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Abstract 

The study addresses the problematic nature of the effect of multiple types of recharging stations on electric vehicle tourist trip 
design with time windows (EVTTDPTW) in the real environment. The present model with dual objectives can maximize scores 
(i.e. tourists visiting at most attractions in a given time span) and minimize multiple-recharging costs. That is, it can balance 
providing tourists with the best possible EV touring experience with the minimum necessary recharge. Structural constraints with 
branch and bound algorithms were used to efficiently solve the model and obtain exact solutions. For example, the mean solution 
time of 258.85 minutes under previous models can be reduced greatly to 18.52 seconds by the present models in all instances of 
test cases. The effects of multiple types of recharging station locations on touring scores were further explored. Insights into 
competitive recharging service strategies as well as centralized and decentralized station deployment in terms of electric-scooter 
users/owners and managers such as the government are discussed.     
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1. Introduction 

Electric vehicles (EVs) have experienced increasing popularity in recently years due to lower energy consumption, energy 

costs, and less pollution. However, the market penetration of EV has remained limited for many years, due to their short driving 

range, high purchasing or battery price, and lack of recharging stations. However, such issues are now being more actively 

addressed. The main policies that governments might implement to help overcome these obstacles include establishing a charging 

network, increasing demand for these vehicles, industrialization and research/development programs, and the introduction of 

electric vehicles in programs of sustainable mobility (Perdiguero and Jimenez, 2012). The policy of establishing recharging stations 

or infrastructure is the most important one to solve the chicken/egg dilemma and ameliorate the “range anxiety” problem.  

Nowadays, some of the charging infrastructure needed for EVs is being established in many countries. In general, there are 

three power levels associated with EV charging: 3kw (slow charging for small vehicles such as two-wheelers); 7kw (fast charging 

for common EVs); and 22-50kw (rapid charging for taxis, commercial vehicles or company cars) (Perdiguero and Jimenez, 2012). 

Basically, different EVs require different chargers and connectors with the exception of the slowest form of charger, the basic 

equipment in EVs. In practice, when an EV user arrives at a recharging station, he or she can select one of the chargers or use the 

basic charger to recharge their vehicle. A recharging station situated in a location may have different types of chargers. For example, 

in the Penghu Islands, a famous destination in Taiwan, the local government has promoted the use of electric scooters (ESs) via 

subsidies to replace the use of the conventional two-stroke engine motorcycles. There are currently 4104 ESs, and 330 slow-

recharging stations for use by residents and tourists, and 23 battery swapping stations at 7-11 convenience stores (slow charger) 

for use by tourists (ESs rental from I-SUN Green-Energy scooter rental firm) and residents. Recently, other car-rental firms (EZ 

SWAP) have further established six automatic battery-swapping stations to serve tourists and residents.  

 

 

 
* Corresponding author. Tel.: +886-6-9264115ext. 5513; fax: +886-6-9260373. 

E-mail address: ywwang@gms.npu.edu.tw 

http://www.sciencedirect.com/science/journal/22107843


Author name / Transportation Research Procedia 00 (2018) 000–000 
 

EV tourism is a new type of travel with benefits ranging from economic (increased tourism spending due to lower fuel cost), 

social (decreasing dependency on fossil fuel), and environmental (zero tailpipe emissions and decreased noise pollution). However, 

sufficient charging infrastructure and a general understanding of EVs must be possessed to make EV tourism a reality (Miller, 

2014). Currently, recharging stations are clustered in urban areas. It is not easy for EV users to partake in long-distance travel 

outside these urban areas. To promote the use of EV tourism, industries such as car-rental firms or EV fleet owners can play an 

important role in expanding the scope of charging services, such as increasing the number of recharging stations and/or recharging 

rates for completing long-distance journeys. Furthermore, they can provide tourists/users a reliable trip or tour planning regarding 

station deployment for easily undertaking EVs travel. 

In general, recharging stations sited in populated spots such as schools, parks, convenience stores, hospitals, supermarkets, 

gyms, etc. have either a single type or multiple types of chargers. EV trip/tour planning must consider real-world station deployment 

to benefit tourists and other users in planning the best possible tour and recharging schedules. To the best of our knowledge, there 

is little literature focusing on multiple-type recharging stations, especially in the field of EV trips or tour planning. Based upon 

previous research on EV orienteering or EV tourist trip design problems with time windows (Wang et al., 2018), this study further 

extends the formulations to consider the multiple-type of recharging stations in the real environment, and then analyzes the effects 

of different station-deployment strategies on the scores obtained from touring.      

 

2. Literature review  

The study extends the EV tourist trip design problem with time windows (EVTTDPTW) by considering multiple-type 

recharging stations. The problem was derived from the orienteering problem (OP), tourist trip design problem (TTDP) or traveling 

salesman problem (TSP) with profit. It intends to formulate an EV trip or tour from an origin to a destination in a given time span 

in which tourists can visit the greatest possible number of points of interests (POI)(i.e. maximum scores obtained) using multiple 

recharging and without completely running out of charge. There are entire surveys on OP, TTDP, and TSP with profit. For example, 

Vansteenwegen et al. (2011) surveyed OP itself, its extensions and variants and many solution strategies and applications. Gavalas 

et al. (2014) summarized the use of OP and its extensions to model single-tour and multiple-tour variants of TTDP. Gunawan et 

al. (2016) extended the summary of the survey paper by Vansteenwegen et al. (2011) regarding the OP and its variants, while also 

covering a number of new variants of the OP published in the last five years. Feillet et al. (2005) and Laporte and Rodriguez Martin 

(2007) clearly situate the OP between other routing problems (with and without profits) and indicate the difference (Vansteenwegan 

et al. (2011)).  

Efficient EV routing or touring is an important management issue. According to the surveys undertaken by Touati-Moungla 

and Jost (2010) and Schiffer and Walther (2017), there are four main research streams: namely, energy shortest path problems 

(ESPP), electric vehicle routing problem (EVRP), facility location problem (FLP) and electric vehicle location and routing 

problems (EVLRP). The aim of ESPP and EVRP is to make an energy-efficient EV routing plan assuming that locations of 

recharging stations are given as parameters. In contrast, the problems of FLP concern station siting while the EVLRP is dedicated 

to simultaneously determine station siting and EV routing. It is evident that EV trip/tour planning is directly correlated to problems 

of the ESPP and EVRP. In addition, the literature review of recent works and developments with regard to ESPP and EVRP was 

given by Wang et al. (2018). However, our literature review further focuses on EV routing or touring using multi-recharging 

schedules, plus recharging strategies. 

For recharging strategies, Wang et al. (2016) considered a special EV network composed of fixed routes for an EV fleet 

where each EV moves along its own cyclic tour of depots. A mixed-integer program formulation was proposed to derive four new 

valid inequalities for shortening the solution time using a Gurobi 6.0.3 solver. The optimal deployment of recharging stations 

(minimum set-up cost) and an optimal recharging schedule (minimum recharging cost) can be obtained and the best recharging 

time within a pre-specified duration can be determined. However, they only consider the single-type recharging station. 

Daina et al. (2017) proposed a random utility model for joint EV drivers’ activity-travel scheduling and charging choices for 

the appraisal of smart charging strategies. Such strategies deviate from previous ones which relied on simplistic or theoretical 

representations of the charging and travel behavior of drivers. The duration of a recharging operation depends on the vehicle and 

charger characteristics and on the recharging strategy adopted by supplier. The model empirically captures the behavioral nuances 

of tactical charging choices (i.e. target energy, effective charging time and charging cost) using the estimated charging preference.  

Wang et al. (2017) proposed a mixed-integer linear programming model to optimize an electric bus recharging schedule 

(using fast chargers) which can at once determine both planning and operational decisions while minimizing total annual cost. The 

model was tested using a real-world transit network in Davis, California. Sensitivity analysis (including driving range, charging 

duration, battery deterioration rate, electricity pricing scheme etc.) provided the guidance on the utilization of electric buses and 

development of a fast-charging system.Armstrong et al. (2013) studied strategies for the battery switch stations to buy and sell the 

electricity through the day-ahead market. They determine what the optimal strategies would have been for a large fleet of EVs for 

the Vehicle-to-Grid and Grid-to-Vehicle cases. 

Bessler and Grønbæ k (2012) investigated the problem of electric vehicle recharge scheduling with time windows (EVRSTW), 

requiring that the charging takes place within the time window of the activity, has different speeds (slow and fast charging), and is 

limited by the total power available in each of the time periods. In short, the problem is a resource allocation problem which is NP-
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hard. The problem was formulated using an integer linear program and solved by using a local ratio heuristic. The preliminary 

results show that greedy is too slow and the accuracy need to be improved. 

These works explored the best charging strategy with the consideration of the power supply in a grid. These models choose 

an optimal charging period and charging rate to minimize their charging cost or maximize profit. Although these works are not 

directly related to our study, the factors considered in the formulation of the model such as recharging cost, recharging duration, 

time window, load constraints, and different types of chargers are nonetheless instructive.  

Regarding EV routing or station siting, Felipe et al. (2014) extended the green vehicle routing problem (GVRP) proposed by 

Erdogan and Hooks (2012) by considering the multiple technologies and partial recharges (GVRP-MTPR). The routing plans based 

on the amount of energy recharged and the technology used are determined using constructive and local search heuristics, and 

extensive computational results on varying instances are reported. The results show that several technologies (Medium, Fast, Ultra-

Fast) available to choose for each recharge are better (lower recharging cost) than the individual one, and the partial recharge also 

can provide significant cost and energy saving.  

Sathaye and Kelley (2013) proposed continuous facility location models to optimally locate the publicly-founded recharging 

stations while dealing with demand uncertainty. A case study is presented for highway corridors in the Texas Triangle megaregion. 

Two types of recharging stations (AC level 2 and DC level 2) were used to site at different site types. The approach is 

computationally less burdensome than previous methods, which is an important concern for large-scale facility deployment in 

general.  

Catay and Keskin (2017) presented a variant of EVRP by considering the multiple technologies and partial recharging with 

time windows. Where the customers are associated with service time windows and the stations may be equipped with normal and 

quick rechargers, 0-1 integer programming models were proposed for the single and multiple charger cases, and were solved using 

a commercial solver (CPLEX). The results showed that fast charging might reduce fleet size and decrease energy cost.  

Cuchý et al. (2018) formulated the problem of whole-day mobility planning using electric vehicles (WDMEV), rather than 

planning for single trips only. It is a variant of EVTSP with considerations of the temporal and state of charge (SOC) constraints. 

In the model, the battery is recharged using a charging rate and only a set of SOC levels can be achieved to reduce the search space. 

The proposed models were solved by using a label-setting heuristics search algorithm including several speed-ups. The experiment 

results show that the whole-day approach reduces the time for one’s day EV travel and also renders it cheaper. However, effects of 

the different charging rates on the saving of the recharging time is not significant, since the driver can employ the dwell or activity 

time to recharge.  

Mehar and Rémg (2013) proposed an advanced electric vehicle fleet management framework that can enable economic 

itinerary planning for EV. The best routes, in term of electric power consumption, are determined based on input parameters 

including road topology, weather conditions, vehicle characteristics, driver profile, traffic conditions and recharging-station 

locations. Regarding of battery drop, new routes passing by the nearest charging stations are recalculated for the EV driver. The 

architecture is the first solution that considers both EV range limitation and all factors influencing power consumption.  

Lin and Wang (2017) explored the wireless charging facility problem. Its objective is to assist the government planner on 

optimally locating multiple types of battery electric vehicle (BEV) recharging facilities to satisfy the need for different BEV types 

within a given budget to minimize the public social cost. The model considers wireless static and dynamic charging, and is 

formulated by a tri-level programming method. The model is first treated as a black box optimization, and then solved by an 

efficient surface response approximation model-based solution algorithm. Numeric tests show that the location plan can be obtained 

efficiently. 

Cui et al. (2018) formulated the models addressing the EV charging station location problem with the consideration of 

multiple types of charging stations with various numbers of chargers as a 0-1 mixed integer program in order to minimize the total 

trip travel time of all agents. The models are solved by a commercial solver (CPLEX). The test results show that when the budget 

increases, the more chargers with higher rates are built and then the travel time for all agents can be reduced.  

Usman et al. (2017) presented a planning simulation model which can evaluate the feasibility of electric vehicle driving 

range when recharging is considered at home, at work or at quick charging-stations in Flanders, Belgium. The quick-charging 

station has a fixed number of chargers of identical power. The proposed procedure using a realistic travel demand serves to plan a 

charging strategy, in terms of minimum time loss, for each electric vehicle so that entire scheduled tours of the individual can be 

executed successfully. The results indicate the use of all charging stations over the day and also the waiting time as a function of 

charging points at each charging station. 

These works indicate the needs of setting multiple-types of recharging stations in real-world EV routing or travel. There are 

two classes of multi-recharging stations depending on the equipped charger types in each location. That is, there could be single-

type or multiple types of chargers in each station location, but there are multiple types of chargers in the locations of a planning 

area. From the viewpoints of model formulation, multiple recharging choices at each site will be complicated and need more time 

to solve. In general, multiple types of recharging stations can provide and support the multi-recharging choices for the different 

EV types for their travel considerations of saving recharging numbers and time or cost.  

Regarding EV trip or tour planning, Lee et al. (2012) designed a tour and charging scheduler and developed its search engine 

based on simulated annealing techniques. The scheduler considers charging-station locations so as to save charging time. That is, 

the selected recharging points are as near as possible to tourist attractions. If not, the amount of charge tends to be small to reduce 

the waiting time for recharges. They recommend tours/trips with less wasted recharging time. However, a major shortcoming in 

the study is that the scheduler only considers the single-type of charging stations. 
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Lee et al. (2013) has since designed a tour recommendation scheme for EV to save waiting time induced from battery 

charging by recommending sites or spots with chargers in addition to tour activities. Genetic operations are tailored to create a tour 

plan consisting of essential selected and optional recommended spots by means of combining the legacy traveling salesman 

problem and orienteering problem solvers. The recommendation service can reduce time waste by up to 67% for given parameter 

settings. However, the study did not show the formulations for the problem. 

Lee and Park (2014) proposed a distance-based heuristic in selecting a DC charger to create an EV tour schedule with better 

responsiveness. As a variant of the well-known traveling salesman problem, the tour scheduler finds a visiting order for a given 

set of destinations and an additional charging spot out of multiple candidates. The results obtained from a prototype implementation 

reveals that the proposed scheme just increases the tour length by 2.9% and finds a feasible schedule over 70%. 

Lee and Kim (2014) designed a spatial data-centric tour and changing scheduler. The hybrid orienteering problem solver 

determines a feasible tour schedule for user-selected tour spots and optimal system-recommended charging spots to reduce waiting 

time. 

Wang et al. (2018) extended the orienteering problem with time windows by considering electric vehicles with limited range. 

The EV tour planning problem was formulated by using the mixed integer linear program and was solved by a heuristic. The model 

was tested in real-world instances and the results show that the network-scale of 58 nodes with 142 links is quite near the limitation 

of the branch-and-bound method. In contrast, the heuristic method can still find the optimal solution within one hour. The solution 

time for the exact solution of this kind of NP-hard problem can only be applied to the non-real time tourist tour design service. The 

formulation should be improved and/or a fast heuristic should be developed to obtain feasible solutions in just a few seconds for 

real-time application. 

Lee et al. (2012~2014) performed a series of studies to solve the EV touring problem. Essentially, they treat the problem as 

variants of TSP and OP, and use the heuristic to attain feasible solutions. In their studies, they did not propose the formulations or 

models and undertake the analysis of feasible solutions accuracy in comparison with the exact solutions. In contrast, Wang et al. 

(2018) proposed a formulation using real-world instances to test the model. The test results using heuristics were compared with 

exact ones using brand-and-bound. However, they all involve single-type recharging stations.  

To the best of our knowledge, there is little literature exploring the effects of multiple types of recharging stations on EV 

tourist trip design. However, the related research fields including EVRP, ESPP, FLP are indeed considering the factors of multiple 

types of recharging stations and their effects. In practice, with multiple-type recharging stations situated in a district or destination, 

an EV tourist can have multiple choices for tour recharges to reduce recharging time and cost.  

In the next section, this paper extends the previous models proposed by Wang et al. (2018) for EV trip planning by 

considering the multiple types of recharging stations, and some refined formulas are also described. Section 4 presents a case study 

to assess the applicability of the proposed models, and the comparisons of solution time between the present model and the previous 

one are also discussed. Section 5 highlights the management implications for EV trip planning with multiple types of recharging 

stations, while section 6 presents the conclusions of this work.  
 

3. Model formulation  

The new formulation, mainly based on the previous one proposed by Wang et al. (2018) for the EV tour planning problem, 

further considers the multiple recharging option. To greatly reduce the solution time in the previous model, this study introduces 

some structural or integral constraints.  

The previous formulations generally have two classes of constraints. One is for simulating the changes of a battery charge or 

electrical energy between points. The other is for imitating time movement between nodes. They focus on the individual points, 

but not on the total or integral part. This formulation will generate a lot of constraints, thus increasing solving time.  

For example, the time movement constraints are demonstrated as follows  

tj ≥ (ti + tijxij) + yisi − (1 − xij)T   ∀ij∈ A                                                             (1) 

tj ≤ (ti + tijxij) + yisi + (1 − xij)T   ∀ij∈ A                                                  ( 2 ) 

tj ≤ (∑ xiji )T    ∀j∈ N                                                            ( 3 ) 

where 𝑡𝑖𝑗  is the travel time from node i to node j; ti is the time arrival at node i ; 𝑠𝑖 means the length of stay at node i;  𝑦𝑖 

represents an EV stop at a node i or not; and T is a given time span. 

Constraints (1), (2), and (3) specify the time on arrival at each node. If there is no active link toward node j, ∑ 𝑥𝑖𝑗𝑖 = 0, the 

time on arrival at that node will remain zero using constraint (3); otherwise constraints (1) and (2) will mean that 𝑡𝑗 =

(𝑡𝑖 + 𝑡𝑖𝑗𝑥𝑖𝑗) + 𝑦𝑖𝑠𝑖, and tj ≤ T using constraint (3), so the time on arrival at node j equals the time on arrival at prior node i of 

the touring path plus the length of stay at node i and the travel time between them. Moreover, constraints (1) and (2) can also 

prevent the generation of subtours. 

These constraints are reasonable and complete. However, the formulas in the model generate a lot of constraints, and 

subsequently produce more restrictive choices or combinations that will increase the solution time. In fact, the constraints (2) can 

be removed and replaced by a new constraint as  

∑ xij × tij + ∑ sii∈N ≤ T    ∀ij ∈ A                                                                     (4) 
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It represents the total travel time during a trip plus the total length of stay at spots which must be less than or equal to a given time 

span. The new formulas can greatly reduce the number of constraints, therefore decreasing the solution time. That is, the constraint 

can remove a lot of the violated touring and greatly reduce the solution time. Meanwhile, only using the constraint (1) alone can 

prevent the subtours.  

For example, suppose that there is a feasible trip or tour from the origin node 0 to the destination D, and going through node 

A, node B, and node C in an orderly manner. From the microscopic view, we focus on the EV individual movements between 

nodes, which should satisfy the time constraints, such as if an EV departs from the origin node A(tA), the arrival time to node B 

will be tB. Three constraints, tB≤ T , tB≥ 𝑡𝑂 + 𝑡𝑂𝐴 + 𝑆𝐴 , 𝑡𝐵 ≤ 𝑡𝑂 + 𝑡𝑂𝐴 + 𝑆𝐴  are needed. Thus, that necessitates twelve constraints 

(3*4) to guarantee the trip is feasible. In contrast, from the macroscopic view, since a trip is composed of arcs and nodes, only one 

constraint can ensure the trip is feasible: 𝑡𝑜 + 𝑡0𝐴 + 𝑡𝐴𝐵 + 𝑡𝐵𝐶 + 𝑡𝐶𝐷 + 𝑠𝐴 + 𝑠𝐵 + 𝑠𝑐 ≤ 𝑇 . However, the constraint must be 

coordinated with the continuity constraint to guarantee the connections between nodes and arcs. 

In addition, a network with 58 nodes and 142 links—instance 5 in Wang et al. (2018)— using formula (2) can additionally 

generate 186 constraints and 639 non-zero values in comparison to using formula (4). The solution time using formula (2) and (4) 

is 165.15 minutes and 16 seconds, respectively. That is, the solution time using formula (2) is around 600 times that of formula 

(4). 

Similarly, for energy constraints (5), (6) and (7), 

ej ≥ (ei − dijxij) + ri − (1 − xij)β  ∀ij∈ A                                                           (5) 

ej ≤ (ei − dijxij) + ri + (1 − xij)β  ∀ij∈ A                                                           (6) 

ej ≤ (∑ xij)β  i  ∀j∈ N                                                                            (7) 

where 𝑑𝑖𝑗  is the energy consumption by traveling from node i to node j; β means the vehicle energy capacity; 𝑒𝑗 represents the 

energy level on arrival at node j; and ri is the amount of energy replenished at node i. 

Constraints (5), (6), and (7) track the level of energy on arrival at each node. If there is no active link toward node j,  ∑ 𝑥𝑖𝑗 = 0𝑖  , 

the energy level at node j will remain zero using constraint (7); otherwise, constraints (5) and (6) will mean that 𝑒𝑗 =
(𝑒𝑖 − 𝑑𝑖𝑗𝑥𝑖𝑗) + 𝑟𝑖, and thus the energy level when arriving at node j equals the energy level at a prior node i plus the energy 

recharged at node i minus the energy consumed when travelling between them.  

Constraint (6) can be replaced by a new constraint;  

β + ∑ ri ≥i∈N ∑ dij xij                 ∀ij ∈ A                                                           (8) 

The constraint means that vehicle range plus recharging at stations are equal to or greater than energy consumption during the trip. 

It also can remove the violated touring recharges and greatly reduce the solution time. 

The new model can simulate the spatial-temporal touring and multiple-recharging behaviors of EV tourists, and can be used 

to find the best routes with minimum recharging cost to visit the most POIs within the time windows of a given time span. To 

simplify the new formulation and clearly present the differences in formulations between the new and previous ones proposed by 

Wang et al. (2018), we follow Wang et al.’s notations and reuse some formulas in formulating the new model. 

A directed transportation network is denoted as G = (N, A), where N is the set of nodes with element n ∈ N consisting of 

attractions (ND), recharging stations (NS), and intersections (NJ)；and ND  is a set of attractions (i.e. POIs),  NS is a set of 

recharging stations (i.e. convenience stores), NJ is a set of road intersections, and A is the set of directed links with element ij ∈
A. K is the set of types of recharging stations with element k ∈ K. Many assumptions are made to formulate the model, including 

a single-type of EV with a constant range, a linear relationship between energy consumption and driving distance, a fixed travel 

time between nodes, and single visit to each of the recharging stations with a fixed recharging time. Additional notations are defined 

as follows and will be used throughout this research. 

Parameters 

𝑤𝑖: The weight score of visiting node i. 

Tmax: The limit of a tour/trip duration, or the total allowed duration. 

𝑡𝑖𝑗: The travel time from node i to node j. 

𝑠𝑖: The length of stay 𝑠𝑖 at node i. 

𝑑𝑖𝑗: The energy consumption by traveling from node i to node j. 

𝑡𝑜: The departure time from the origin node. 

Ui: The upper bound of the opening hours or service time for RS at node i.  

Li: The lower bound of the opening hours or service time for RS at node i. 

𝑒𝑜: The initial energy level at the origin node o. 

β: The vehicle energy capacity. 
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ℎ𝑖: =1 if node i is a designated recharging station, and 0 if otherwise. 

Rk: The recharging rate using a k-type station. 

Ck: The unit cost using a k-type station. 

 

Decision variables 

𝑒𝑗: The energy level on arrival at node j.   

𝑡𝑗: The time on arrival at node j.   

𝑦𝑖: =1 if node i has been visited, and 0 if otherwise. 

𝑡𝑖𝑗: The travel time from node i to node j. 

𝑟𝑖: = The amount of energy replenished at node i. 

𝑍𝑖𝑘: =1 if the vehicle is recharging the battery at node i using a k-type station, and 0 if otherwise. 

𝑒𝑑: The energy level on arrival at destination node d. 

With these notations, the problem of EV touring planning with multiple recharging stations can be formulated as follows: 

Maximize (∑ yii∈N × wi − ∑ ∑ Zik × Cki∈Nk∈K )                                                               ( 9 ) 

Subject to  

∑ xij ≥ yji                ∀j∈ N                                                         ( 1 0 ) 

∑ xij − ∑ xij = {
1, i = 0

−1, i = d
0, o/w

ij       ∀ij∈ A, ∀i∈ N                                              ( 1 1 ) 

ej ≥ (ei − dijxij) + ri − (1 − xij)β      ∀ij∈ A                                                         ( 1 2 ) 

β + ∑ ri ≥i∈N ∑ dij xij    ∀ij∈ A                                              ( 1 3 ) 

ej ≤ (∑ xij)βi      ∀j∈ N                                                   ( 1 4 ) 

tj ≥ (ti + tijxij) + yisi − (1 − xij)T       ∀ij∈ A                                     ( 1 5 ) 

∑ xij × tij + ∑ sii∈N ≤ T              ∀ij∈ A                                        ( 1 6 ) 

tj ≤ (∑ xij)T       ∀j∈ Ni                                                    ( 1 7 ) 

∑ zik ≤ hik∈K                                   ∀i∈ N                                                              ( 1 8 ) 

∑ zik ≤ yi                                   ∀i∈ Nk∈K                                                               ( 1 9 ) 

ri ≤ ∑ zik × Rk × si                 ∀i∈ Nk∈K                                                               ( 2 0 ) 

ri ≥ ∑ zik × Rk × sik∈K − ei         ∀i∈ N                                              ( 2 1 ) 

ri ≤ β − ei                                         ∀i∈ N                                             ( 2 2 ) 

ei ≥ 0                         ∀i∈ N                                     ( 2 3 ) 

eo = β                                                                                        ( 2 4 ) 

to = 0                                                                                    ( 2 5 ) 

Uj ≥ tj ≥ Lj                          ∀j∈ ND                                                                   (26) 

yi, xij, zki = {0,1}      ∀i ∈ N, ∀k ∈ K, ∀ij ∈ A                                                   (27) 

 

Objective function (9) serves to maximize the sum of the weighted score of visited attractions along the touring path, and 

minimize the multiple recharging cost. A weight can be used to evaluate the importance between the two objective functions.   

Constraint (10) states that node i cannot be visited unless a link toward the node is active. Constraint (11) is a flow reservation 

constraint, which ensures that the arrival EV at node i must equal the departure from that node, and guarantees the tour or trip starts 

in node o and ends in node d. Constraints (12) and (14) track the level of energy on arrival at each node. If there is no active link 
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toward node j, ∑ 𝑥𝑖𝑗 = 0𝑖 , the energy level at node j will remain zero using constraint (14); otherwise, constraint (12) will mean 

that ej ≥ (ei − dij × xij) + ri, and thus the energy level when arriving at node j is greater than or equal to the energy level at a 

prior node i plus the energy recharged at node i, minus the energy consumed when travelling between them. Constraint (13) denotes 

vehicle range plus recharging at stations which are greater than and equal to the energy consumption during the trip. Constraints 

(15) and (17) specify the time on arrival at each node. If there is no active link toward node j, ∑ 𝑥𝑖𝑗 = 0𝑖 , the time on arrival at 

that node will remain zero using constraint (17); otherwise constraint (15) will mean that tj ≥ (ti + tij × xij) + yi × si, and tj ≤
T using constraint (17). Thus, the time on arrival at node j is greater than or equal to the time on arrival at a prior node i of the 

touring path plus the length of stay at node i and the travel time between them. Constraint (16) ensures the limited time budget. 

That is, the total travel time during a trip plus the total length of stay at spots must be less than or equal to a given time span. 

Moreover, constraint (15) can also prevent the generation of subtours. Constraint (18) ensures that a vehicle cannot be recharged 

at node i unless this node is designated as a recharging station. Constraint (19) states that if a vehicle is recharging its battery at 

node i, then the vehicle must stay at this node. We use the length of stay at a recharging station to express the time needed for 

battery recharging. Constraint (20) states that the amount of energy recharged depends on the recharging rate and length of stay at 

a station. Constraints (21) and (22) ensure that the energy level of the battery will be reset whenever it is recharged. Note that if 

zik = 1, constraints (21) and (22) can be transferred to ri + ei ≤ β, and thus the energy level can be set to partial or full charge. 

Constraint (23) ensures the vehicle travelling along the touring path will not run out of energy. Constraint (24) states that the energy 

level at the origin node is fully charged. Constraint (25) sets the zero value of the departure time from the origin node. Constraint 

(26) enforces the time windows of the attractions. Constraint (27) is a binary constraint. 

 

4. Case study 

We use the road networks of Penghu Island and the Magong urban area derived from Wang et al. (2018) to demonstrate the new 

model and compare its performance, such as solution time, with the previous one. The model is further used to evaluate the 

recharging station location strategies to serve tourists or residents.  

4.1 Data acquisition 

Penghu Archipelago has an area of only 126.8 square kilometers, and is located off the coast of Taiwan, attracting more than 

1,000,000 tourists per year. It has six administrative areas; Magong City, and the five townships of Husis, Baisha, Siyu, Wangan, 

and Chimei. Most of the districts, including Magong City and the three townships of Husis, Baisha, and Siyu, are on the main 

island of Magong. Most tourist activities are also on this island, and there are three popular tours, including northern, eastern and 

southern tours. This main island covers an area of 97.4 square kilometers, and around 40 slow-recharging stations with 337 charging 

poles (each one with a socket) have been established there; with most of them located in the urban area (i.e. Magong City), rental 

ES have gradually become a common transportation mode for tourists and residents. At present, there are about 4,104 ES on the 

island, around 1000 of which are used for vehicle rental. The rental firms have alliances with local convenience stores (7-Eleven) 

to provide a manpower battery swap service (MBSS) for undertaking long-distance journeys. Recently, the car-rental firm 

EZSWAP further established automatic battery swap station systems (ABSS). There are six stations located at the main-road 

intersections and nearby attractions in the main island, and two stations situated in the outlying islands. Figure 1 shows a network 

representation of the popular scenic touring routes on Penghu Island. This network is an extension of the original one described in 

Wang et al. (2018), with the aim of reaching a greater number of attractions. In the network, there are three types of nodes, including 

attractions (nodes d1, d2….d30) marked with triangles, intersections (nodes J1, J2….J30) marked with circles, multiple-types of 

recharging stations (i.e. nodes S1, S2….S8 (convenience stores) S9, S10…S14 (ABSS), and some slow-recharging stations sited 

in suburban attractions) marked with diamonds. In the case study, the driving range of the electric scooter is assumed to be a 

constant value of 30 km when fully charged. The tourists’ average length of stay and weighted scores for each attraction, as listed 

in Table 1, are based on our previous survey, with the weighted scores ranked based on the number of tourist visits (Wang et al. 

(2018)). The time spent at the intersection points and battery exchange stations is assumed to be 0 and 10 minutes, respectively. 

The 10 minutes at a station is seen as the average time needed for manpower battery swapping, but this time can be adjusted when 

considering other types of recharging stations. For example, an automatic battery swapping normally takes 5 minutes to fully 

recharge an ES. In addition, we also use an urban network (i.e. Magong area) (as shown in Figure 2 (Wang et al., 2018)) to evaluate 

the performance of the new model. 
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Figure 1 (a) A network representation of Penghu Island                              Figure 2 A network representation of Magong urban area 

 
Table 1.  The parameters of length of stay and weighted score for all attractions used in the cases studies 

Index 
Weighted 

score 

Length of 

stay (min) 
Index 

Weighted 

score 

Length of 

stay (min) 
Index 

Weighted 

score 

Length of 

stay (min) 

Penghu network 

d2 1 20 d12 3 30 d23 5 50 

d3 3 20 d13 2 10 d25 3 10 

d4 3 20 d14 4 20 d26 5 10 

d6 2 20 d16 4 10 d27 4 30 

d7 4 20 d17 5 60 d28 4 20 

d8 5 40 d18 2 20 d29 4 30 

d9 2 40 d19 5 30 d30 5 30 

d10 1 20 d20 5 10 d31 0 0 

d11 3 30 d21 5 50    

Magong network 

D0 0 0 D9 10 20 D18 10 30 

D1 5 40 D10 2 10 D19 10 30 

D2 10 60 D11 5 30 D20 8 25 

D3 5 30 D12 2 10 D21 10 50 

D4 3 20 D13 1 30 D22 2 20 

D5 5 40 D14 1 10 D23 2 15 

D6 2 20 D15 1 10 D24 2 20 

D7 3 20 D16 5 30 D25 5 20 

D8 2 40 D17 10 30    

 

4.2 Solutions for the model 

The solutions shown in Table 2 were obtained using the parameters shown in Table 1 and following additional parameters: 

the range of the ES (30 km), the battery’s state of charge at the origin point (fully charged: 30 km), the ES speed of 30 km/h, and 

the given locations of the single-type battery swapping stations. We estimate the travelling time for each link by dividing its 

distance by the travel speed. For example, the ES spends 2 minutes to travel a distance of 1 km ((1km/30km/h)*60min). In this 

case study, we use the network of the Penghu main island (i.e. instance 1) and the Magong City network (i.e. instance 4 and 5) to 

test and compare the solution time for the new model and previous one proposed by Wang et al. (2018).  

Table 2 compares the solution times when using different models for the cases in the various instances. In each case, some critical 

parameters, including trip duration (T), O-D, time-windows (TW), and residual state of charge at a node (E), were selected to test 

the model solutions using the branch-and-bound method. For example, in instance 5, the O-D ranged from D0 to D15. Trip 

durations of 180, 240, and 300 minutes were set for Cases 1, 2, and 3, respectively.  

 From Table 2, we can obtain the following major properties and differences of solution times using the models.  
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(1) All of the solution times with the new model are significantly shorter than those of the previous iteration. In all of cases, the 

solution times can be reduced greatly using the new formulation. For example, in instance 5, with regard to cases 10-1, 10-2 and 

10-3, solution times of 578.2, 213.2 and 165.15 minutes using the previous model can be reduced to 3, 13 and 15 seconds using 

the new one. In addition, the recharging station locations determined by the new model can be different from the ones using the 

previous model.   

(2) When the network-scale is small (such as in instance 1) or a trip length is short, the solution times are short regardless of using 

the previous or new model. For example, with regard to case 3 in instance 1, the solution times for the previous and new model are 

2 minutes and 33 seconds, respectively. That is, the differences in solution times are not very significant when using the two models, 

and the effects of the constraints of time windows and residual state of charge on the solution time are also not significant with a 

small network. 

(3) When the networks are scaled up (i.e. from network 4 to network 5), the solution times are much larger in the previous model. 

In effect, the network-scale of 58 nodes with 142 links is quite near the limitation of the branch-and-bound method in the previous 

model. For example, with regards to case 10-1, the solution time is up to 578.2 minutes. Nevertheless, the new model can still find 

the optimal solution within 15 seconds.  
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Table 2 Comparison of the solution times for the different models using the branch-and-bound method. 

case Parameters The previous case The new case 

Scores Solution time 

(min.) 

Charging 

stations 

Scores Solution 

time (sec.) 

Charging 

stations 

Instance 1 

1 D0→D30 ,180≦TW≦300 

T=400, E(D30)≧11.22 

46 19.26 S7 46 32 S7 

2 D0→D31, 180≦TW≦300 

T=480, E(D31)≧0 

44 40.33 S7 44 10 S7 

3 D0→D14, 180≦TW≦300 

T=390, E(D14)≧13.53 

28 2 (S3, S4) 28 33 (S3, S4) 

4 D0→D31, 180≦TW≦300 

T=360, E(D30)≧0 

24 7.53 S3 24 56 S4 

5 D29→D0, T=300 35 47.65 S7 35 9 S7 

5-1 D29→D0, T=240 30 741.06 S7 30 3 S6 

5-2 D29→D0, T=210 26 1553.48 S6 26 4 S7 

5-3 D29→D0, T=360 40 43.03 S7 40 13 S3 

6 D0→D31, T=380 35 1793.81 S6 35 5 S6 

6-1 D0→D31, T=480 44 45.46 S7 44 9 S7 

6-2 D0→D31, T=540 48 36.54 (S3,S7) 48 9 S7 

6-3 D0→D31, T=500 44 29.88 S7 44 7 S7 

Instance 4 

9-1 D0→D25, T=180 27 92.73 no 27 2 no 

9-2 D0→D24, T=240 34 40.9 S1 34 51 S1 

9-3 D0→D24, T=300 39 32.83 (S1,S5) 39 48 S1 

9-4 D0→D24, T=360 47 18.65 (S5,S8) 47 15 S8 

9-5 D0→D15,T=180 27 232.72 no 27 3 no 

9-6 D0→D15, T=240 33 104.96 S8 33 19 S8 

9-7 D0→D15, T=300 41 67.85 S8 41 19 S8 

9-8 D0→D15, T=360 47 46.43 S3 47 48 S1 

Instance 5 

10-1 D0→D15, T=180 30 578.2 S8 30 3 S1 

10-2 D0→D15, T=240 40 213.2 S1 40 13 S1 

10-3 D0→D15, T=300 47 165.15 S1 47 15 S1 

 

4.3 Evaluation of recharging station locations 

The case of rental firms deploying battery swap stations to serve their tourists for completing long-distance travel are used to 

test the new model with multiple types of recharging stations (i.e. slow-recharging and battery swapping). The first firm has 

cooperated with convenience stores (7-11) to support the manpower battery exchange service. There are 23 stations, with six 

stations located in the suburban area (i.e. nodes S1, S2,…S8). The total time for manpower battery swapping is set to 10 minutes. 

The second firm supports an automatic battery swapping station. On the main island, there are 5 stations situated in the suburban 

area (i.e. nodes S9, S10, ….S13). The total time for the automatic battery swapping is around 5 minutes.  

Popular northern tours (from d0 to d30) with and without time windows at the node of d25 (for lunch) are used to test the 

performance of different settings of the stations.  

The parameters shown in Table 1 and following additional parameters are used for the northern trip: the ES trip starts from Magong 

C.B.D. (origin) and ends at Siyu lighthouse (destination). The trip must be completed within T minutes; d24 (Chingshin Seafood) 

must be reached within the time window from 180 to 300 minutes, and the energy level when arriving at the destination (the 

minimum required energy level) must be greater than 11.22% for the return trip. The minimum required energy level for the return 

trip is estimated by the distance from the destination to its nearest BSS. In addition, a weight of 5 is given for the second objective 

function, and a unit cost of 0.1 for slow-recharging and 1 for battery swapping. 

Table 3 shows a comparison of the score, recharging cost and locations for the different deployments. From Table 3, we can obtain 

the following major properties and differences between the station deployments. 
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(1) The BSS location deployment of firm A is obviously better than the one of firm B based on the score obtained, with or without 

time windows. That is, the scores obtained using the station deployment of firm A are higher than the ones using the station 

deployment of firm B. For example, with regard to cases having durations 540, 510, 480, 240 min, with a time window, the 

scores obtained by the firm A deployment are higher by around 1-3 times than the ones obtained by firm B. In these cases of 

firm A deployment with higher scores in comparison with firm B, some recharging cost must be paid. For example, for the 

case having a duration of 480 min, the tour with firm A deployment can be recharged via an BSS sited in 𝑠8 to increase the 

travel distance, and in turn their obtained scores. However, some recharging cost (around NT$20) and waiting time for 

manpower battery swapping must be paid. 

(2) The scores without time window and residual energy constraints are better than with time window and residual energy 

constraints; since solution space is restricted, the algorithm must spend more time to look for the exact solutions. For example, 

in the cases of firm A the average solution time with and without a time window is 35.88 and 11.66 seconds, respectively. 

(3) When the given time span over 480 min, the BBS will be used to recharge for completion of long-distance travel, with or 

without a time window. In contrast, for the time span below 480 min, the tours can recharge at slow public recharging stations. 

In addition, when the given time span increases, the solution time is increased. For example, in the case of firm A with a time 

window, the solution time increases from 27 seconds to 118 seconds when the given time span increases from 480 to 540 min. 

However, for a one-day tour, a tour of over 540 min (i.e. 9 hours) travel time is not common. 

(4) There is a trade-off between the two objective functions (i.e. maximum scores obtained and minimum recharging cost). That 

is, if a tour intends to reduce the recharging cost, the obtained scores might also be reduced. For example, with regards to the 

cases of time spanning 390 and 420 min with a time window in firm A, the optimal value of the single objective function (i.e. 

maximum scores) can have 46 and 49 in contrast to 45 and 47 for the dual objective functions (i.e. maximum scores and 

minimum recharging cost). 

 

Table 3 Comparison of the scores, recharging cost and locations for the different stations setting. 

T firmA firmB 

Optimal 

value 

Scores Cost Charging stations Optimal value Scores Cost Charging stations 

With time windows 

540 50 55 1*1 S7 49 54 1*1 S10 

510 50 55 1*1 S7 49 54 1*1 S10 

480 49 54 1*1 S8 48.5 50 3*0.1 D17,D19,D21 

420 45.5 47 3*0.1 D17,D19,D26 46 47 2*0.1 D17,D19,D26 

390 43.5 45 3*0.1 D17,D19,D26 43 44 2*0.1 D17,D19 

360 41 42 2*0.1 D17,D19 41 42 2*0.1 D17,D19 

330 39 40 2*0.1 D17,D19 38 40 2*0.1 D17,D19 

300 36 37 2*0.1 D17,D19 35 37 2*0.1 D17,D19 

240 29 30 2*0.1 D17,D19 29 30 2*0.1 D17,D19 

Without time windows 

540 56 61 1*1 S7 54 59 1*1 S10 

510 52 57 1*1 S7 52 57 1*1 S10 

480 51 53 4*0.1 D17,D19,D21,D26 50 52 4*0.1 D17,D19 D21,D26 

420 46.5 48 3*0.1 D17,D19 ,D26 46 47 2*0.1 D17,D19 

390 43.5 45 3*0.1 D17,D19 ,D26 43 44 2*0.1 D17,D19 

360 41.5 43 3*0.1 D17,D19 ,D26 41 42 2*0.1 D17,D19 

330 39 40 2*0.1 D17,D19 38 39 2*0.1 D17,D19 

300 36 37 2*0.1 D17,D19 35 36 2*0.1 D17,D19 

240 30 31 2*0.1 D17,D19 28 29 2*0.1 D17,D19 

 

5. Management implications  

The deployment of recharging stations to serve EV tourists for long-distance travel is a strategic problem related to 

construction cost and practical demand. Car fleet owners and car-rental firms should consider the effects of station locations on 

user utility, such as the number of visited attractions and the recharging cost. That is, the station locations can indeed extend travel-

distance using the minimum recharging cost or times; as such, the tourist can visit more points of interest. From this point of view, 

the recharging stations should be located at the sites of attractions or POIs, with public recharging stations sited (free or low-cost, 
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without waiting time), rather than in private locations (high cost with waiting and recharging time). Unfortunately, there are not 

enough stations deployed, especially in suburban areas. Furthermore, public deployments tends to be the slow-recharging type with 

low construction costs, although the government has launched an electric vehicle action plan (MOEA, 2015) to promote the 

establishment and use of fast recharging stations in Taiwan. Therefore, in practice, firms should establish their own stations to 

serve their tourists and residents using fast-type rechargers, such as battery swapping stations or fast recharging stations, to alleviate 

“range anxiety”. In fact, the development of recharging stations has tended to favor automatic battery swapping stations (as with 

the leading firm, Gogoro) and fast recharging stations (the leading firm of Chinese Petroleum) in Taiwan. 

For electric scooter touring, there are multiple types of recharging stations (slow-recharging and battery swapping stations). 

Automatic battery swapping stations/systems have been in development and production for many years, and are indeed the most 

popular ones. As of late, there are a lot of companies engaging in the development of the battery swapping system. However, there 

is no standard for communication among the different systems, although the government intends to promote the standard of the 

Gogoro BSS. Clearly, battery ownership is still the key barrier to promote the use of battery exchange. Therefore, we can see that 

the ES car-rental firm or producers have cooperated with convenience stores (such as 7-11) to promote the use of automatic BSS. 

For example, Gogoro has forged a strategic alliance with 7-11 convenience stores to establish a network of automatic BSS. The 

Chinese Petroleum Company intends to establish a network of fast recharging stations. The company has strategically allied with 

conventional motorcycle and ES producers such as CMC, SYM, KYMCO etc. to establish and promote the use of the fast 

recharging stations. 

The nature or properties of multiple-type recharging stations in the real-world environment will be enforced. Despite the 

deployment of BSS or FRS, the construction cost is the first factor to consider. Thus, how to reduce the number of recharging 

stations being sited is an important issue. Firms should have an appropriate analysis tool to identify the practical performance of 

the different station deployments. The analysis is based on the recharging demand of users. For example, in Penghu Island, the 

firm of I-sun Green Energy has cooperated with convenience stores to establish manpower battery swapping stations. Thus, there 

are 23 BSSs to serve around 750 ESS for tourists and residents. Thus, long-distance travel using an EV is readily available.  

In addition, when the recharging stations are sited, car-rental or feasible tours/trips may support recharging schedules via mobile 

equipment such as mobile phones. That is, firms should inform EV users of suitable trips or tours from origin to destination under 

a time budget, and their recharging times and locations. Therefore, the model solution time is the key point for the use of mobile 

equipment. As such, the suitable solution time falls within 3 seconds. Due to the complexity of the EV touring design problem, an 

exact solution is not easy to obtain when the size of problem increases. Therefore, the development of a heuristics algorithm is 

more appropriate for quickly obtaining feasible solutions.    

6. Conclusions  

EV currently needs one or more recharging stops to complete longer trips due to range limitations. To serve the requirements 

of EV recharging for long-distance travel, car-rental firms and car fleet owners need to deploy additional fast recharging stations 

in the given locations of public recharging stations (i.e. slow-recharging ones). This study extends the EV tour planning problem 

with consideration of the multiple-type of recharging stations. The new formulation introduces some structural or integral 

constraints to effectively reduce the solution time in contrast to the previous one. The case study on the evaluations of different 

recharging station locations demonstrates that the new model can be used to identify their performances of EV tour and recharging 

schedules with or without time windows, via the scores obtained and recharging cost and locations, etc. 

Since public recharging stations are clustered in urban areas, long-distance travel between urban areas is still not easy to 

achieve. The establishment of sufficient stations are essential. Governments can consider an extension plan to establish public 

recharging stations at places of public utility such as attractions along popular tours and routes to serve the urgent needs of EV 

recharging. Due to high construction cost, private sectors should evaluate the effects of multiple types of stations located on EV 

tours before the stations are actually deployed by using an appropriate analysis tool. Governments should integrate the different 

charging systems as soon as possible by setting common standards for use within the recharging market. In addition, the cases of 

Penghu Island and the Magong urban area are small-scale problems. Although the solution time in all of cases are within one 

minute with the branch-and-bound algorithm using Lingo solver, it can only be used for non-real time EV tour design. In future 

works, solution techniques used with new models need to be examined and improved in order to efficiently solve the problem of 

large-scale networks. 
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