2000, 2010). The linguistic descriptions of all BLOS classes are presented in Table 8. As the perceived BLOS 

ratings were collected on a scale of 1–6, the values of BLOSSA vary in the range of 1–6. Thus, the mean value of this 

scale (3.5) corresponds to the boundary between BLOS classes ‘C’ and ‘D’. This means a BLOSSA value below 3.5 

corresponds to one of the service classes ‘A–C’, and a BLOSSA value above 3.5 corresponds to one of the service 

classes ‘D–F’. Hence, symmetrical cutoffs were made on both sides of 3.5 to define the ranges of BLOS classes ‘A’ 

through ‘F’. Obtained results are presented in Table 8. Similar stratification concepts are also previously documented 

in Beura and Bhuyan (2017) and several other studies. 

     Table 5. Prediction precision and ranking of BLOS models. 

BLOS class Service level Ranges of BLOSSA 

A Excellent ≤ 1.5 

B Very good 1.5 – 2.5 

C Good 2.5 – 3.5 

D Fair 3.5 – 4.5 

E Poor 4.5 – 5.5 

F Very poor > 5.5 

6. Conclusions 

Road intersections carrying heterogeneous traffic are probably the most complex points of the bicycle operation. 

The service levels of these critical points from bicycling perspective are assessed by using suitable BLOS models. 

However, all existing BLOS models are solely based on homogeneous traffic conditions and are not transferable to 

developing countries where the road traffic is heterogeneous in nature. To fill this gap partially, this study has analyzed 

the quality of bicycle through movement at signalized intersections. The Spearman’s correlation analysis has revealed 

that the BLOS of this facility is determined by seven quantitative attributes, while personal characteristics of bicyclists 

do not have significant influences on the same. The observed list of significant attributes includes WEff, PHV, CPV, 

VTurn, D, PT, and SDP. Of these variables, WEff is observed to have positive influence on the facility BLOS while all 

other variables adversely influence the same. CPV, PT and D (having Spearman’s ρ values of 0.676, 0.625 and 0.569 

respectively) are observed to be by far the most important indicators of signalized intersection BLOS. 

By incorporating the aforementioned variables as model inputs and the array of BLOSSA scores obtained at 

individual sites as model output, highly reliable BLOS models are developed using three highly efficient techniques 

namely, step-wise regression, GP and associativity FN. For the present problem, FN has produced the best prediction 

results with the highest R2 values of 0.917 and 0.915 with training and testing data sets respectively. On the other 

hand, the regression technique has produced the least efficient but simplest and easiest to implement BLOS model. 

Thus, the FN-based model is highly desirable for field applications, while prediction accuracies are of utmost concerns 

and the regression model is highly desirable while computational efforts are of utmost concern. These models would 

largely help the traffic planners and engineers to quantify and enhance the service qualities urban signalized 

intersections operating under heterogeneous traffic conditions. The utilization of widely diversified data sets (Table 

2) for the development and testing of these models also ensure that those are well-transferable to the vast majority of 

developing cities around the world. 
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Field implementations of the FN-based BLOS model (the most efficient one) along with the service scale defined 

in Table 5 has revealed that above 86% of all investigated approaches are offering BLOS ‘C’ or inferior. Thus, 

essential cares should be taken by the city authorities to achieve better service levels, and to satisfy the future demands. 

The most influencing variables, mentioned earlier, could be largely prioritized in the planning process to achieve better 

service levels effortlessly. Amongst the limitations of this study, proposed models may not provide expected 

prediction precision in highly crowded metropolitan cities, as the scenarios are more complex. In these cases, either 

the proposed models could be used with required calibrations or similar new models could be developed if the choice 

of significant variables alters. 
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