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Abstract 

Uncertainty in terms of random transportation demand and random transportation times can significantly affect network planning and design as 
important fields of tactical planning in multimodal transportation. For providing an overview on the state of research, results of a systematic 
literature review are presented. The references are evaluated in terms of problem characteristics, model formulations and solution approaches. 
A clear focus on uncertain transportation demand can be observed. The dominant model formulation is two-stage stochastic programming. 
Various solution approaches exist, ranging from special procedures for stochastic programs (L-shaped method, scenario decomposition) to 
different metaheuristics. As solution quality can be enhanced, compared to deterministic planning, further improvements in computational 
efficiency for tackling large scale problem instances and the consideration of random transportation times are identified as major future 
research fields.       
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1. Introduction 

Due to the ongoing trend towards specialization and internationalization of the members within supply chains the freight 
transportation plays a decisive role for efficiently fulfilling customer demand. Cost-effective and reliable transportation plans are 
a key pillar of successful supply chains (Sanchez-Rodrigues et al. 2010). Multimodal transportation, which refers to the 
transportation of goods by a sequence of at least two different modes of transportation (EUROSTAT et al. 2009), can be a 
beneficial approach for enhancing transportation operations by simultaneously exploiting the advantages of different modes 
(Crainic and Kim 2007). Furthermore, from the perspective of society as a whole, modal shift towards environmentally friendly 
transportation modes is a prerequisite for reducing the climate effects of the globalized economy. For the European Union (EU), 
road transportation is still the dominant mode in inland transportation, with a modal split of approximately 76% in 2016 
(EUROSTAT 2018). In this context, multimodal transportation can contribute significantly for reducing greenhouse gas 
emissions of the EU member states by 40% in 2030 compared to 1990 (European Union 2016).  

Despite those positive effects for economy and environment, in many cases unimodal transportation solutions remain the 
preferred option. Especially reservations concerning flexibility and reliability can motivate decision makers to rely on one 
transportation mode (Demir et al. 2016). In consequence, the consideration of uncertainty in the planning of multimodal 
transportation is a crucial factor for realizing its full potential and providing decision makers with adequate support for shifting 
transportation modes. Uncertainty includes unknown or stochastic transportation demand and stochastic transportation times (e.g. 
delays of transportation services). Stochastic demand is related to flexibility reservations, e.g. capacity shortages of transportation 
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services in case of unforeseen demand peaks (Bai et al. 2014). Stochastic transportation times refer to reliability reservations and 
increased complexity due to coordinating different parts of the transportation chain, which are often executed by different actors 
(Elbert and Seikowsky 2017). An example is the prolongation of delays in one part of the transportation chain to the subsequent 
parts, which can require complex re-planning activities.  

In general, multimodal transportation planning models can be categorized with regard to their decision horizon into strategic, 
tactical and operational planning (Steadieseifi et al. 2014). Strategic planning problems relate to investment decisions on the 
infrastructures (e.g. hub location problems). Tactical planning problems deal with network planning and design, which refers to 
optimally utilizing the given infrastructure by choosing services and associated transportation modes, allocating their capacities 
to orders, and planning their itineraries and frequency. A further field of tactical planning is the asset management, in which 
schedules for single vehicles are derived (Andersen et al. 2009). As third field the demand and capacity management aims to 
maximize revenue for the offered services or transportation capacities, respectively (Luo et al. 2016). Operational planning 
covers the same planning problems as tactical planning, but under consideration of real-time requirements. In contrast to tactical 
planning, the operational planning arises immediately before or during execution of the transportation services. 

From the three decision horizons, network flow planning and design as field of tactical planning is of special interest to create 
incentives for a modal shift to environmentally-friendly transportation modes in the short and medium term. Sophisticated 
planning models, that incorporate uncertainty, can be a valuable aid for overcoming the flexibility and reliability reservations 
concerning modal shift as described above. Multimodal operators, which must plan schedules and capacities for their 
transportation services, as well as their customers (freight forwarders, shippers), which must chose a transportation mode and 
allocate orders to transportation services, can benefit. With regard to flexibility (stochastic demand), multimodal operators can 
ensure a trade-off between capacity utilization and providing sufficient capacity for covering peak demand. Analogously freight 
forwarders and shippers can determine capacity bookings in advance for fulfilling transportation orders and avoiding unused 
capacity. In terms of reliability (stochastic transportation times), for multimodal operators it become possible to analyze the 
punctuality of their services and plan measures for increasing reliability (e.g. buffer times between subsequent services). Freight 
forwarders and shippers can benefit from reliable estimates for transportation costs, transportation times and shares of on-time 
delivered orders. In sum, multimodal operators can plan transportation schedules, which fulfill market requirements regarding 
punctual services and covering peak demand, thus strengthen the competitive position vis-à-vis unimodal road service providers. 
On the other hand, mode choice behavior of freight forwarders and shippers can be transformed from a predefined selection of 
road transportation to a rationale selection of the most suitable transportation mode.  

Whereas in past research has mainly focused on deterministic planning approaches, the importance of considering uncertainty 
gains increasing attention during the last years, resulting in several research streams and approaches for tactical planning in 
multimodal transportation. However, a systematic overview of regarded stochastic parameters, planning models and solution 
approaches is missing so far. For addressing this research gap, the objective of the paper at hand is to provide a comprehensive 
survey of network planning and design (as part of the tactical planning in multimodal transportation) under consideration of 
uncertainty. In detail, two research questions (RQs) should be answered by the means of a systematic literature review: 

• RQ 1: How can research conducted on stochastic network planning and design in multimodal transportation be systematically 
classified with reference to problem characteristics (including stochastic parameters), model formulations and solution 
approaches?  

• RQ 2: Which aspects (in terms of problem characteristics, models and solution approaches) are already considered and which 
fields for future research can be derived?   

 
The remaining parts of the paper are structured as follows: Section two introduces an overview for tactical planning problems 

in multimodal transportation. The corresponding planning problems in the field of network planning and design are introduced 
and the research scope for the literature review is delimited. In section three we describe the methodological approach of the 
literature review and give an overview of publication data for the references contained in the content-related evaluation. In 
section four the literature is analyzed (RQ1) and further fields of research are identified (RQ2). Finally, section five summarizes 
limitations of the review and gives a conclusion.         

2. Network planning and design as part of tactical planning in multimodal transportation 

Tactical planning in multimodal transportation covers several planning problems, which can be categorized on a higher level 
in three planning fields (see Fig. 1): network planning or design, asset management as well as demand and capacity management. 
The classification scheme further shows actors in multimodal transportation facing the respective planning problems and the 
corresponding decisions of each planning problem.  

Network planning/design covers the planning problems of service network design and network flow planning. According to 
Steadieseifi et al. (2014), service network design involves the service planning decisions including all decisions on choosing the 
transportation services and modes to move those commodities. Network flow planning relates to the flow planning decisions 
addressing the movement of orders (commodities) throughout the network. In consequence, service network design can include 
network flow planning decisions. In a first step, the corresponding decisions in service network design for multimodal 
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transportation are schedules for offered services and capacities of transportation nodes and links (representing the capacities of 
the transportation vehicles or used storage capacities; strategic decisions define infrastructure capacities, which determine 
maximum capacities for the succeeding tactical planning). When schedules and or capacities are fixed, network flow planning 
decision including choice of transportation modes and services as well as commodity flow follow in the second step. The higher 
level decisions on schedules and capacities are solely taken by multimodal operators, whereas network flow planning can also be 
faced by shippers, freight forwarders or road carriers (depending on responsibilities for transportation planning in the individual 
case).    

 The field of asset management consists of the fleet management, which includes the vehicle routing problem. Within fleet 
management, the asset owner (multimodal operator, shipper, freight forwarder or road carrier) decides on vehicle paths or vehicle 
cycles (in case of schedules, which repeat periodically; Andersen et al. 2009). The vehicle routing problem can be understood as 
special case of fleet management for vehicles that start and end a closed tour at a predefined depot (usually the case for road 
transportation; Gendreau et al 2014). The demand and capacity management covers the revenue management, in which prices for 
the offered services a defined in order to maximize the revenue for given demand and capacities to sell (Gorman 2015). In the 
succeeding resource allocation booking requests (for defined prices) are assigned to services, which include the possibility of 
denying requests for the benefit of other requests that may generate higher revenues (Schönberger and Kopfer 2012).      

 

 

Fig. 1: Actors and planning fields (with planning problems and corresponding decisions) for tactical planning in multimodal transportation 

The literature review, introduced in the next section, is limited to network flow planning and design, therefore including service 
network design and network flow planning with uncertainty. However, fleet management and vehicle routing problems could 
also be covered by the survey, since planning approaches could exist, which simultaneously cover network planning/design and 
asset management due to the intrinsic proximity (e.g. by defining a transportation schedule the fleet management can be 
integrated into the decisions). The review should point out which concrete uncertainty issues are already incorporated and which 
stochastic model and solution approaches exist. Moreover, open problems in the field of network planning/design bearing 
potential for future research become apparent.         

3. Methodology 

For identifying the relevant literature a systematic review according to the recommendations of Denyer and Tranfield (2009) 
was conducted. Three runs with different query strings for title, abstract and key words were carried out with the Scopus 
database. The query strings should ensure, that the two important types of multimodal transportation are included: intermodal 
transportation (where the load is transported from an origin to a destination in one and the same intermodal transportation unit 
without handling of the goods themselves when changing modes) and combined transport (intermodal transportation of goods 
where the major part of the journey is by rail, inland waterway or sea and any initial and/or final leg carried out by road is as 
short as possible) (EUROSTAT et al. 2009). Furthermore, the literature on service network design and network flow planning 
should explicitly be included in the survey. The following research queries result from those requirements:  

   
• (combined OR intermodal OR multimodal) AND transport* AND (stochastic  OR  uncertain* )  
• "network design" AND transport* AND (stochastic  OR  uncertain*) 
• "network flow" AND transport* AND (stochastic  OR  uncertain* )   
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For giving an overview of the current state of research only references within the last ten years (publication year since 2008) 
were searched. In total 832 references could be found, for which in the next step the abstracts were screened for collecting 
relevant literature. Criteria for including papers in the evaluation are as follows: 

 
• The paper explicitly tackles service network design and/or network flow planning with uncertainty in multimodal 

transportation   
• The main focus is on multimodal transportation and not on other research fields (e.g. supply chain management, reverse 

logistics)   
• Papers on disruption management and designing resilient transportation networks are excluded. Disruptions can be regarded 

as uncertainty. However, planning approaches can significantly differ compared to network planning/design and are therefore 
seen as an independent research topic.    
 
Additionally, only papers in peer-reviewed journals with SCImago Journal Rank (as index based on the Scopus database) in 

the first and second quartile were included in the evaluation, to ensure a survey with relevant and high-quality research. Finally, 
further references fulfilling those criteria, that were cited among the considered papers, were integrated, too. Overall 15 
references remain for content-based evaluation. The high number of excluded papers results from a large amount of literature 
dealing with network design in the context of supply chain networks, which was also covered by the research queries.       

In the following section the results of the literature review are presented. 

4. Results of the literature review  

For systematizing the literature on service network design and network flow planning with uncertainty the references are 
evaluated with regard to problem characteristics, which concretize the tackled problem (transportation mode, time, commodity, 
actors and stochastic parameters), model formulations (basic approach and decision variables) and solution approach (basic 
procedure and scenario generation). For both basic planning problems, service network design and network flow planning, the 
references can be divided into seven categories, according to the specific problem under study, as shown in Fig. 2. The categories 
are further systematized with regard to actors facing the planning problem and covered uncertainty issue (stochastic demand, 
stochastic transportation times or both). In the following three subsections the content of the literature is expounded in detail (for 
problem characteristics, model formulations and solution approach). The fourth subsection gives a summary on general 
characteristics of stochastic solutions and the value of stochastic planning approaches, when they are compared to deterministic 
counterparts. In the last subsection fields for future research are identified.    

 

 

Fig. 2: Classification of references to planning problems under consideration of actors and incorporated stochastic parameters. 
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4.1.   Problem characteristics 

The first part of this subsection briefly explains the content of the included references within the nine categories of Fig. 2. In 
the second part, the references are systematically analyzed with regard to problem characteristics (regarded transportation mode, 
time, commodity, actors and stochastic parameters). For a further overview, the references are briefly summarized in Table 1 
(service network design) and Table 2 (network flow planning), respectively.    

The classification of the references in Fig. 2 shows, that for service network design only stochastic demand has been 
incorporated into planning so far. Moreover, the vast majority (eight out of nine references) develops planning approaches for 
multimodal operators. They can be divided into problems for finding minimum cost transportation schedules and minimum cost 
transportation capacities. In minimum cost transportation schedule problems (Lium et al. (2009), Hoff et al. (2010), Bai et al. 
(2014) and Crainic et al. (2016)) a fixed schedule for transportation services for a given set of origin-destination-relations over 
several time periods should be derived. Due to stochastic demand, an optimal trade-off must be found between low-cost, 
preplanned services with respective capacity (that could not be exploited in low-demand cases), and high-cost ad-hoc capacity 
for high-demand scenarios. Asset management is considered in a simplified manner by the means of conservation equations for 
vehicle flow. Only Crainic et al. (2016) derive a more advanced approach in this relation. They analyze a two-tier city logistics 
system, in which so called satellites function as cross-docking nodes for transshipping the commodities from large-capacity 
vehicles to city freighters, which execute the final delivery within the city center. Vehicle tours for road services are included 
within the network design, whereby vehicle tours and synchronization times for the cross-docking operations are determined.  

Minimum cost transportation capacity problems (Crainic et al. (2011), Watson and Woodruff (2011), Crainic et al. (2014) and 
Sun et al. (2017)) deal with a single-period planning, in which capacity of transportation links and network flows must be 
determined with regard to stochastic demand volumes. Within the optimization procedure fixed costs for installing capacity on 
the transportation links and variable commodity flow costs must be considered. Overall, a commodity flow with lowest expected 
costs throughout different demand scenarios must be ensured. Since the problem is limited to a single period and vehicle flow is 
not explicitly considered, this approach can be seen as a simplified method for stochastic service network design in multimodal 
transportation for providing a first estimate of transportation links that should be operated with high capacity. Due to 
simplification larger networks can be analyzed.       

Unnikrishnan et al. (2009) study more special cases of stochastic service network design, a minimum cost storage capacity 
problem from the perspective of a shipper. The shipper decides on storage capacities to be installed in his network and 
corresponding network flows and inventories in each period. For transportation services he can chose among a leader carrier and 
secondary competitive carriers. Assuming stochastic supply and demand volumes, the demand should be fulfilled at minimum 
overall costs. Storage capacities must be dimensioned accordingly, guaranteeing enough buffers and simultaneously avoiding 
unused capacity.  

Compared to stochastic service network design, for specific problems in stochastic network flow planning are more 
diversified, leading to six categories, which only contain one reference, respectively. Additionally, a broader range of actors is 
covered (besides multimodal operators and shippers also freight forwarders and a multiactor approach) and the references include 
stochastic transportation times, too.    

Puettmann and Stadtler (2010) investigate a multiactor network flow planning problem with uncertain demand release times. 
An intermodal operator must plan the commodity flow for a maritime transportation network, including decisions for pre- and 
post-haulage, executed by external road carriers, in the hinterland. The road carriers plan their drayage operations under 
consideration of transportation orders from further customers (orders exogenously given). The pre- and post-haulage costs of the 
intermodal operator depend on the tour planning of the road carriers. The intermodal operator books all services for the whole 
chain in advance. Due to the long transportation durations of the maritime main haulage, the road carriers in the export region 
must anticipate future stochastic demand release times of the orders from the other customers, for estimating their transportation 
costs. The authors develop an iterative information exchange procedure between the actors, where proposed transportation plans 
are exchanged and coordination among the actors is reached. In effect, each actor can reduce his own transportation costs.       

Meng et al. (2015), Demir et al. (2016) and Hrusovsky et al. (2016) analyze minimum cost network flow planning problems, 
in which optimal transportation services must be chosen for each order from a set of available services. Therefore, the decision 
making scope includes all three aspects of network flow planning (mode choice, service choice and the commodity flow within 
the chosen transportation services). Meng et al. (2015) consider stochastic demand volumes from the perspective of a shipper (in 
this case “demand” equals transportation of finished goods). Within the planning, fixed transportation capacities must be booked 
in advanced for delivering the goods. Demand exceeding the capacities can be transported by costly ad-hoc services. Hrusovsky 
et al. (2016) and Demir et al. (2016) refer to intermodal operators. Hrusovsky et al. (2016) take stochastic transportation times 
into account. For a set of given orders an optimal trade-off between minimum transportation costs and minimum delay costs, 
caused by unpunctual delivery at the final destination, must be determined when selecting transportation services and deriving 
commodity-flow. Demir et al. (2016) study a similar approach, but take additionally stochastic demand into account. In this case, 
not only delay costs must be incorporated, but also sufficient booking of fixed capacity for avoiding excessive use of costly ad-
hoc capacity.     

Hui et al. (2014) and Zuidwijk and Veenstra (2015) limit the decisions to service choice or mode choice, respectively.  Hui et 
al. (2014) model an air freight forwarder shipment planning with stochastic processing times by the means of a job assignment 
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problem (minimum cost service choice). Jobs or activities reflect the single transportation services along the chain (multi-stage 
road transportation from/to the airport, air transportation in the main haulage). By assigning shipments with the share the same 
activity within a stage of the chain to one actor, cost savings from consolidation can be reached. On the other side, by assigning 
subsequent activities of a shipment to one actor, cost savings from integration can be reached. The objective is to define a 
minimum cost job assignment to actors with regard to consolidation and integration, which further accounts for delay costs and 
reliability penalty costs resulting from stochastic processing times. In this case, high integration and consolidation can reduce 
activity costs, but increases the impact of delayed activities, since more shipments are affected by deviations occurring at one 
actor.  

Table 1. Problem characteristics, model formulations and solution approaches for service network design problems with uncertainty   

Reference Problem characteristics Model Formulation Solution Approach 

 Mode 
Time, commodity 
and actors 

Stochastic 
parameters 

Basic 
Approach 

Decision Variables 
Basic 
Procedure 

Scenario 
Generation 

Minimum cost transportation schedule problems 

Lium et al. (2009) not 
specified 

Multi-period 
Multi-commodity 
Single-actor 

Demand 
Volume 

Two stage 
stochastic 
programming 

First stage 
- Vehicle flow (integer) 
Second stage 
- Commodity Flow (continuous) 
- Additional capacity (continuous) 

Standard Solver Moment 
Matching 

Hoff et al. (2010) not 
specified 

Multi-period 
Multi-Commodity 
Single-Actor 

Demand 
Volume 

Two stage 
stochastic 
programming 

First stage  
- Vehicle flow (integer) 
Second stage 
- Commodity Flow (continuous) 
- Additional capacity (continuous) 

Neighbour-hood-based 
metaheuristic Random 

Bai et al. (2014) not 
specified 

Multi-period 
Multi-Commodity 
Single-Actor 

Demand 
Volume 

Two stage 
stochastic 
programming 

First stage  
- Vehicle flow (integer) 
Second stage 
- Commodity flow (continuous) 
- Increase/decrease in vehicle flow 
(integer) 
- Additional capacity (continuous) 

Standard Solver and 
heuristic with sequential 
solving of first stage and 
second stage (for large 
instances) 

Moment 
Matching 

Crainic et al. 
(2016) Road 

Multi-period 
Multi-Commodity 
Multi-Actor with 
centralized planning 

Demand 
Volume 

Two stage 
stochastic 
programming 

First stage 
- Selected transportation services (binary) 
- Selected tours (binary) 
Second stage 
- Selected additional tours (binary) 

Standard solver (first stage) 
and heuristic approach 
(second stage) 

Random 

Minimum cost transportation capacity problems 

Crainic et al. 
(2011) 

not 
specified 

Single-period 
Multi-Commodity 
Single-Actor 

Demand 
Volume 

Two stage 
stochastic 
programming 

First stage  
- Installed transportation links (binary) 
Second stage 
- Commodity flow (continuous) 
- Additional capacity (continuous) 

Progressive-hedging based 
metaheuristic (based on 
Scenario decomposition/ 
Lagrangian relaxation) 

Random 

Watson and 
Woodruff (2011) 

not 
specified 

Single-period 
Single-Commodity 
Single-Actor 

Demand 
Volume 

Two stage 
stochastic 
programming 

First stage  
- Installed transportation links (binary) 
- Transportation link capacity 
(continuous) 
Second stage 
- Activated transportation links (binary) 
- Commodity flow (continuous) 

Progressive-hedging based 
metaheuristic (based on 
Scenario decomposition/ 
Lagrangian relaxation) 

Random 

Crainic et al. 
(2014) 

not 
specified 

Single-period 
Multi-Commodity 
Single-Actor 

Demand 
Volume 

Two stage 
stochastic 
programming 

First stage  
- Installed transportation links (binary) 
Second stage 
- Commodity flow (continuous) 

Progressive-hedging based 
metaheuristic  
(from Crainic et al 2011) 

Scenario 
Grouping 

Sun et al. (2017) not 
specified 

Single-period 
Multi-Commodity 
Single-Actor 

Demand 
Volume 

Two stage 
stochastic 
programming 

First stage 
- Selected transportation links (binary) 
- Capacity of transportation links 
(continuous) 
Second stage 
- Commodity flow (continuous) 
- Unsatisfied demand (continuous) 

Standard solver Random 

Minimum cost storage capacity problems 

Unnikrishnan et al. 
(2009) 

not 
specified 

Multi-period 
Single-commodity 
Multi-actor with 
centralized planning 

Supply and 
demand 
Volume 

Two stage 
stochastic 
programming 

First stage  
- Storage capacities (continuous)   
Second stage 
- Commodity Flow (continuous)   
- Inventories (continuous)   

Stochastic L shaped method 
with regularized 
decomposition 

Random 

 
Zuidwijk and Veenstra (2015) analyze a minimum cost mode choice problem of an intermodal operator with regard to 

stochastic demand release times and transportation times. They determine the value of information in container transportation 
with regard to efficiency and reliability. Efficiency refers to the expected overall transportation costs and reliability is defined by 
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the share of containers arriving on time. An intermodal operator can decide on the fraction of containers transported by barge and 
road and the barge departure time. A late barge departure and a high number of containers transported by barge maximize the 
efficiency, but bear the risk of a low reliability due to a possible late arrival of the barge. On the opposite, road transportation is 
more flexible at the expense of higher transportation costs. Within this context, several scenarios regarding container release 
times (no information about release times, known probability distributions, known actual release times) are compared.  

Table 2. Problem characteristics, model formulations and solution approaches for network flow planning with uncertainty   

Reference Problem characteristics Model Formulation Solution Approach 

 Mode Time, commodity 
and actors 

Stochastic 
parameters 

Basic 
Approach Decision Variables Basic 

Procedure 
Scenario 
Generation 

Multiactor network flow problems 

Puettmann and 
Stadtler (2010) 

Maritime 
transportat
ion with 
road 
transportat
ion in 
hinterland 

Multi-period 
Multi-Commodity 
Multi-Actor with 
decentralized 
planning 

Demand 
release time MIP 

Intermodal operator 
-Commodity flows (Assignment of orders 
to liner-services and carriers, binary) 
- Additional capacity (continuous)  
- Inventories (continuous) 
Road carrier 
- Commodity flows (Assignment of orders 
to tours, binary) 
- Additional capacity (Assignment of 
orders to additional capacity, binary) 

Standard Solver 
and heuristic with 
priority values for 
tour planning of 
road carriers  

Random 

Minimum cost network flow problems 

Meng et al. (2015) 
Road, rail 
and short-
sea 
shipping 

Multi-period 
Single-Commodity 
Single-Actor 

Demand 
Volume 

Two stage 
stochastic 
programming 

First stage 
Fixed capacity booking (integer) 
Second stage 
Commodity flow (integer) 

Scenario 
decomposition/ 
Lagrangian 
relaxation 

SAA 

Hrusovsky et al. 
(2016) 

Road, rail 
and barge 

Continous 
Multi-Commodity 
Single-Actor 

Transport-
ation time 

MILP with 
discrete-event 
and agent-
based 
simulation 

- Selected transportation services (binary) 
- Commodity flow (continuous) Standard Solver Random 

Demir et al.  
(2016) 

Road, rail 
and barge 

Continous 
Multi-Commodity 
Single-Actor 

- Demand 
volume 
-Transpor-
tation time 

MILP - Selected transportation services (binary) 
- Commodity flow (continuous) Standard Solver SAA 

Minimum cost service choice problems 

Hui et al. (2014) Road-Air 

Continuous 
Multi-Commodity 
Multi-Actor with 
centralized planning 

Processing 
Times 

Two stage 
stochastic 
programming 

First stage 
- Initial Agent-activity-assignment 
(binary) 
 
Second stage 
- Adjusted Agent-activity-assignment 
(binary) 

Tabu search with 
assignment-rules 
from practice for 
second stage 
decisions 

Moment 
Matching 

Minimum cost mode choice problems 

Zuidwijk and 
Veenstra (2015) 

Road and 
Barge 

Continuous 
Single-Commodity 
Single-Actor 

Demand 
release time 
and transport-
tation time 

Analytical 
- Fraction of containers planned for barge 
transportation (continuous) 
- Barge departure time (continuous) 

Analytical 
expressions for 
Pareto-frontiers 

Analytical 
(no 
scenarios) 

 
In summarizing the problem characteristics with regard to stochastic parameters, considered mode, time, commodity and 

actors, several conclusions can be derived. For stochastic parameters, the main emphasis is on random demand. Only four 
references within network flow planning incorporate random transportation times and only two references (Demir et al. (2016) 
and Zuidwijk and Veenstra (2015)) simultaneously consider uncertainty in demand and transportation times.  

Most of the references do not specify a specific transportation mode, so that the approach can be seen as general suitable for 
different modes. Regarding the references with explicitly named modes, all of them include road transportation, either for pre- or 
post- haulage in the transportation chain or as alternative for the origin-to-destination transportation. Only one reference analyzed 
road-air transportation (Hui et al. 2014) and only one paper analyzes the maritime transportation chain, including the main 
haulage with deep-sea liner services (Puettmann and Stadtler 2010).  

Time is included in most of the references by a multi-period approach (defining discrete time-intervals for the planning 
horizon) or as continuous dimension. By using the multi-period approach, cyclic schedules for transportation modes with fixed 
departure and arriving times can be represented (by defining decision variables for number of departing vehicles/transportation 
services on a link for each time-interval). Furthermore, multi-commodity planning models dominate as well as models for a 
single-actor or for multi-actors with centralized planning. The difference between those categories is that in the first case, it can 
be assumed that all assets belong to the same actor and information exchange only takes place within a company. In the latter 
case, the perspective of a centralized organizing actor is taken, who dispatches his own transportation services along with 
services of secondary further actors (e.g. road carriers for ad-hoc transportation of orders exceeding the own capacity). Only 
Puettmann and Stadtler (2010) analyze a decentralized planning of multiple actors.  
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After giving an overview on the planning problems and their basic characteristics, the next subsection summarizes the 
modelling approaches for tackling planning under uncertainty.   

4.2.   Model formulations  

The model formulations can be classified into four main categories: two stage stochastic programming, linear/nonlinear 
programming, combined linear programming with simulation and analytical solutions. First, the planning models of each 
category are further described and the corresponding decision variables are outlined. Afterwards, a brief overview is given on the 
formulation of the objective functions, reflecting the basic aims of tactical planning under uncertainty.        

The clear dominant model formulation is two stage stochastic programming (eleven out of 15 references, including all 
references relating to service network design, apply this method). In two stage stochastic programming, the first-stage decision 
variables are taken before random scenario realization. Therefore, they represent fixed decisions throughout all scenarios. The 
second stage refers to disclosed uncertainty, whereby recourse actions can be taken (Birge and Louveaux 2011). Optimization 
problems are solved for the first stage and for all scenarios in the second stage. The objective function for the first stage consists 
of deterministic terms for the first-stage decisions and the expected value of the second stage objective function.  

Applied in the context of service network design, for minimum cost transportation schedule problems in the first stage the 
decision variables include fixed vehicle flow (representing cyclic transportation schedules) in form of integer variables (Lium et 
al. 2009, Hoff et al. (2010) and Bai et al. 2014). Crainic et al. (2016) integrates the vehicle routing planning by the means of 
binary variables for transportation services and vehicle tours to be selected (out from an enumeration of possible tours generated 
beforehand). For the minimum cost transportation capacity problems (simplified single-period network design problems), in the 
first stage selected transportation links with given capacity are represented by binary variables (Crainic et al. (2011) and Crainic 
et al. (2014)). Watson and Woodruff (2011) as well as Sun et al. (2017) additionally incorporate continuous variables for 
capacity decisions on each link. In the minimum cost storage capacity problem (Unnikrishnan et al. (2009)), storage capacity 
decisions (continuous) are taken in the first stage without deciding on transportation services.  

The recourse actions in the second stage of service network design problems contain the commodity flow within the defined 
network schedules and/or capacities as well as ad-hoc decisions for capacity adaptions (usually ad-hoc capacity increase) by the 
means of continuous variables. It is assumed that ad-hoc transportation services are immediately available (e.g. outsourcing to 
external partners), so that the commodity flow utilizing those capacities can directly be derived. Within minimum cost 
transportation schedule problems, only Bai et al. (2014) also includes integer decisions on increasing/decreasing vehicle flow for 
a scenario-specific adaptation of the periodic transportation schedule. Since Crainic et al. (2016) consider the vehicle routing 
planning, second-stage decisions are on additional tours to select (binary).  

With regard to network flow planning, Hui et al. (2014) and Meng et al. (2015) use a two stage stochastic programming 
formulation as well. Hui et al. (2014) formulates the service choice decisions (activity-agent-assignment) with binary variables in 
the first stage. For the second stage an adaption of all activity-agent-assignments as recourse actions is allowed. Meng et al. 
(2015) decide on integer capacity booking for different transportation modes within the minimum cost network flow problem. In 
the second stage, the commodity flow is represented by integer variables, referring to single loading units. 

Besides two stage stochastic programming, linear programs without distinguishing a first and a second stage are formulated 
for the network flow planning, too. For multiactor flow planning, Puettmann and Stadtler (2010) derive separate mixed-integer 
programs for the intermodal operator and the road carrier, which form the basis for coordinating the transportation plans among 
each other. The intermodal operator determines the commodity flow in form of binary decisions on selected transportation 
services (for maritime main haulage and pre-/post-haulage by road carriers). Furthermore, continuous variables are used for 
inventory in the terminals and additional capacities for orders exceeding the given capacities of the road carriers. The road carrier 
takes decisions on commodity flow in the form of assigning orders to a set of enumerated tours (binary) and to additional 
external capacity. Since uncertainty only affects release times of transportation orders of the road carrier, it can be considered in 
the enumerated tours (in principle all possible tours for all possible sets of order release times are enumerated; only a subset of 
tours must then be considered for a specific order release time scenario).  

Demir et al. (2016) formulate a mixed-integer linear program for the minimum cost network flow problem with random 
demand and transportation times. Selection of transportation services is included by binary variables and commodity flow within 
each service by continuous variables. Additional capacity bookings or cancellations of transportation services as reaction to 
realized demand are incorporated within commodity flow.  

Hrusovsky et al. (2016) is the only reference that combines a mixed-integer linear program with a combined discrete-event 
and agent-based simulation for minimum cost network flow with stochastic transportation times. In an iterative manner, selected 
transportation services (binary) and commodity flow (continuous) is determined by optimization and simulated in the next step 
for determining delays due to stochastic transportation times. Additional constraints are added in the optimization problem for 
shipments with high expected delays after each simulation run for reducing the probability that the respective transportation 
paths are chosen again. The optimization-simulation-iteration is repeated until no significant improvements of the objective value 
are reached.   

Zuidwijk and Veenstra (2015) is the only reference deriving analytical expressions (value of information for a minimum cost 
mode choice problem). The aim of the paper is to analyze the general impact of knowing certain information regarding demand 
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distributions on efficiency and reliability by the means of a simplified transportation chain, consisting of one barge service and 
road transportation. Under those assumptions, Pareto optimal decisions can be calculated analytically.  

With regard to formulation of objective functions, a focus on cost minimization can be concluded. Nine references accounting 
for transportation service costs, capacity costs, commodity flow costs or inventory costs, respectively (corresponding to the 
decision variables, see Table 1 and Table 2). Stochasticity in form of uncertain demand affects the overall costs in form of 
additional transportation capacity, which must be acquired, since the models assume that demand is fulfilled in every scenario. 
Only Sun et al. (2017) cover costs for unfulfilled demand, allowing the decision to reject transportation demands. When 
uncertain transportation times are included, penalty costs for delays or unreliability are incorporated in the objective function 
(Hui et al. 2014, Demir et al. 2016, Hrusovsky et al. (2016)). Demir et al. (2016) add chance constraints, which excludes 
unfeasible transportation plans from the solution space. Moreover, Demir et al. (2016) and Hrusovsky et al. (2016) are the only 
two references that integrate emission costs of transportation and transshipment activities. The resulting multi-criteria 
optimization problem consist of minimizing the weighted sum of commodity flow and transshipment costs, delay costs and 
emission costs.   

For summarizing the review of model formulations, it can be stated that all service network design problems are formulated as 
two stage stochastic programming models. Whereas in the first stage binary or integer variables on selected services, installed 
transportation links, vehicle flows and capacities of nodes and transportation links are incorporated, the second stage variables 
are usually continuous decisions on commodity flow on regular transportation links and flows covered by additional capacity. 
Asset management is only fully incorporated by Crainic et al. (2016) in form of binary decisions on selecting out of enumerated 
vehicle tours. For the network flow planning, also MI(L)P formulations and simulation approaches are present besides stochastic 
programming. Decisions often cover the binary assignment of orders to services (or, more generally spoken, of activities to 
agents). Commodity flows are modelled as continuous or integer variables (referring to loading units) or as binary decisions for 
order-specific service/tour selection.    

In the next subsection the solution approaches for solving the presented models are described in detail. 

4.3.   Solution approaches  

A commonly used approach for solving stochastic optimization problems is based on scenario generation, where a defined 
number of scenarios with realizations of the uncertain parameters are generated and the optimization is conducted for those 
instances. In the context of stochastic programming the expected value of the second stage in the objective function is 
approximated by the mean value over the scenarios, resulting in the so called extensive form (Birge and Louveaux 2011). The 
scenario set is also referred to as scenario tree (Kaut and Wallace 2007). Therefore, on the one hand the solution approaches can 
be differentiated by the basic procedure used to solve the optimization problem (e.g. standard solver, metaheuristic). On the other 
hand they are characterized by the applied scenario generation method. The latter terms are expounded first, followed by an 
overview on the basic solution procedures. 

For scenario generation four methods are applied within the survey references (see Table 1 and Table 2): random scenario 
generation (eight references), moment matching (three references), sample average approximation (SAA, two references) and 
scenario grouping (one reference). Random scenario generation represents a Monte Carlo approach, whereby scenarios are 
randomly generated by drawing a subsample based on assumed distribution functions for the stochastic parameters. Applying 
pure random generation does not necessarily ensure in-sample and out-of-sample stability (Kaut and Wallace 2007). In-sample 
stability describes, that for different scenario trees (different subsamples of scenarios) an (approximately) equal objective 
function value is reached. Under out-of-sample stability it is understood that the solutions determined by the scenario trees are 
also equal to the true objective function value. When both conditions are satisfied, the scenario generation procedure guarantees 
that a representative sample (with regard to the underlying distribution functions) is selected. Based on the method introduced by 
Høyland et al. (2003) a moment matching scenario generation procedure is introduced in multimodal transportation planning by 
Lium et al. (2009). The authors show that by controlling marginal distributions of stochastic parameters (in this case random 
demand volumes) and their correlations, in- and out-of-sample-distribution is achieved. Therefore, applying the moment-
matching scenario generation of Høyland et al. (2003), which produces a discrete joint distribution consistent with specified 
values of the first four marginal moments (mean, variance, skewness and kurtosis) and correlations of the stochastic parameters, 
is sufficient for generating a representative sample. Hui et al. (2014) and Bai et al. (2014) are further references using moment 
matching. 

Sample average approximation (SAA) is another method of generating random samples, but ensuring convergence of the 
objective function value to the true value within a predefined confidence interval. In general, a number of independent samples 
with a fixed number of realizations of the stochastic parameters are generated. Each sample is solved for creating a set of 
candidate solutions. Those are evaluated by a further sample (with very high sample size) and the best solution with regard to this 
test sample is selected as optimal solution to the problem. A last approach for reducing computational time is scenario grouping, 
introduced by Crainic et al. (2014). In their procedure generated scenarios are assigned to groups and the multi-scenario 
subproblems for each group are solved. The grouping is performed by a k-means clustering algorithm, using a distance measure 
for assessing similarity of scenarios. Grouping can then be undertaken by combining similar scenarios, by combining dissimilar 
scenarios or by a mixed approach (combining similar scenarios, but adding a dissimilar scenario in each group). Groups of 
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similar scenarios bear the advantage of lower computational times for calculating a group-specific solution, but higher 
computational times for reaching a consensus on first stage decision variables (that must be equal throughout the scenarios). The 
authors conduct computational experiments and show that the highest solution quality can be reached by the mixed approach, 
whereas the best compromise between computational time and solution quality is ensured by similar scenario grouping. 

After generating the scenarios, four basic solution procedures can be distinguished for solving the instances (see Table 1 and 
Table 2): using standard solvers (seven references), scenario decomposition approaches (one reference), Benders decomposition 
(also referred to as L-Shaped method, one reference) and metaheuristics (eight references). In general, the computational effort 
for solving the stochastic models is high, because the problems are (in most cases) NP-hard and due to scenario generation 
multiple instances must be solved. Consequently, the application scope for standard solver is limited to rather small network 
sizes or relatively simple problems (like Sun et al. 2017) when two stage stochastic programming models are formulated. 
However, for MIP or MILP formulations, foregoing to differentiate into a first and second stage, standard solvers can still handle 
the stochastic planning problems. Puettmann and Stadtler (2010) as well as Demir et al. (2016) rely on standard solvers for the 
network flow planning (the former reference incorporates a simplified heuristic based on priority values for tour planning of the 
road carrier). When stochasticity is included by combining simulation and optimization in the model formulation (Hrusovsky et 
al. 2016), standard solvers can be applied for the associated MILP, too. The authors compare the achieved solutions for the same 
problem instances as in Demir et al. (2016), who use standard solvers for MILP with an SAA approach. Comparable solution 
quality is achieved and in addition even larger instances can be tackled by combined optimization-simulation.   

Two stage stochastic programming models with high computational effort require different solution approaches.                
Benders decomposition (or L-shaped method) is a general procedure for solving stochastic programs in the extensive form, 
applied by Unnikrishnan et al. (2009). The original problem is decomposed into a master-problem and multiple sub-problems. 
The sub-problems represent the scenarios with fixed first stage decisions. The objective value for the second stage is a piecewise 
linear function of the first stage decisions. Therefore, it is possible to solve the master problem iteratively and to add feasibility 
and optimality cuts with regard to the second stage problems in every iteration. The stochastic program can be solved to 
optimality or the procedure can terminate prematurely if no significant improvements for the objective function value are 
observed. Unnikrishnan et al. (2009) investigate computational improvements by applying regularized decomposition. In every 
iteration, a term for the distance of a new solution to the current upper bound is additionally included in the objective function, 
avoiding that solution spaces with low probability of improving the objective function are exploited extensively. In their 
computational experiments for networks with up to 250 nodes a significant improvement in solution quality and a reduction in 
iteration size could be achieved by combining the L-shaped method with regularized decomposition.  

Meng et al. (2015) conduct scenario decomposition in form of a dual decomposition and Lagrangian relaxation. Each scenario 
is solved independently, whereby non-anticipativity constraints are added for the first stage decision variables of the two stage 
stochastic program. They ensure equality of the first stage decisions throughout the scenarios. These non-anticipativity 
constraints are incorporated in the objective function of the first stage by Lagrangian relaxation, resulting in a term that is 
separable in scenarios. For this problem the Lagrangian dual model can be solved by a subgradient method based optimization 
iterative procedure (iteratively solve all small-scale scenario specific sub-problems and update the Lagrangian multipliers by the 
subgradient, which results from the currently found optimal solution). As case study a network in China with 19 nodes, 17 train 
routes and eight ship routes can be solved to optimality using a SAA scenario generation procedure.  

Within the field of metaheuristics for solving two stage stochastic programs, three basic approaches can be distinguished 
within this survey: neighborhood-based metaheuristics, progressive-hedging and tabu search. Hoff et al. (2010) create a 
neighborhood-based metaheuristic for service network design. The basic principle is to create different transportation schedules 
for first stage decisions by swapping vehicle positions in the nodes and adding vehicle paths for arcs with high ad-hoc capacity 
costs. The second stage recourse problem is then solved by a Greedy heuristic. Computational experiments for test instances with 
up to 30 terminals and 90 demand scenarios demonstrate that especially large instances can be solved with good solution quality, 
whereas standard solver cannot find approximately good solutions within a week. 

 Crainic et al. (2011) (also applied in Watson and Woodruff (2011) and Crainic et al. (2014)) develop a progressive-hedging 
based metaheuristic, which bases on the scenario decomposition/Lagrangian relaxation approach described above. Analogously, 
the scenario-separable first stage objective function is formulated with Lagrangian relaxation of the non-anticipativity 
constraints. This objective function has the structure of a commodity network flow problem for each scenario with modified 
fixed cost terms (for installed capacity on transportation links as first stage decisions). The authors show, that by iteratively 
adapting these fixed costs a solution with unified first stage decisions throughout all scenarios can be found. Instances up to 100 
commodities and 90 scenarios can be solved, for which standard solvers exceed the predefined time limit. Watson and Woodruff 
(2011) further investigate measures to improve computational times of progressive-hedging. By computational experiments the 
authors demonstrate that (among others) variable fixing in early iterations and termination criteria, which detect cyclic behavior 
of the variable values, can reduce computational times effectively.        

Hui et al. (2014) use a tabu search for their agent-activity-assignment problem formulation. The second stage decisions are 
taken by rule-based assignment (myopic rules from practice). The first stage decisions result from tabu search. The algorithm 
iteratively repeats the first and second stage until the maximum number of iteration steps is reached. The authors solve agent-
activity-assignments with instance sizes up to eight activities for eight agents. 



 Author name / Transportation Research Procedia 00 (2018) 000–000  11 

For summarizing the solution approaches, due to the high number of scenarios and NP-hardness of the problems, standard 
solvers will not (or not in all cases) provide solutions for real-world problem instances within acceptable computational times, 
especially in case of the service network design problem. As first measure reducing the scenario number should be taken into 
account by moment matching or scenario grouping. In a second step, heuristic approaches should be preferred. From current 
research a strictly superior heuristic approach cannot be identified (yet). Metaheuristics, Benders decomposition or scenario 
decomposition all bear the potential for generating acceptable solutions with moderate computational effort.               

Due to the increased computational complexity for stochastic models, the question arises, if significant improvements 
compared to deterministic planning approaches are reachable. Therefore, in the next subsection, general characteristics of 
stochastic solutions are compared to their deterministic counterparts. The value of stochastic approaches in network planning and 
design is discussed afterwards.      

4.4. General characteristics of stochastic solutions and value of stochastic planning approaches  

Six references of the survey compare their stochastic approach with a deterministic one and work out differences in the 
solution characteristics. For the minimum cost transportation schedule problem with stochastic demand (service network design), 
Lium et al. (2009) and Bai et al. (2014) conduct computational experiments to compare a deterministic solution with expected 
values to the solution derived by two stage stochastic programming. The benefits of the stochastic solution depend on correlation 
of the demand volumes. Lium et al. (2009) work out that the more uncorrelated or negatively correlated the demand volumes are, 
the higher is the solution quality gain compared to the deterministic approach. Those advantages are achieved by higher 
consolidation and higher flexibility. Consolidation relates to tendency of the stochastic solution to route commodity flows over 
transshipment nodes for bundling them, although expected demand values would justify direct transportation. Flexibility is 
achieved by creating more different paths (in the transportation schedule) between origin-destination-pairs.   

However, Bai et al. (2014) show that savings of the stochastic solution are the highest for very uncertain and also for 
positively correlated demand, and not that significant for uncorrelated demand. The deterministic solution tends to pair up 
positively correlated demand in commodity flow, leading to high outsourcing and/or rerouting (changes in transportation 
schedules of vehicles) as recourse action. Therefore, a stochastic solution approach is especially useful for environments with 
highly uncertain demand and high outsourcing and/or rerouting costs. 

Sun et al. (2017) compare three solution approaches (two stage stochastic programming, skeleton and upgrade) for the 
minimum cost transportation capacity problem with stochastic demand, incorporating stochasticity at different degrees, to a 
deterministic approach. The stochastic solution can be compared to the deterministic one by the value of stochastic solution 
(VSS), a commonly used measure introduced by Birge (1982), which calculates the expected value of using a stochastic model 
(or the expected losses of using a deterministic model, respectively). A pure deterministic approach can lead to losses up to 12% 
in the objective function value in the computed scenarios, compared to the two stage stochastic programming approach. The 
authors confirm the results of Bai et al. (2014) in terms of a higher VSS for positively correlated demand, because the stochastic 
provides more (fixed) capacity in the first stage. However, it could be sufficient to solve the mixed deterministic-stochastic 
models (skeleton and upgrade) for achieving comparable solution qualities as achieved by two stage stochastic programming. In 
the skeleton approach, binary decisions on transportation arcs to open are determined by the deterministic model. Afterwards, the 
stochastic program (with fixed binary variables) is solved for determining capacity of the arcs (first stage) and commodity flows 
(second stage). In the upgrade approach the deterministic model is solved and the solution is taken as lower bound on the 
variables in the stochastic model. By the skeleton approach 97% of loss in the VSS can be recovered, by the upgrade 94%. From 
the results, two conclusions can be derived. First, skeleton can be a promising heuristic approach for stochastic service network 
design. Second, upgrade indicates that an installed deterministic solution has the potential to function well even for varying 
demand volumes by increasing capacity to cover peaks in commodity flows. However, the last result contradicts the statements 
of Bai et al. (2014), who stress the importance of providing sufficient fixed capacity. 

Two further references analyze the stochastic solution characteristics for the minimum cost network flow planning problem. 
Meng et al. (2015) compare the solution of the two stage stochastic programming solved by SAA to the deterministic solution 
with expected values for the random demand volumes. Their computational experiments show, that for high enough sample size 
in the SAA, the stochastic solution outperforms the deterministic one throughout all scenarios. Demir et al. (2016) is the only 
reference in the survey, which compares the solutions additionally for stochastic transportation times (and not only for stochastic 
demand volumes). The conducted computational study, based on a real-world case study, shows that considering uncertain 
transportation times leads to a higher value of the stochastic approach than considering uncertain demand volumes. The 
deterministic solution especially tends to produce infeasible routes, in which the commodities cannot reach their final destination 
(or must then be transported by ad-hoc trucking, for example).  

Zuidwijk and Veenstra (2015) analyze a minimum cost mode choice problem with a special focus on the value of information. 
They compare four scenarios with regard to available information on stochastic release times of containers, which can be 
transported either by barge or by road. The intermodal operator can have no information about release times, the probability 
distributions of the release times can be known, the probability distributions can further be specified for a number of specific 
categories of containers and the actual release times can be known beforehand (deterministic scenario). By analyzing a single-
stage transportation chain (just including the barge or road transportation on a single link) Pareto-optimal solutions (regarding 
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reliability and efficiency) in the four information scenarios can be compared. The largest improvements can be achieved, when 
probability distributions are known (compared to no information on release times). This result indicates that the general approach 
of incorporating distribution functions into the stochastic model may be sufficient for deriving transportation plans, whereas 
further information would not contribute that much in tactical planning.  

In summary, all references stress the value of incorporating uncertainty into the planning models. Significant gains compared 
to a deterministic approach could already be achieved (at least in some cases) by heuristic solutions, that combine stochastic and 
deterministic approaches. The references in this survey indicate that for limiting computational effort to an acceptable level, it 
may be more valuable to generate a high number of scenarios and apply heuristic solution procedures than solving fewer 
instances to optimality. The most important feature of stochastic solutions with regard to demand volumes is the information on 
their correlations. The majority of the sources analyzing service network design point out that for highly correlated demand 
(positively or negatively) stochastic models provide superior solutions for the (first stage) decisions on transportation 
capacities/fixed schedules. Finally, the consideration of uncertain transportation times into stochastic models can (at least in 
some cases) be higher than incorporating uncertain demand volumes.  

After presenting problem characteristics, model formulations and solution approaches with their characteristics for stochastic 
service network design and network flow planning, in the last subsection an outlook to fields for future research is given.       

4.5. Fields for future research  

With reference to problem characteristics (section 4.1), literature has focused strongly on stochastic demand so far. For 
service network design there is even no single reference dealing with stochastic transportation times. Future research should 
cover this uncertain factor with higher priority. Demir et al. (2016) show in a first approach, that the value of stochastic planning 
for uncertain transportation times can even be higher than for uncertain demand. The importance of this conclusion is 
additionally emphasized by empirical surveys among decision makers within the transportation chain, which identify more 
reservations about reliability of multimodal transportation than of flexibility with regard to demand fluctuations (Elbert and 
Seikowsky 2017). Moreover, a common approach in practice is to preselect relations with a high basic level of transportation 
demand for multimodal transportation and absorb peak demand with more flexible road transportation. By this rule-based mode 
choice strategy, stochastic demand can be easier to handle in practice compared to stochastic transportation times, where delays 
in one stage of the network impact the succeeding stages. Since only two references include uncertain demand and transportation 
times simultaneously, more effort in this direction can also provide new results on stochastic solutions covering both aspects. 

Relating to analyzed transportation modes, only one reference explicitly covers air and maritime transportation, respectively. 
For those modes, further research especially considering stochastic transport times/delays can be valuable, since in air 
transportation the punctual delivery is a decisive competitive factor due to time-critical shipments. In maritime transportation 
delays of the liner services can be difficult to handle, because due to the high capacity of container vessels a large number of 
shipments arrives delayed at the port simultaneously. This cannot only cause congestion within the port, but may also force to 
shift to road transportation because of capacity shortages of the barge and railway services. Deriving transportation schedules for 
those environmentally-friendly modes that provide a certain amount of reserve capacity could be an approach for increasing their 
modal shares. 

In addition, only one reference (Puettmann and Stadtler 2010) considers multiple actors by the means of a decentralized 
coordinated planning. This aspect is a further potentially high interesting research stream, because a single actor planning 
approach can only cover the situation of a (large) operator owning all required transportation assets. However, a main 
characteristic of multimodal transportation in real-world is the interdependence between several actors with responsibility for one 
specific part in the transportation chain. 

From the perspective of model formulations, a research gap lies in the inclusion of integer variables for commodity flow in the 
service network design problems, since in real-world situations the decision can be on single loading units to transport, and not 
on continuous flows. Assuming continuous variables can be a justified simplification in this case, when the number of loading 
units is high and rounding does not affect the overall solution quality, but might be not adequate when deciding separately on 
loading units of specific orders. 

Furthermore, Crainic et al. (2016) is the only reference including asset management in service network design and Puettmann 
and Stadtler (2010) the only one for network flow planning. Both references demonstrate that, in principle, this additional aspect 
can simultaneously be covered even in stochastic planning, which comes along with higher computational effort per se. 
Deterministic approaches within this research stream show the possibility for significant improvements (Andersen et al. 2009), so 
that developing further heuristics for stochastic planning with asset management may contribute to improved transportation 
planning in multimodal transportation. 

Another field that can be combined with network design and planning is revenue management and resource allocation (see 
also Fig. 1). Current research focusses on cost minimization under the prerequisite of fulfilling all occurring transportation 
requests. In an approach combining the two planning fields the objective function would be profit maximization, considering 
revenues of accepted transportation orders and costs of the transportation plan. As additional (recourse) decision the selection of 
fulfilled orders can be incorporated or prices for transportation services can be adapted, hence reflecting additional costs for ad-
hoc capacities. However, it should be mentioned that the scope of the literature review explicitly excludes revenue management 



 Author name / Transportation Research Procedia 00 (2018) 000–000  13 

and resource allocation and therefore it cannot be ensured that no such approaches already exist. Additionally, only two 
references (Demir et al. 2016 and Hrusovsky et al. 2016) include emission costs in the objective function. Since reducing 
environmental impacts of transportation is a main driver for promoting multimodal transportation, future research could cover 
this aspect for further developing decision support towards robust and environmentally-friendly transportation plans. 

In terms of solution approaches, research on integrating simulation and/or combining optimization and simulation can 
enhance the stochastic network design and planning. Hrusovsky et al. (2016) demonstrate that an iterative optimization-
simulation procedure can achieve comparable solution quality as optimization combined with an SAA approach and even larger 
instances can be covered. As one main advantage of simulation is the possibility of dealing with stochastic environments, it is 
somehow surprising that only one reference rely on simulation so far.                   

5. Limitations and Conclusion 

The paper at hand summarizes the state of research in stochastic network planning and design as part of the tactical planning 
of multimodal transportation. Overall, existing approaches demonstrate the value of including uncertain demand and 
transportation times into the planning. Significant improvements with regard to transportation costs as well as delay costs (or 
avoiding unfeasible transportation plans) can be achieved. However, the state of research for this precise topic can be classified 
as still in its beginnings. Further efforts to achieve computational improvements for dealing with large-scale real-world problem 
instances should be made, so that a benefit for the actors in multimodal transportation (operators, freight forwarders, shippers and 
road carriers) in everyday practice is possible. Moreover, a stronger consideration of uncertain transportation times should be 
strived.  

In terms of limitations of the survey, the sample of references is limited to publication not earlier than 2008, indexed in the 
Scopus database and to journals in the first two quartiles of the SCImago Journal Rank. Although the relevant current literature 
should be included, the entire spectrum of research is not covered. In addition, the narrow scope of the review must be 
considered. Only references with explicit focus on stochastic network planning and design were evaluated. Therefore, 
possibilities of transforming approaches from other research fields (especially in terms of model formulation and solution 
procedures) are not investigated (e.g. supply chain network design, stochastic vehicle routing planning). Furthermore, 
deterministic approaches are excluded and in consequence possible adaptions of deterministic models for covering stochasticity 
are not analyzed as well. In a next step, reviews on stochastic planning in multimodal transportation can be expanded to those 
areas, along with further fields of tactical planning (asset, demand and capacity management) and further decision horizons 
(strategical and operational).                
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