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Abstract 


The European Commission’s Joint Research Centre, in line with the European Strategy for Low-Emission Mobility, has launched 


in 2016 the Green Driving Tool, an interactive web-based tool aiming at estimating fuel costs and CO2 emissions of individual 


car journeys. In parallel, it has developed U-SAVE, a routing system for fuel-efficient trip planning aiming at fuel consumption 


minimization and vehicle specific calibration. This paper provides a first assessment of the performance of the two tools in 


predicting fuel consumption and CO2 emissions over real-world trips.  The analysis focused on the accuracy and uncertainty of 


the two tools when varying the detail of vehicle input data and of the velocity profile used in the calculation. These elements are 


particularly important in case of future integration of the tools with traffic simulation models where the level of detail regarding 


the vehicle input or the speed profile may vary.  Results show that U-SAVE prediction is positively affected by the detail of 


vehicle specifications, while is not significantly sensitive to the detail of the velocity profile. Contrary, Green Driving didn’t 


show any remarkable change when varying both parameters. Overall, U-SAVE demonstrates a good performance in predicting 


CO2 emissions over on-road tests reaching an average prediction accuracy over an entire test trip of -4.6% and a standard 


deviation of 5.2%, while Green Driving exhibit higher uncertainty (on average 12%) but lower bias which ranged in the order of 


0 to +3% depending on the vehicle and the test trip considered. 
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Nomenclature 


CO2  Carbon Dioxide 


CO2MPAS CO2 Model for PAssenger and commercial vehicles Simulation                         


EU  European Union 


GDT  Green Driving Tool 


JRC  European Commission’s Joint Research Centre 


LDV  Light Duty Vehicles 


PEMS   Portable Emissions Measurement System 


RWT  Real World Test 


U-SAVE              fUel SAVing trip plannEr    


VELA  Vehicle Emissions LAboratory 


1. Introduction 


Road transport consumes significant quantities of fossil fuels and accounts in Europe for more than 70% of the 


overall transport generated CO2 and pollutant emissions (EC DG Clima, n.d.). In the last decades, policymakers and 


industrial stakeholders have focused their efforts on reducing vehicle emissions by mainly improving vehicle 


performance and efficiency over standardized conditions. However, driver behavior and route-choice/planning are 


widely recognized as factors that can significantly influence fuel consumption and pollutant emissions in real-world 


operating conditions (Ahn and Rakha, 2008; Walnum and Simonsen, 2015; Zheng et al., 2017). Also, the high 


influence of the driver style on fuel consumption and CO2 emissions has been reported by various researchers 


(Fontaras et al., 2017). From a different perspective, various organizations draw attention that accurate consumer 


information can have in accelerating the introduction of fuel-efficient technologies in the vehicle fleet. Several 


studies highlighted how eco-driving and eco-routing have the potential for saving fuel consumption and for reducing 


emissions significantly. Indeed, case-studies about eco-routing training demonstrate that it is possible to achieve a 


reduction in fuel consumption up to 4,6% (Ayyildiz et al., 2017; Barla et al., 2017; Jeffreys et al., 2018), while 


implementing eco-routing strategies can reduce network-wide fuel consumption and emissions. (Kyoungho Ahn e 


Rakha 2013; Yao e Song 2013; J. M. Bandeira et al. 2018). Consumers should have access to the information and 


tools necessary in order to make the most sustainable selection of vehicle and trip path according to their needs. 


In 2016 the European Commission’s Joint Research Centre (JRC), in line with the ambition to move towards low 


and zero-emission vehicles according to the European Strategy for Low-Emission Mobility (European Commission, 


n.d.), has launched an online vehicle fuel and consumption calculation tool, the Green Driving Tool (https://green-


driving.jrc.ec.europa.eu) The Green Driving Tool (GDT) was presented in the Second Mobility Package of the 


European Commission as  “A tool allowing consumers to compare the impact of different technologies on fuel 


consumption and CO2 emissions” (European Commission, 2017). Indeed, Green Driving is an interactive web-based 


tool aiming at estimating fuel costs and CO2 emissions of individual car journeys on the basis of vehicle 


specifications given by the user. It will, therefore, aim to help citizens to estimate fuel costs and CO2 emissions of 


their daily commute or holiday trips, as well as to raise awareness of the impact of their car journeys.   


In the last decade, the use of navigation systems has increased dramatically. However few solutions offer fuel 


consumption based route optimization. In response to the increasing fuel costs and the rising of the environmental 


awareness of drivers, eco-routing, velocity suggestions, and smart navigation appear as possible options for 


minimizing fuel consumption and emissions. However, the intrinsic complexity of routing problems and the related 


computational requirements have led to simplifications in the road geometry, speed profile and fuel consumption 


model when developing eco-routing applications, thus influencing significantly the accuracy of the solutions 


provided. Moreover, the eco-friendly route may differ according to specific vehicle characteristics (mass, 


transmissions, gear-shifting, fuel-saving technologies etc.) and drive-style (Arcidiacono et al., 2017; Bandeira et al., 


2014; Turkensteen, 2017). For example, ViaMichelin (www.viamichelin.com) provides the most fuel-efficient 


option, but the street slope is not accurately considered and many car and trip-related parameters, are missing. Also, 



https://green-driving.jrc.ec.europa.eu/

https://green-driving.jrc.ec.europa.eu/
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Mappy (en.mappy.com), a similar web application, has limited options selection for vehicle parameters and doesn’t 


take the road slope into account. On the contrary E-distance (e-distance.com) ask the user to provide an average fuel 


consumption value as an input, which is further used as the main indicator for calculating the fuel consumption over 


the trip (Arcidiacono et al., 2017). Thus, accordingly to the current state-of-the-art, more detailed and 


comprehensive approaches providing accurate emissions and eco-routing suggestions to the driver seem necessary, 


in parallel with the necessity to validate these green-routing systems under realistic driving conditions. 


In the perspective of enhancing the Green Driving’s functionalities, in 2017 the JRC developed a second tool, U-


SAVE, a routing system for minimum fuel consumption path calculation, able to give optimal velocity suggestions. 


U-SAVE is based on a routing machine algorithm, and it takes advantage of Green Driving and CO2MPAS, a 


detailed vehicle simulation model crafted to estimate and type-approve CO2 emissions from light-duty vehicles 


according to the EU legislation (Fontaras et al., 2018). An open-access version of U-SAVE is expected to become 


available in order to provide users with customized, fuel consumption-optimized routing (Arcidiacono et al., 2017).  


Both Green Driving and U-SAVE are currently being extensively validated in order to verify that the accuracy in 


fuel consumption estimation and routing suggestions reaches a required level. For this purpose users can 


communicate the fuel consumption they experience in their daily vehicle use, thus allowing to monitor significant 


deviation of the tool from the reality. In addition, field test campaigns to further validate and optimize the tools have 


been designed and the process is currently on-going. The aim of this paper is to assess the accuracy of the two tools 


in predicting fuel consumption and CO2 emissions. This is done using measurement data from real-world trips, thus 


providing a first comprehensive and comparative analysis of their performance and, also, setting a benchmark for 


future reference. Also, the present paper performs an accuracy and uncertainty study of Green Driving and U-


SAVE, taking into consideration different levels of input data availability regarding vehicle characteristics and 


different data quality regarding the velocity profile occurring during the trip. These are two fundamental factors 


influencing the results of any vehicle energy consumption calculation model and are particularly important in case 


of future integration of the tools with traffic simulation models where the level of detail regarding the vehicle input 


or the speed profile may vary. 


2. Methodology 


2.1. Overview 


For assessing the capacity of GDT and U-SAVE to predict CO2 emissions over real-world conditions, tests over 


two real-world trips with Portable Emissions Measurement System (PEMS) were performed for four different 


passenger cars (2x4 on-road tests in total). Test results concerning the trip and the kinematic data of the vehicle, 


combined with vehicle specifications, have been used as input to calculate the CO2 emissions of each vehicle-trip 


combination with the two tools. Subsequently, the model predictions over each test trip have been compared with 


the corresponding measured CO2 emissions. In particular, the prediction performance of each model has been tested 


over 6 different configurations, combining the level of precision of the velocity profile (3 configurations) and the 


detail of vehicle specification provided (2 configurations). The three configurations for the velocity profile consist in 


(in order of increasing precision):  


 velocity profile estimated by the Open Source Routing Machine (OSRM, http://project-osrm.org/),  


 an average over every 300 m of the measured velocity profile,  


 the real (measured) velocity profile.  


Figure 1 shows the three velocity profiles over one test trip. It is worth stressing that for the OSRM velocity 


profile idling consumption phases of the on-road tests were added, in order to have the same CO2 emissions target 


for the averaged and real velocity profiles. On the other hand, the two configurations for the vehicle specifications 


take into account a set of generic and a set of specific vehicle inputs, as indicated in Table 1. In particular, for U-


SAVE the two configurations differ in the number of vehicle specifications provided, while for GDT in the level of 


detail of some of them. Figure 2 summarizes the assessment plan for the two models over all the 6 configurations.  


 



https://en.mappy.com/
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(a) (b) 


Figure 1. Comparison with the OSRM, averaged and real velocity profile, over an entire test trip (a) and on an enlargement of 10 km (b). 


 


Table 1. Vehicle specifications detail used for U-SAVE and Green Driving. 


USAVE GREEN DRIVING 


Generic specific Generic Specific 


-mass in running order 


-fuel type 


-engine capacity 


-engine max power 


-vehicle body 


-gearbox type 


-start-stop yes/no 


-start-stop activation time 


All generic inputs plus: 


-eco mode  


-auxiliaries power loss 


-road loads 


-engine idle fuel consumption 


-tyre code 


-wheel drive 


-vehicle width 


-vehicle height 


-engine speed at max power 


-engine max torque 


-engine stroke 


-engine turbo yes/no 


-velocity max 


-final drive ratio 


-gearbox ratios 


-n passengers 


-fuel type 


-vehicle category 


-euro standard 


-wheel drive 


-tyre class 


-gearbox type 


-driving style 


-air condition yes/no 


-energy recuperation yes/no 


-start-stop yes/no 


-roof box yes/no 


-vehicle mass 


(preselected option) 


-cargo mass  


(preselected option) 


-engine capacity  


(preselected option)  


-engine max power  


(preselected option) 


All generic inputs except: 


-vehicle mass (real) 


-cargo mass (real) 


-engine capacity (real)  


-engine max power (real) 
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Detail of velocity profile 


        Figure 2. Summary of the configurations tested for each model. 


 


2.2. Selected vehicles and real-world tests 


Four different vehicles were selected for this exercise. The vehicle selection tried to cover the most common 


passenger cars segments in use in Europe in terms of mass, power, engine technology, and transmission. For each 


vehicle, two real-world tests were performed. The experimental condition applied for all road tests (choice of routes, 


driving cycle followed, driving time, vehicle operating conditions) have been chosen to be compliant with the 


European EU-RDE LDV regulations, as detailed described in (Valverde Morales and Bonnel, 2018). To assess 


emissions performance of vehicle over on-road tests, CO2 emissions were measured following the general guidelines 


of the EU regulation, with standard PEMS equipment, whose characteristics are described in (AVL M.O.V.E GAS 


PEMS IS) and in (AVL M.O.V.E EFM Exhaust Flow Meter). All the data acquired had a frequency of 1Hz. The 


main characteristics of the four tested vehicles can be found in Table 2. PEMS instrumentation has shown 


significant potential in a variety of studies related to real-world emissions: in the direct analysis of the gaseous 


emissions from light-duty diesel vehicle (Luján et al., 2018; Mahesh et al., 2018), in the assessment of the impact of 


different driving styles and route characteristics on on-road exhaust emissions (Gallus et al., 2017), and in the 


development and validation of passenger car emissions factors  (Kousoulidou et al., 2013). 


 


2.3. Green Driving Tool  and U-SAVE methodologies 


The GDT and U-SAVE, are presented below. As already indicated, the GDT is an interactive web-based tool able 


to predict CO2 emissions and fuel consumptions for vehicles according to a user defined route. The users can build 


up their cars by selecting different vehicle specifications, different driving styles, and different travel options. Fuel 


consumption and CO2 emissions are calculated for the route selected by the user. The core of GDT CO2MPAS, the 


vehicle CO2 emissions and energy consumption model created in order support the introduction of the new WLTP-


based certification system for CO2 emissions in Europe  (Fontaras et al., 2018). However, for computation time-


related reasons, the integration of CO2MPAS in the web-platform hosting GDT was not possible. For these reasons, 


a Kriging approximation of the CO2MPAS model has been produced and integrated into the GDT. The Kriging 


based method employed in Green Driving is based on the findings in (Ciuffo et al., 2013).  With respect to other 


meta-models, Kriging models are specifically applied when it is necessary to reproduce the behavior of a certain 


model or physical system both globally and locally. This is also attested by the fact that Kriging approximations are 


used in global optimization to find the minimum value of expensive black-box functions (the literature on this topic 


is increasingly wide, see e.g. Kleijnen, 2008). Providing details on Kriging meta-models is beyond the aim of the 


present paper. The interested reader can refer to Kleijnen (2008) for a review on this class of meta-models and for 


further details on this topic. In order to be sufficiently accurate to correctly reproduce the behavior of different 


vehicle segments and technology configurations, 18 classes of Kriging metamodels were estimated (considering 9 


vehicle segments and 2 fuel types, namely gasoline and diesel).  


 


Detail of  vehicle 
specifications 
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Table 2. Main characteristics of the selected vehicles. 


 


 


Each class is composed by 18 meta-models each of which reproduces one of the outputs of CO2MPAS used by 


the GDT for the simulation of CO2 emissions, fuel consumption and electric energy consumption of the different 


types of powertrains simulated by the GDT. In particular, the simulation of electrified powertrains as well as of gas-


fuelled vehicles adopts a simplified approach directly implemented in GDT which makes use of the power request to 


the vehicle and some efficiency parameters derived from CO2MPAS. Each class of Kriging meta-model was 


estimated on the basis of approximately 4000 CO2MPAS simulations in which different inputs are varied in a quasi-


Montecarlo fashion over the range of variability related to the relevant vehicle segment. A total of approximately 


72.000 CO2MPAS simulations are therefore used to estimate the parameters of 324 kriging meta-models. The 


estimation of the parameters of the Kriging metamodels has been carried out using the DACE MATLAB toolbox 


(Matlab et al., 2002). 


Differently, from GDT, U-SAVE is a tool for trip planning taking into consideration fuel consumption 


minimization, based on a routing machine algorithm. It takes advantage of CO2MPAS (Fontaras et al., 2018) for 


achieving vehicle specific calibration and where this is not possible of GDT. Indeed, U-SAVE is designed to use all 


vehicle, driver, and road data to calibrate a fuel consumption raster which is then used to predict the most fuel-


efficient path, the vehicle fuel consumption, and the optimized velocity profile. Specifically, the overall U-SAVE 


methodology can be split into three subsequent tasks (Arcidiacono et al., 2017) :  


 


 Find the most fuel-efficient path. The problem is sometimes called the single-pair shortest path problem. To 


solve it, U-SAVE takes advantage of the Open Source Routing Machine (OSRM) server. 


 Calibration of the fuel consumption raster. The raster is a discrete bilinear map extracted from a collection of 


data, acquired from real tests or simulations. For calibrating the raster, U-SAVE performs a series of 


simulations with CO2MPAS model and with the Green Driving meta-model using the vehicle data and the 


 


 
† For this exercise, Mass in Running Order MRO = Empty weight of the vehicle + 75x2 drivers weight + 85% fuel tank capacity + PEMS test load. 


 Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 


Body type 4/5seater hatchback 4/5seater suv/sports 4/5seater hatchback 4/5seater hatchback 


Engine 
3 cyl turbocharged 


gasoline 


4 cyl   


turbocharged diesel 


with common rail 


4 cyl gasoline 


4 cyl      


turbocharged diesel 


with common rail 


Capacity 999 cc 1956 cc 1242 cc 1968 cc 


Max Power 
70 kW 


@5000-5500 RPM 


103 kW 


@ 4000 RPM 


51 kW 


@ 5500 RPM 


110 kW 


@ 3500 RPM 


 MRO†    1453 kg 1789 kg 1253 kg 1719 kg 


Max Torque 
160 Nm 


@ 1500-3500 RPM 


350 Nm  


@ 1750 RPM 


102 Nm 


@ 3000 RPM 


320 Nm 


@ 1750-3000 RPM 


Max Speed 186 km/h 190 km/h 164 km/h 214 km/h 


Drive front All front Front 


Gearbox 5-speed manual 9 speed automatic 5-speed manual 6-speed manual 


Wheels 215/40R17 225/45R18 175/65R14 225/40R18 


Euro-class EURO-6 EURO-6 EURO-6 EURO-6 


Type approval CO2 98 g/km 144 g/km 119 g/km 117 g/km 


PEMS test load 140 Kg 110 kg 140 kg 140 Kg 
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road data from the OSRM server. The obtained fuel consumption raster can be a function of the power-


velocity variables or slope-velocity variables.   


 Calculation of the fuel consumption for a specific vehicle on each route’s sub-segment using the calibrated 


raster.   


Form the above description, one can deduce that one core advantage of U-SAVE is the capacity of using multiple 


data sources to calibrate an advanced model and accurately predict vehicle fuel consumption. 


3. Results 


 In this section, the results of GDT and U-SAVE simulations for the real world tests (RWT) performed are 


analyzed and compared to the measured CO2 values. Table 4 and Table 3 summarize the prediction results for the 


six vehicle specifications-velocity profile configurations analyzed (Figure 2), for GDT and U-SAVE respectively. 


For U-SAVE in the real velocity profile configuration, both the slope-velocity and power-velocity raster were 


considered. In the other two cases (averaged and real velocity profiles), the slope-velocity raster was the only 


possible approach. The results of the two tables refer to the average over all the eight on-road tests performed. In 


particular, each table provides the average CO2 prediction error over the entire trip, and the same error for a detailed 


prediction for each km traveled, expressed in relative value respect to the average CO2 emissions per km for each 


vehicle considered. The following subsections focus on the detailed analysis and comparison of the two models 


when varying the detail of the vehicle specifications and of the velocity profile, while the last subsection gives an 


overall assessment of the two models. 


3.1. Models assessment over the vehicle specifications detail 


Table 3 presents the results for the GDT. Indeed, with generic vehicle inputs, the average prediction for the total 


CO2 emissions are slightly over-estimated up to 2.9%, while when supplied with more specific inputs the 


performance improves on average of 1.7% for each vehicle profile. Differently, the correspondent standard 


deviation slightly deteriorates, shifting from a maximum uncertainty of 10.8% in the generic input configuration to a 


maximum of 12.8% in the specific vehicle configuration. Comparable results arise for the CO2 predictions expressed 


on a per kilometer basis with comparable figures (Table 3 columns 3 and 4): in the generic input configuration, the 


average prediction lies between 1.8% and 2.2% and it improves to values between -0.6% and 0.1% in the specific 


input configurations, while the standard deviation worsens from a range of 10.3% - 11.5%  to 13.5% - 16.3%. These 


results suggest that GDT is not significantly sensitive to vehicle input precision. On the contrary, if specific inputs 


and not preset inputs are given to the model, GDT seems to shift the average prediction towards zero and while the 


uncertainty of the prediction increases. Moreover, the small changes in these two metrics can also be implied to the 


few vehicle specifications inputs that can be adjusted in Green Driving when passing from a generic configuration to 


a specific configuration (recall Table 1). 


Concerning the vehicle specifications, in the generic configuration U-SAVE on average under-estimates the total 


CO2 emissions, with values ranging from -9.3% to -15.5% over the different speed profiles Table 4, Column 1). On 


the contrary, when specific vehicle inputs are used, U-SAVE accuracy for the prediction over the entire trip 


improves significantly. For each velocity profile, there is a positive shift in the average prediction of around +13%. 


As a result, with the specific vehicle U-SAVE on average tends to over-predict the total CO2 emissions with a 


maximum of  +4,7%. The only configuration that shows an under-prediction is the real velocity profile when the 


power-velocity raster is used (-3.9%). This happens because with the generic vehicle inputs the same velocity 


configuration reached the lower prediction (-15.5%). On the contrary, the standard deviation of the total CO2 


prediction (Table 4 column 2) is not influenced by the number of the vehicle inputs, remaining constant between 


4.5% and 5.6%. Similar considerations done for the total CO2 prediction can be done for the detailed prediction per 


each km traveled (Table 4 columns 3 and 4): with generic vehicle inputs, the average U-SAVE prediction lies 


between -16.6% and -10% (net under-estimation) with a fix standard deviation between 5.6% and 5.8%, while with 


specific inputs the average prediction per km  improves reaching figures between -4.3% and 2.2% and the standard 


deviation remains constant between 4.9% to 5.6%, thus comparable with the standard deviation for generic inputs.  


From these results, it emerges how U-SAVE accuracy is clearly sensitive to the number of vehicle input data 
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provided, while the model precision doesn’t. This behavior can be explained by the fact that CO2MPAS physical 


model underlying U-SAVE is a detailed vehicle simulator of energy flow and losses at various vehicle components, 


thus more vehicle inputs are given to the model more accurate are the results that it can achieve. On the contrary, the 


precision of the model, indicated by the standard deviation, can be considered as an intrinsic characteristic of the 


model itself, thus not affected significantly by changing the number of inputs. 


Table 3. Green Driving simulations results. 


GREEN DRIVING 


Detail of 


Vehicle 


specifications 


Detail of 


Velocity 


profile 


total CO2 error (%) CO2 error g/km 


average std. dev. average std. dev. 


      


Generic 


OSRM 2.7 10.8 1.8 11.5 


Average 


300m 
2.7 10.1 2.2 107 


real 2.9 10.2 1.8 10.3 


      


Specific 


OSRM 0.6 14.6 -0.6 16.2 


Average 


300m 
1.3 12.6 -0.3 13.9 


real 1.3 12.8 0.1 13.5 


      


total average performance 1.9 11.9 1.0 12.7 


 


Table 4.U-SAVE simulations results. 


U-SAVE 


Detail of 


Vehicle 


specifications 


Detail of 


Velocity 


profile 


total CO2 error (%) CO2 error g/ km 


average std. dev. average std. dev. 


      


Generic 


OSRM -9.9 5.5 -10.6 5.8 


average 300m -9.3 5.5 -10.0 5.7 


real-slope -9.4 5.6 -10 5.7 


real-power -15.5 4.6 -16.6 5.6 


      


Specific 


OSRM 2.4 5.6 2.2 5.6 


average 300m 4.5 5.0 4.6 4.9 


real-slope 4.7 4.9 7.6 4.9 


real-power -.39 4.5 -4.3 4.9 


      


total average performance -4.6 5.2 -4.7 5.5 


 


 


It is clear that providing specific input increases the performance of the models and the possibility to predict a more 


energy efficient path, and more accurate energy consumption of vehicles. This is becoming increasingly interesting 
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in the case of traffic simulations and particularly when it comes to questions related to traffic optimization, 


autonomous vehicles management and improving the energy performance of existing and future fleets. The car-


following models used in microsimulation studies do not always represent realistically the vehicle dynamics and the 


distribution of different driving behaviors (Ciuffo et al., 2018). Therefore, they cannot be considered highly accurate 


in impact assessment studies regarding congestion,  emissions, and energy consumption. Approaches such as the 


ones presented above could provide a new dimension to traffic-related studies when coupled to existing traffic 


simulation instruments by providing more accurate estimates of the energy and fuel consumption of vehicles. Of 


course, it becomes clear that additional accuracy is achieved through higher detail in the vehicle, and road 


characteristics, that come as additional information cost to take into consideration. However, recent advancements in 


data collection and availability, computing power, and of course traffic simulation tools allow for more refined 


approaches that balance between traditional macro-scale, fleet level, energy consumption calculations, and street-


level, small scale, micro calculations. 


3.2. Models assessment over velocity profile detail 


The GDT doesn’t show significant sensitivity to the detail of the velocity profile. For the average total CO2 


prediction (Table 3column1) in the generic vehicle inputs configuration, the OSRM error prediction (2.7%), the 


average profile prediction ( 2.7%) and the real velocity profile one (2.9%) are almost the same, and the same 


happens in the specific vehicle inputs configuration (prediction error of 0.6%, 1.3%, and 1.3% respectively). Also 


for the correspondent uncertainty of GDT predictions (Table 3 column2), the velocity profile detail doesn’t affect 


the results: the standard deviation lies between 10.1% and 10.8% for the generic vehicle specifications, while 


between 12.6% and 14.6% for the specific ones. This trend can partially be attributed to the fact that when running 


GDT, the underlying meta-model performs a series of velocity averages independently from the input provided. As a 


consequence, different input velocity profiles lose their peculiarity after this averaging process, overall leading to 


similar results in the CO2 predictions. Also when considering the local CO2 prediction per km, the precision of the 


velocity profile doesn’t influence GDT’s performance. With a similar trend that arises for the total CO2 prediction, 


the average error per km (Table 3 column3) varies between 1.8% and  2.2% (generic vehicle inputs) and between -


0.6% and 0.1% (specific vehicle inputs). For the correspondent standard deviation (Table 3 column 4) the range is 


between 10.3% and 11.5% and 13.5% and 16.2%  respectively. As for U-SAVE then, also Green Driving doesn’t 


improve the accuracy and the precision of its performance accordingly the detail of the velocity profile, both for 


global and local CO2 predictions. 


U-SAVE exhibited a small sensitiveness to this parameter. Indeed, for the total CO2 emission over a trip, (Table 4 


column 1) the average prediction error for generic vehicle specifications varies from -9.3%  to -15.5%, and between  


4.7% to -3.9% for specific vehicle parameters. In both cases the prediction accuracy given by the OSRM, the 


averaged profile over 300 m, and the real profile using the slope-velocity raster is comparable (-9.9%, -9.3% and -


9.4% respectively for generic vehicle specifications; 2.4%, 4.5%, and 4.7% respectively for specific vehicle inputs). 


Similar behavior can be found also in the correspondent standard deviation (Table 4 column 2), that in all the cases 


considered remains constant between 4.6% and 5.6%. As regards a comparison between the approach with slope-


velocity raster and power-velocity raster when the real profile is used, it emerges from  (Table 4 column 1) that there 


is a net difference in the averaged total CO2 prediction achieved, in both vehicle specification configurations. For 


generic vehicle inputs, the slope approach gives an error of -9.4%, while the raster approach  -15.5%, and for 


specific vehicle inputs an error of 4.7% and -3.9% respectively. This can be due to the fact that the slope approach 


uses a more dynamic velocity profile to calibrate the raster (the one used in the official type approval certification) 


respect to the power approach that uses directly the RWT velocity profile given as input. As a consequence, the 


velocity-slope raster gives a higher prediction value with respect to the velocity-power raster when dealing with 


RWT.  Moreover, from these results, it emerges that the slope approach gives a better prediction than the raster 


approach in RWT when generic vehicle inputs are used, while the two approaches are comparable when using 


specific vehicle inputs. When dealing with the detailed CO2 prediction per km, U-SAVE exhibits a trend similar to 


the total CO2 predictions (compare Table 4 column 1 and column 2 with Table 4 column 3 and column 4 


respectively). Thus, improving the precision of the velocity profile doesn’t improve significantly the local CO2 


prediction. Given the above results, one can conclude that U-SAVE and GDT can individually achieve similar 
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accuracy using also less precise velocity profile for the vehicle. This is an interesting but counter-intuitive outcome. 


Contrary to what might be expected, increased detail in the velocity profile won’t obviously translate in a better fuel 


consumption prediction. This observation need to be further investigated and analyzed. If proven consistent it could 


lead to reduction in data acquisition and analysis costs. 


 


 


 


(a) (b) 


Figure 3. CO2 error prediction over an entire trip for U-SAVE (a) and Green Driving (b). Configuration: specific vehicle inputs - OSRM velocity 


profile. The trip refers to Vehicle 1 Test 2. 


3.3. Global assessment of the two models 


In the view of the results of the previous subsections, when comparing the global performance of the two models 


over RWT, U-SAVE (Table 4) emerges to be more precise than GDT (Table 3). U-SAVE shows an average 


uncertainty of around 5.5% both for the total CO2 and the detailed CO2 prediction per km, while for GDT this value 


is almost double, about 12%. To evaluate the goodness of these estimations, it is interesting to compare these values 


for the uncertainty of the two models with the on-road test uncertainty, with value σ=3%. This value has been 


calculated as the dispersion of the average measured CO2 emission per km, for each vehicle and test considered. 


Thus, U-SAVE uncertainty lies between 2σ (two times on road uncertainty), that is a remarkable result, while GDT 


uncertainty between 4σ, two times U-SAVE performance. On the contrary, when comparing the global accuracy of 


the two models, GDT seems to have a better average CO2 prediction than U-SAVE, with values between 1% and  


2% and -4,5% and -5% respectively.  


When comparing the two models performance for a specific test trip (Figure 3), it is clear how U-SAVE is able to 


capture more accurately the CO2 emissions profile, by achieving good prediction also over steep CO2 emission 


variations (Figure 3 (a)). On the other hand, Green Driving shows a lower sensitivity in matching the CO2 emissions 


trend over short-segments of the trip (Figure 3 (b)). Despite this behavior, GDT can achieve a good CO2 prediction 


result over the entire trip. This is caused by the canceling-out of the over and under-predictions for certain peaks of 


the trip, as shown for example in (Figure 3 (b)). As a consequence, even if locally the prediction is not so accurate, it 


can be more accurate globally (as an example, see the performance for Vehicle 2 test 2 in Figure 3: the total error 


achieved is 1.4%).  


 



https://context.reverso.net/traduzione/inglese-italiano/counter-intuitive
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4. Conclusions 


This paper aimed to investigate and assess the performance of the Green Driving Tool and U-SAVE in predicting 


CO2 emissions over on-road tests, in particular when varying the detail of vehicle specifications and velocity profile 


detail as inputs, two important parameters when dealing with real fuel consumption estimations. To achieve this 


goal, the CO2 prediction performance of the two models has been evaluated on a set of on-road PEMS 


measurements for four selected passenger cars, for different configurations of vehicle specifications (generic and 


specific) and velocity profile (OSRM, averaged and real). Overall, U-SAVE demonstrates good performance in 


predicting CO2 emissions over on-road tests, while Green Driving shows wider uncertainty. Results show that the 


Green Driving Tool has shown an increased sensitivity both on the detail of the vehicle specifications and velocity 


profile. Contrary, U-SAVE is not significantly sensitive to the velocity profile detail, achieving a good accuracy 


when using also less precise velocity profile for the vehicle. 


From the results of this paper emerge the potential of the two tools for improved use in policy as first conceived, 


and for further application in traffic simulations. In the view of policy applications of reducing CO2 emissions, U-


SAVE demonstrates to be suitable as eco-driving and eco-routing planner in an urban environment, potentially 


providing the citizen with a more reliable fuel consumption/CO2 emissions prediction, especially on short distances. 


On the other hand, Green Driving Tool emerges to be overall reliable on long distances, thus applicable to 


highways/rural roads trips or more importantly for aggregated fleet-wide estimates and global emissions 


assessments. In a longer view, both tools could help to move towards lower network-wide fuel consumption and 


emissions in cities. On the other hand, the U-SAVE approach could bring advantages in traffic-related studies when 


coupled to existing traffic simulation instruments, by providing more accurate estimates of the energy and fuel 


consumption of vehicles. The low-detailed velocity profiles needed from U-SAVE to predict reliable fuel 


consumption reduce both the cost for data acquisition and computational demand, without significantly 


compromising the accuracy of the estimates. In this content, future work concerning U-SAVE could be addressed to 


refine vehicle specifications in order to achieve higher accuracy, while for Green Driving further effort would be put 


in improving the model precision, and in exploring which other parameters can improve its performance. Moreover, 


long-term work would be needed to fully and extensively validate the two models for real-world emissions, and then 


planning how to deliver these tools both to citizens and to traffic simulation developers/users. 
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The paper presents an interesting comparison of Green Driving and U-SAVE software packages, aimed at 


informing consumers about the CO2e/GHG impact of their car travel decisions. While the topic is 


relevant/valuable and the idea welcome, the paper needs to clarify its contribution and role in policy and 


practice.  


 


We thank the reviewer for the positive reaction to our submission. We tried to take on board all comments and 


amend the paper accordingly. 


 


Some literature supporting the approach is needed and justification for the experimental conditions (choice of 


roads or O-D, location, choice of devices and monitoring schedule, etc.).  


 


We cited appropriate reports. We readjusted the phrase containing it to make it clearer. 


 


But the main let down is the discussion.  


 


*The paper does not answer the question: “So what?” What are the planners/modelers, legislators, software 


developers, communities at large going to do with these results? The paper seems to have died after presenting 


the results, which is unfortunate, but I believe it can be revived. 


 


Thank you for your comment. The conclusion has been revised and expanded as suggested by the reviewer. 


The additions were made also in various points across the document and are quite extensive to list here. 


 


Some specific comments follow, in the same order they appear in the paper. 


 


*Figure 2 is redundant, given that the information is already given in Table 1. 


Thank you for your comment. We do not agree that the figure is redundant, as we believe Figure 2 gives a nice 


and easy to grasp an overview of the concept behind the analysis we performed. We decided to keep the figure. 


 


*The most fuel-efficient path is not always the shortest path, given the geometry of the road, traffic 


conditions/the emission-speed profile. Please elaborate or amend as required. 


 


The most fuel-efficient path is not always the shortest path, because the real fuel consumption does not depend 


only on the length of the road traveled, but it is a more complex function of also other parameters, such as the 


geometry of the road and traffic conditions. The geometry of the road (number and type of curves; the slope of 


the road) and the traffic conditions (start and stop situation leading to idle-fuel consumptions; sudden 


braking)  affect the instantaneous operating conditions of the vehicle and as a consequence the instantaneous 


fuel consumption. As a consequence,  a longer but less busy/steep route could be more fuel-efficient than a 


more busy/steep one, between two given O-D points. 


 


*Tables 3 and 4 suggest systematic underestimation by U-SAVE, which can be improved with specific inputs 


and quite an uncertain result/lower precision for Green Driving, even when conditions are specified in great 


detail. Whereas this is described/repeated on pp.7-9, there is no conclusion/recommendation per se. The lower 


sensitivity of Green Driving in matching the CO2 trend over short-segments of the trip and overall acceptable 


trip results calls for further discussion, considering the distribution of trip length for a city. On the other hand, 


U-SAVE appears to capture more accurately the CO2 emissions profile, but it requires more specific data, 


which comes at a cost. It is an expectation that these aspects are discussed at length, rather than merely 


reporting results and repeating them in the Discussion and Conclusion sections.  


 


More discussion in the result section has been added as suggested by the reviewer. We have marked the 


additions in red color for the convenience of the reviewer. 


  







*References need special attention as the papers in the list miss their titles (e.g., Ahn and Rakha, 2008, 2013; 


Walnum and Simonsen, 2015; Zheng et al., 2017; Fontaras et al., 2018 – just to name the first four). Matlab 


Toolbox and Lophaven et al. (2002) are included on the same reference line. 


Also, the citation style is inconsistent. Please attend to this matter. 


 


This was a Zotero issue and it has been corrected as suggested by the reviewer. 


 


*There are some language problems as well (typos, grammar, unusual constructions). Please, proof-edit the 


whole paper and consider replacing: ‘Draw attention’ instead of “raise effect”, ‘As already indicated’ instead 


of “As mention in the introduction”, ‘standard deviations’ instead of “standards deviation”, etc. 


 


The paper was proof checked by an experienced author. We hope to have corrected all relevant issues. 


 


*A cross-reference is broken on p.10 (“Error! Reference source not found”) 


 


The broken reference has been fixed. 


 





