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Abstract 

The paper explores the impacts of using EVs for refrigerated urban freight transport operations. Two case were studied: fast food 

restaurant replenishment and ice cream vendor deliveries. A model for estimating the technical, energy and cost parameters of both 

the DV and EV was developed, considering both the refrigerated and non-refrigerated vehicles. Calculation models for the lifecycle 

costs and CO2 emissions were used to calculate the impacts of electrification and the use of opportunity charging on the operations. 

Refrigeration causes a significant increase in energy consumption, financial costs and carbon dioxide emissions. EVs hold a 

significant decarbonization potential, but its financial viability is strongly correlated with its utilization. The eutectic refrigeration 

system used for the ice cream vendor deliveries restricted the use of the EV, resulting in an unviable situation. Opportunity charging 

improves the financial viability, but is strictly dependent on availability of infrastructure. 
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1. Introduction 

At the vehicle level, electric vehicles (EVs) are attractive for urban freight transport (UFT) because of the 

potentially lower operating costs, the zero tailpipe emissions, potential to be fossil-fuel free, significantly quieter drive 

at low speeds, and higher energy efficiency (Wang et al., 2018). However, the technology’s widespread adoption is 

still modest (Moultak et al., 2017). The main disadvantages of EVs compared to the incumbent internal combustion 

engines vehicle (ICEV) are attributed to the relatively low energy performance of current batteries compared to fossil 

fuel. The combination of the heavy, large and expensive battery with the relatively slow recharging process 

significantly constrains operational performance – in terms of driving range, available operation time, payload 
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capacity – and increases the price of the EV (Duarte et al., 2016). Further, as the ICEV-based transport regime are 

stable (Geels, 2012) –resisting the transition to electric-mobility – the existing ecosystem does not yet fully support 

the EV-based freight transport. Most notably, diversity in the vehicle market, public fast charging infrastructure 

networks, repair and maintenance services, and roadside assistance services are absent (or scarce) even in the more 

developed cities around the world (International Energy Agency, 2018).  

Even as governments need to cautiously design policies to incentivize electric mobility (Philipsen et al., 2019), 

fleet operators must also carefully consider their options to transition (Wang et al., 2018). Here, evaluation studies 

play an important role. From an aggregated level, evaluations focus on policy impacts on EV adoption, energy security 

and grid stability, air quality and greenhouse gas (GHG) emissions, and human health (Daina et al., 2017; Requia et 

al., 2018). Studies may also look at the planning and efficacy of charging infrastructure and potential user behavior 

(Sun et al., 2015; Wolbertus et al., 2018) and cost calculation for individual companies (Davis and Figliozzi, 2013; 

Duarte et al., 2016; Macharis et al., 2007; Teoh et al., 2018).  

Despite much research being done in this field, the topic of refrigeration and EVs is still scarcely studied, despite 

the relative importance of the Hotel, Restaurant and Catering logistics (Wang et al., 2018), remarkable growth of 

grocery home deliveries (Visser et al., 2014), that food transport accounts for about 12% of GHG emissions in the UK 

(Garnett, 2011), that there are approximately 1 million refrigerated vehicles worldwide (Chatzidakis and Chatzidakis, 

2004) and that food logistics services have begun using EVs (Balm et al., 2018). The potential for decarbonization of 

transport is significant and deserves further study.  

An important factor here for EVs is that temperature control is a significant electricity drain on the already limited 

battery, thus strongly affecting the battery capacity requirement and the vehicle’s operating performance. The energy 

consumption rate is strongly dependent on type of refrigeration equipment, the size of the cargo box and amount of 

goods, and the difference between the optimum and ambient temperature (Rai and Tassou, 2017). Also, the energy 

consumption does not stop while the vehicle is temporarily parked or idling, while it does for non-refrigerated vehicles. 

This contrasts also with the usual benefit of EVs compared to ICEVs, where idling is virtually emissions-free (Gaines 

et al., 2006).  

This paper aims to present the evaluation of the impact of electrifying two refrigerated food urban logistics cases. 

The first uses a compressor-based refrigeration system, while the second uses a eutectic-based system. In the paper, 

the impacts to vehicle system, the lifecycle costs, and well-to-wheels carbon dioxide (CO2) emissions are estimated. 

Further, the benefit of using opportunity charging – defined as integrated “quick recharging events during working 

hours” (Teoh et al., 2018)– is also evaluated as a solution to offset the disadvantages of a normal EV system.  

2. Research approach and methods 

The research is based on a scenario-evaluation approach commonly used in UFT evaluation studies (see Figure 1). 

The main steps are described and discussed in the following sections.  

2.1. Define urban logistics scenario 

Data were primarily collected via semi-structured interviews with the logistics planners of the two firms. The semi-

structured approach was used because of two reasons. Firstly, historically, there have been difficulties in obtaining 

information from logistics companies, sometimes because of the firm’s refusal to share the information or because the 

data is simply inaccessible to the interviewee. The semi-structured approach allows the interviewer who understands 

the subsequent modelling approaches to adapt the questionnaire to instead ask for other information that might be able 

to be used, such as proxy data or statistical aggregates. The types of data obtained from interviews are summarized in 

Table 1. In addition, addresses for shipments for case A were taken from the companies’ website, while for case B 

random sampling of the addresses according service area was performed using QGIS’ built-in random selection tool. 

Payload capacity for the vehicles were obtained from the specifications of the vehicle models observed at their 

company locations.  
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Table 1 Case study description according to industry sector, product type, and tour structure, as well as types of data obtained 

Cases Industry sector Product type Tour structure Types of data obtained 

Case A 
Fast food restaurant 

replenishment 

Refrigerated 

food, 

beverage 

1 depot to many stores 

(replenishment) 

Fleet size, working schedule, refrigeration conditions, 

average loading and unloading times, average shipment 

weight per stop, vehicle model 

Case B 
Ice cream store 

replenishment 

Frozen ice 

cream 

1 depot to many stores 

(replenishment), 

Vendor-Managed-

Inventory  

Fleet size and service area, working schedule, refrigeration 

conditions, average loading and unloading times, average 

shipment weight per stop, sample average distance and 

duration  for one of the working days, vehicle model 

 

 

Figure 1 Overview of methodology of study 

2.2. Model vehicle movement for a day with vehicle routing and scheduling problem 

In this stage, data on the shipments and the operational constraints are used to re-create the vehicle’s distance-

payload-time profile (DPTP), which is the vehicle’s speed-profile and corresponding payload weight throughout its 
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operational cycle. Especially in freight transport operations, the weight of the vehicle can drastically change after a 

pickup or delivery activity, thus strongly affecting its energy consumption rate.  

Route creation was performed based on a Vehicle Routing Problem model, implemented in the software XCargo 

by the company LOCOM GmbH, Germany. The software used map data of Singapore to calculate distances and 

synthetic shipment orders (created for each case using the data obtained from interviews, websites, and background 

literature) to calculate a set of routes that reduces the overall distance travelled. The number of routes created are fixed 

depending on service area, vehicle fleet and number of routes of each vehicle in a day.  

A DPTP is created by assigning the routes to individual vehicles in the fleet. Here, the assignment’s objective is to 

balance the total assigned route duration of each vehicle. Duration of individual route legs are converted into duration 

based on constant vehicle speeds. The duration of each route is summed from the driving duration of each route leg 

and the estimated duration for loading and unloading activities.  

The route assignment procedure is: 

1. Assign to each vehicle a route starting from the route with the longest duration;  

2. Assign to the vehicle with the lowest total route duration, the next longest duration route; and 

3. Repeat Step 2, until all routes are assigned or if each vehicle has been assigned the maximum number of 

routes. 

The outcomes of the procedure are the DPTP of each vehicle in the fleet. For the study, the same DPTP is controlled 

for all the scenarios tested, giving the subsequent evaluation procedures a similar calculation basis. Note that this 

procedure can be replaced by any other modeling procedure (e.g. agent-based or operations research models) or simply 

by reproducing the speed- and payload-time profiles, such as by using GPS tracks in combination with vehicle-diaries. 

2.3. Calculate battery capacity and energy consumption for each vehicle 

In this stage, the energy used in the day’s operation and the battery capacity are calculated. The decision to fix the 

DPTP for all scenarios stems from the methodological decision to adjust the EV specifications to fit the operational 

requirements of under different charging scenarios, rather than changing the operations to suit the EV constraints. The 

overall approach is presented in Figure 2, and shows that the calculation of energy consumption, required battery 

capacity, available battery capacity and vehicle weight parameters proceed recursively.  

 

 

Figure 2 Approach to calculate battery capacity of the EV 
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2.3.1. Vehicle and charging scenarios  

In the paper, three scenarios are evaluated for each case (vehicle usage profile). The first, denoted by S0, evaluates 

the use of DVs in the cases to serve as a baseline comparison to other scenarios. Two scenarios use EVs, but differ in 

charging strategy, and therefore charging usage profiles.  

 S1: EVs are charged only overnight.  

 S2: EVs are charged at every customer stop, during delivery.  

While S1 represents the default charging strategy, i.e. downtime charging, S2 represents one of the many types of 

opportunity charging, the unloading charging strategy. 

2.3.2. Energy consumption profile 

Fuel or energy is expended by a vehicle for three reasons during a transport operation: for driving, while idling, 

and to power any logistics-related equipment, such as refrigeration or lifts. The calculation methods for each type of 

energy consumption used in our study are presented below.  

The driving energy consumption (DEC) is calculated for the movement of each vehicle over the whole DPTP in 

kilowatt-hours (kWh). To account for the changing weight of the vehicle, a DEC rate, in kWh per kilometer (kWh/km), 

is calculated for each route leg. The DEC rate is then multiplied by the distance of the route leg resulting in the DEC 

of that leg. The DEC rate of a leg is calculated by a triangulation of the DEC rate and vehicle weights of an empty and 

a fully loaded vehicle (see Equation (1)). The weight of the fully loaded vehicle is its gross vehicle weight (GVW). 

The DEC rates of both the empty and fully loaded vehicle, for both the DV and EV, are modeled linearly using the 

outputs of FASTSIM (Brooker et al., 2015) resulting in Equations (2) and (3) and the parameters presented in  

The refrigeration energy consumption is calculated for the compressor-based refrigeration unit in Case A, not for 

Case B which uses the eutectic refrigeration unit. The compressor-based refrigeration unit is assumed to operate 

throughout the tour, with a constant power requirement of 3.6 kW per volume of 20-foot container (Wild, 2019). 

Assuming a cargo box volume of 15.3 m3, the power required for refrigeration is 1.41 kW. An efficiency factor, 𝛾𝑉, 

is applied depending on the source of energy: 100% for EV and 40% for DV, yielding a rate of 1.41 kW for the EV 

and 3.53 kW for the DV. The energy consumption is calculated for the duration of the operation including breaks. 

Table 2. Factors such as vehicle weight, frontal area, length dimensions, driving profile, powertrain components, 

and regenerative braking were incorporated in its energy consumption model. The physical dimensions of 80 real-

world DVs were used as the underlying data to develop the linear models. Instead of using the real empty weight, a 

linear model was also created resulting in Equation (4) with parameters presented in  

The refrigeration energy consumption is calculated for the compressor-based refrigeration unit in Case A, not for 

Case B which uses the eutectic refrigeration unit. The compressor-based refrigeration unit is assumed to operate 

throughout the tour, with a constant power requirement of 3.6 kW per volume of 20-foot container (Wild, 2019). 

Assuming a cargo box volume of 15.3 m3, the power required for refrigeration is 1.41 kW. An efficiency factor, 𝛾𝑉, 

is applied depending on the source of energy: 100% for EV and 40% for DV, yielding a rate of 1.41 kW for the EV 

and 3.53 kW for the DV. The energy consumption is calculated for the duration of the operation including breaks. 

Table 2. The Heavy Duty Urban Dynamometer Driving Schedule was used as the driving profile in the simulation.  
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𝐸𝑅𝑀𝑂𝑉,𝑖,𝑉 = (
𝑊𝑖 −𝑊𝑒𝑚𝑝𝑡𝑦,𝐸𝐶

𝑊𝑔𝑣𝑤 −𝑊𝑒𝑚𝑝𝑡𝑦,𝐸𝐶

) ∗ (𝐸𝑅𝑀𝑂𝑉,𝑓𝑢𝑙𝑙,𝑉 − 𝐸𝑅𝑀𝑂𝑉,𝑒𝑚𝑝𝑡𝑦,𝑉) + 𝐸𝑅𝑀𝑂𝑉,𝑒𝑚𝑝𝑡𝑦,𝑉 
(1) 

 

𝐸𝑅𝑀𝑂𝑉,𝑒𝑚𝑝𝑡𝑦,𝑉 = 𝑎𝑒𝑚𝑝𝑡𝑦,𝑉 ∗ 𝑊𝑓𝑢𝑙𝑙,𝐸𝐶 + 𝑏𝑒𝑚𝑝𝑡𝑦,𝑉 (2) 

 

𝐸𝑅𝑀𝑂𝑉,𝑓𝑢𝑙𝑙,𝑉 = 𝑎𝑓𝑢𝑙𝑙,𝑉 ∗ 𝑊𝑓𝑢𝑙𝑙,𝐸𝐶 + 𝑏𝑓𝑢𝑙𝑙,𝑉 (3) 

 

𝑊𝑒𝑚𝑝𝑡𝑦,𝐸𝐶 = 𝑎𝑊𝑒𝑚𝑝𝑡𝑦,𝐸𝐶
∗ 𝑊𝑓𝑢𝑙𝑙,𝐸𝐶 + 𝑏𝑊𝑒𝑚𝑝𝑡𝑦,𝐸𝐶

 (4) 

𝑖 is the route leg of a specific route. 

𝑉 is the vehicle type, either DV or EV. 

𝑊𝑖 is the weight of the vehicle in kg in route leg 𝑖. 
𝑊𝑓𝑢𝑙𝑙,𝐸𝐶  is the GVW (or full weight) of the vehicle.  

𝑊𝑒𝑚𝑝𝑡𝑦,𝐸𝐶  is the approximated empty weight of the vehicle in kg. 

𝐸𝑅𝑀𝑂𝑉,𝑖,𝑉 is the DEC rate in kWh/km in route leg 𝑖. 
𝐸𝑅𝑀𝑂𝑉,𝑒𝑚𝑝𝑡𝑦,𝑉 and 𝐸𝑅𝑀𝑂𝑉,𝑓𝑢𝑙𝑙,𝑉 are the DEC rates in kWh/km for the vehicle at empty weight and GVW, respectively. 

 

The refrigeration energy consumption is calculated for the compressor-based refrigeration unit in Case A, not for 

Case B which uses the eutectic refrigeration unit. The compressor-based refrigeration unit is assumed to operate 

throughout the tour, with a constant power requirement of 3.6 kW per volume of 20-foot container (Wild, 2019). 

Assuming a cargo box volume of 15.3 m3, the power required for refrigeration is 1.41 kW. An efficiency factor, 𝛾𝑉, 

is applied depending on the source of energy: 100% for EV and 40% for DV, yielding a rate of 1.41 kW for the EV 

and 3.53 kW for the DV. The energy consumption is calculated for the duration of the operation including breaks. 

Table 2 Parameter values for linear regression models used in driving energy consumption rate calculation 

Vehicle type EV DV EV and DV 

Variable 𝐸𝑅𝑀𝑂𝑉,𝑒𝑚𝑝𝑡𝑦,𝐸𝑉 𝐸𝑅𝑀𝑂𝑉,𝑓𝑢𝑙𝑙,𝐸𝑉 𝐸𝑅𝑀𝑂𝑉,𝑒𝑚𝑝𝑡𝑦,𝐷𝑉 𝐸𝑅𝑀𝑂𝑉,𝑓𝑢𝑙𝑙,𝐷𝑉 𝑊𝑒𝑚𝑝𝑡𝑦,𝐸𝐶  

Regression 

statistics 

R-squared 0.803 0.985 0.817 0.991 0.861 

Standard Error  

of Regression in kWh/km 
0.039 0.027 0.125 0.082 351 

Sample size 80 80 80 80 80 

Coefficient 

estimates 

(P-value) 

𝑎 in kWh/(km.kg) 
0.0000253 

(0.000) 

0.0000691 

(0.000) 

0.0000841 

(0.000) 

0.0002665 

(0.000) 

0.279 

(0.000) 

𝑏 in kWh/km 
0.277 

(0.000) 

0.228 

(0.000) 

0.825 

(0.000) 

0.580 

(0.000) 

676 

(0.000) 

 

The idle energy consumption only applies to the DV scenarios. In Singapore’s context, vehicles are required by 

law to switch off the engines, unless equipment relies on a running engine (Government of Singapore, 2008). Only 

Case A in the study requires this calculation, since refrigeration of the cargo using the compressor-based refrigeration 

unit requires a running engine. The rate of energy consumption for idling is estimated to be 16.67 kW, based on a rate 

of 0.44 gallons of diesel per hour (Khan et al., 2009). The energy consumption is calculated for the duration the DV 

is stationary according to the DPTP, such as during loading, unloading and breaks.  

The energy consumed during each leg is the sum of the driving energy consumption, refrigeration and idling. The 

energy consumed during any breaks is the sum of energy consumption for refrigeration and idling. Both are calculated 

using Equations (5) and (6), respectively. The energy consumed during a route and by the vehicles are aggregated 

from the energy consumed during the route legs and breaks, as in Equations (7) and (8). 
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 𝐸𝑖
𝑙𝑒𝑔

= 𝐸𝑅𝑖
𝐷𝐸𝐶 ∗ 𝑙𝑖

𝑙𝑒𝑔
+ 𝐸𝑅𝑅𝐸𝐶 ∗ 𝐷𝑖

𝑙𝑒𝑔
+ 𝐸𝑅𝐼𝐸𝐶 ∗ (𝐷𝑖

𝐿𝑜𝑎𝑑 + 𝐷𝑖
𝑈𝑛𝑙𝑜𝑎𝑑) (5) 

 𝐸𝑞
𝑏𝑟𝑒𝑎𝑘 = (𝐸𝑅𝑅𝐸𝐶 + 𝐸𝑅𝐼𝐸𝐶) ∗ 𝐷𝑞

𝑏𝑟𝑒𝑎𝑘  (6) 

 𝐸𝑗
𝑟𝑜𝑢𝑡𝑒 = ∑ 𝐸𝑖

𝑙𝑒𝑔

𝑖,𝑖∈𝕀𝑗

 
(7) 

 𝐸𝑘
𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = ∑ 𝐸𝑗

𝑟𝑜𝑢𝑡𝑒

𝑗,𝑗∈𝕁𝑘

+∑𝐸𝑞
𝑏𝑟𝑒𝑎𝑘

𝑞

 
(8) 

 𝑖, 𝑞 are the indices for route leg and break session, respectively. 

𝑙𝑖
𝑙𝑒𝑔

 is the length in km. of route leg 𝑖. 
𝐷𝑖
𝑙𝑒𝑔

, 𝐷𝑖
𝐿𝑜𝑎𝑑, 𝐷𝑖

𝑈𝑛𝑙𝑜𝑎𝑑 are the duration of route leg 𝑖, the loading and unloading activity, respectively. 

𝐸𝑖
𝑙𝑒𝑔

 is the total energy consumed by the vehicle for route leg 𝑖. 

𝐸𝑅𝑖
𝐷𝐸𝐶 is the energy consumption rate for vehicle during driving in route leg 𝑖. 

𝐸𝑅𝑅𝐸𝐶  is the energy consumption rate for refrigeration. 

𝐸𝑅𝐼𝐸𝐶 is the energy consumption rate for vehicle while idle. 

𝐷𝑞
𝑏𝑟𝑒𝑎𝑘 is the duration of break session 𝑞. 

𝐸𝑞
𝑏𝑟𝑒𝑎𝑘 is the energy consumed during the break session 𝑞. 

𝐸𝑗
𝑟𝑜𝑢𝑡𝑒 is the energy consumed in route 𝑗. 

𝐸𝑘
𝑣𝑒ℎ𝑖𝑐𝑙𝑒 is the energy consumed in the day by vehicle 𝑘. 

2.3.3. Calculating the optimal battery capacity 

The optimal battery capacity (i.e. the least battery capacity needed to fulfill the energy demands) is calculated for 

scenarios S1 and S2, according to different criteria and methods. For S1, the state of charge (SOC) at the end of the 

DPTP must not be lower than the depth-of-discharge (DOD) limit of 80% - the minimum SOC allowed is 20%. The 

required battery capacity is calculated using Equation (9) based on the vehicle with the highest energy consumption. 

Constraint (10) ensures that the available battery capacity is set to exceed the required battery capacity. 

 𝐸𝐵𝑇,𝑟𝑒𝑞 = ( 𝑚𝑎𝑥
𝑘=1,…,𝐾

𝐸𝑘
𝑣𝑒ℎ𝑖𝑐𝑙𝑒) /𝐷𝑂𝐷 (9) 

 𝐸𝐵𝑇 > 𝐸𝐵𝑇,𝑟𝑒𝑞  (10) 

 𝐸𝐵𝑇,𝑟𝑒𝑞 is the required battery capacity. 

𝐸𝑘
𝑣𝑒ℎ𝑖𝑐𝑙𝑒 is the energy consumed by vehicle 𝑘. 

𝐷𝑂𝐷 is the depth of discharge in percentage. 

 

 

For S2, the battery is topped up at every unloading event. Thus, the SOC should not be lower than the DOD at the 

end of every route leg terminating at a customer’s location. The SOC after each route leg and before the charging 

activity is calculated using Equation (11). The 3 cases in the equation represents: (1) the first leg of the day reaching 

the first customer; (2) reaching the second customer onwards for any route; (3) the first leg of any other routes besides 

the first. In the first case, the SOC equals the available battery capacity, whereas in the second case, the energy charged 

at the customer’s location (up to a maximum of 90% of the battery capacity) in the previous route leg is accounted 

for. In the third case, the previous route leg ends at the depot, where it is not charged. Constraint (12) ensures that the 

battery capacity is set, such that the vehicle completes each route leg without reaching the minimum SOC. The 
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potential energy charged during unloading charging activity is the product of the duration of the unloading activity 

and the charging power, as in Equation (13).  

 

𝐸𝑗,𝑖
𝑆𝑂𝐶,𝑈𝐿 =

{
 
 

 
 𝐸𝐵𝑇 − 𝐸𝑗,𝑖

𝑙𝑒𝑔
− 𝐸𝑗,𝑖

𝑏𝑟𝑒𝑎𝑘,𝑙𝑒𝑔
𝑗 = 1, 𝑖 = 1

𝑚𝑖𝑛(𝐸𝑗,𝑖−1 
𝑆𝑂𝐶,𝑈𝐿 + 𝐸𝑗,𝑖−1

𝐶𝐺,𝑈𝐿 , 𝐸𝐵𝑇 ∗ 90%) − 𝐸𝑗,𝑖
𝑙𝑒𝑔

− 𝐸𝑗,𝑖
𝑏𝑟𝑒𝑎𝑘,𝑙𝑒𝑔

∀𝑗, 𝑖 > 1

𝑚𝑖𝑛 (𝐸
𝑗−1,𝑖𝑗−1

𝑚𝑎𝑥 
𝑆𝑂𝐶,𝑈𝐿 , 𝐸𝐵𝑇) − 𝐸𝑗,𝑖

𝑙𝑒𝑔
− 𝐸𝑗,𝑖

𝑏𝑟𝑒𝑎𝑘,𝑙𝑒𝑔
𝑗 > 1, 𝑖 = 1

 

(11) 

 𝐸𝑖
𝑆𝑂𝐶,𝑈𝐿 > 20% ∗ 𝐸𝐵𝑇  (12) 

 𝐸𝑖
𝐶𝐺,𝑈𝐿 = 𝐷𝑖

𝑈𝑛𝑙𝑜𝑎𝑑 ∗ 𝑃𝐶𝐺,𝑈𝐿 (13) 

 𝐸𝑖
𝑆𝑂𝐶,𝑈𝐿

 is the SOC at the end of route leg 𝑖, before charging takes place. 

𝐸𝐵𝑇 is the battery capacity in kWh. 

𝐸𝑖
𝐶𝐺,𝑈𝐿

 is the energy charged during unloading activity in route leg 𝑖. 
𝐷𝑖
𝑈𝑛𝑙𝑜𝑎𝑑 is the duration of unloading activity in route leg 𝑖. 

𝑃𝐶𝐺,𝑈𝐿 is the charging power in kW, assumed to be 50 kW. 

𝐸𝑗,𝑖
𝑙𝑒𝑔

 is the energy consumed in route leg 𝑖. 
𝐸𝑗,𝑖
𝑏𝑟𝑒𝑎𝑘,𝑙𝑒𝑔

 is the energy consumed in break in route leg 𝑖. 

𝑖𝑗
𝑚𝑎𝑥 is the index for the last leg in route 𝑗. 

 

 

The available battery capacity of the vehicle is minimized, while holding on to constraints (10) and (12) for 

scenarios S1 and S2, respectively. Since the weight of the vehicle affects the driving energy consumption rate (see 

Equation (1)), setting the available battery capacity recursively affects the required battery capacity. To solve this, the 

weight of the battery is modelled in terms of GVW, the payload capacity, the estimated empty weight of the vehicle, 

and the weight of any other special equipment, as in Equation (14). In Case B, the weight of eutectic system of 1,000 

kg is counted as a special weight. The available battery capacity is calculated multiplying the weight of the battery by 

the specific energy of the battery, as in Equation (15). The weight of the vehicle in each route leg (used in Equation 

(1)) is the sum of the fixed weights in the vehicle and the varying payload weight (see Equation (16)). In the study, 

the GVW was varied until the constraints (10) and (12) were fulfilled with the least available battery capacity needed. 

In scenario S0, there is no battery capacity, and thus 𝑊𝐵𝑇  is set to zero. The GVW and empty weight can be easily 

calculated from the constants payload capacity and special weights.  

 

 𝑊𝐵𝑇 = 𝑊𝑔𝑣𝑤 −𝑊𝑝𝑐𝑎𝑝 −𝑊𝑒𝑚𝑝𝑡𝑦,𝐸𝐶 −𝑊𝑠𝑝𝑒𝑐𝑖𝑎𝑙  (14) 

 𝐸𝐵𝑇 = 𝛿𝐵𝑇 ∗ 𝑊𝐵𝑇  (15) 

 𝑊𝑖 = 𝑊𝑒𝑚𝑝𝑡𝑦,𝐸𝐶 +𝑊𝑠𝑝𝑒𝑐𝑖𝑎𝑙 +𝑊𝐵𝑇 +𝑊𝑝,𝑖 (16) 

 𝑊𝐵𝑇 is the weight of the battery in kg 

𝑊𝑔𝑣𝑤 is the GVW in kg  

𝑊𝑝𝑐𝑎𝑝 is the available payload capacity in kg 

𝑊𝑒𝑚𝑝𝑡𝑦,𝐸𝐶  is the estimated empty weight in kg 

𝑊𝑠𝑝𝑒𝑐𝑖𝑎𝑙 is any special additional weight that the vehicle must carry in kg 

𝑊𝑝,𝑖 is the weight of the payload of the vehicle in route leg 𝑖 

𝐸𝐵𝑇 is the battery capacity in kWh 

𝛿𝐵𝑇 is the specific energy of the battery in kWh/kg 
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2.4. Calculate intermediate and final evaluation indicators 

In the study, two indicators were evaluated: the lifecycle costs and the CO2 emissions. The lifecycle costs is defined 

as the costs incurred to the fleet owner during the service lifetime of the vehicle. The main costs considered are 

investment costs for the vehicles and charging system, the fuel or energy costs, maintenance and battery replacement 

costs, the price of the vehicle when sold at the end of the service lifetime, and miscellaneous taxes and fees. These 

costs are aggregated to a current day value, the Net Present Value (NPV), using a discount factor that is multiplied to 

the financial transactions occurring in the future. The NPV is calculated for a common service lifetime of 10 years.  

Reduction of carbon dioxide emissions are calculated since it is the primary motivation for government and private 

policy to encourage the switch to EVs. A well-to-wheels approach is used to ensure that upstream CO2 emissions are 

also considered.  

2.4.1. Vehicle purchase price 

An important difficulty in the EV evaluation studies is the lack of data on the purchase prices of vehicle. This 

difficulty is compounded when “synthetic” vehicles are used in the evaluation instead of real-world vehicle models. 

Here, the calculation method of the purchase price of DV and EVs are presented. For DVs, a linear regression model 

is used with GVW as its independent variable. The purchase price of the EV is estimated based on the price of the DV 

of a similar size.  

The purchase price of the DV in Singapore Dollars (S$) is modeled according to a database of vehicles from second 

hand vehicle market. The online second-hand vehicle marketplace lists goods vehicles, with information on the vehicle 

model, age, and offered price (SGCARMART, 2015). This information is combined with GVW of the vehicle obtained 

from manufacturer specification. The database yielded 152 unique data points after filtering out listings with 

incomplete information, duplicates of the vehicles in the same year band, and tractors. Vehicles used in the analysis 

were also limited to aged 9 years and less. The ten-year limitation is due to an observed significant drop between the 

prices after the ninth year. This can be attributed to the need for a renewed COE that affects the offered price of the 

vehicle. The regression analysis yields Equation (17). The parameter values are presented in Table 3. 

 𝑌 = 𝑚𝐺𝑉𝑊 ∗ 𝐺𝑉𝑊 +𝑚𝐴𝐺𝐸 ∗ 𝐴𝐺𝐸 + 𝑏 (17) 

Table 3 Regression results for vehicle purchase price model 

Regression statistics 

R-squared 0.853 

Standard Error of Regression [S$] 12,621 

Sample size 152 

Coefficient estimates (P-values) 

𝑚𝐺𝑉𝑊  [S$/kg] 3.238 (0.000) 

𝑚𝐴𝐺𝐸 [S$/year] -9,042.5 (0.000) 

𝑏 [S$] 89,377 (0.000) 

 

Since the aim is to find an estimation model for the purchase of a new vehicle, the AGE variable is eliminated (or 

set to zero). Furthermore, the regression constant is reduced by S$ 50,000 to account for the cost of the COE. This 

results in an estimation of the price of a new DV dependant only on the GVW of the vehicle (see Equation (18)). 

 𝑝𝑟𝑖𝑐𝑒𝐷𝑉 = 3.238 ∗ 𝑊𝑔𝑣𝑤 + 39377 (18) 

 

The purchase price of the EV is estimated using the price of the DV, but adding electric motor (and controller) and 

battery prices (see Equation (19)). A DV without its powertrain costs about 85% of the retail price (Cuenca et al., 

1999). The prices of the battery pack and motor are calculated using Equations (20) and (21), respectively. Estimates 

for the cost coefficients for the battery and the motor are 400 S$/kWh and 48 S$/kW (Cuenca et al., 1999; Nykvist 

and Nilsson, 2015).  
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𝑝𝑟𝑖𝑐𝑒𝐸𝑉 = 85% ∗ 𝑝𝑟𝑖𝑐𝑒𝐷𝑉 + 𝑝𝑟𝑖𝑐𝑒𝐵𝑇 + 𝑝𝑟𝑖𝑐𝑒𝑀𝑇  (19) 

 
𝑝𝑟𝑖𝑐𝑒𝐵𝑇 = 𝑎𝑝𝑟𝑖𝑐𝑒𝐵𝑇 ∗ 𝐸𝐵𝑇  (20) 

 
𝑝𝑟𝑖𝑐𝑒𝑀𝑇 = 𝑎𝑝𝑟𝑖𝑐𝑒𝑀𝑇 ∗ 𝑃𝑀𝑇  (21) 

 𝑝𝑟𝑖𝑐𝑒𝐸𝑉 is the purchase price of the EV in S$ 

𝑝𝑟𝑖𝑐𝑒𝐷𝑉 is the purchase price of the DV in S$ 

𝑝𝑟𝑖𝑐𝑒𝐵𝑇 is the cost of the battery in S$ 

𝑝𝑟𝑖𝑐𝑒𝑀𝑇 is the cost of the motor in S$ 

𝑎𝑝𝑟𝑖𝑐𝑒𝐵𝑇 is the cost coefficient of the battery in S$/kWh 

𝑎𝑝𝑟𝑖𝑐𝑒𝑀𝑇 is the cost coefficient of the motor in S$/kW 

𝐸𝐵𝑇 is the battery capacity in kWh 

𝑃𝑀𝑇 is the power of electric motor in kW 

 

 

The electric motor needs to be sized according to the GVW of the vehicle to provide sufficient power for 

acceleration. A linear regression model was created using the engine power of the vehicles in the database (see section 

2.3.2). The result is Equation (22) with parameters summarized in Table 4.  

 
𝑃𝑀𝑇 = 𝑎𝑀𝑇 ∗ 𝑊𝑔𝑣𝑤 + 𝑏𝑀𝑇  (22) 

Table 4 Regression results for electric motor power (standard deviations from mean) 

Regression statistics 

R-squared 0.369 

Standard Error of Regression [kW] 20 

Sample size 80 

Coefficient estimates (P-values) 
𝑎𝑀𝑇   [kW/kg] 0.00484 (0.000) 

 𝑏𝑀𝑇 [kW] 86 (0.000) 

 

When a vehicle is purchased in Singapore there are additional taxes and fees levied, such as Certificate of 

Entitlement (COE), registration cost and an additional registration fee (ARF). .The COE in reality is the product of an 

auction and therefore varies at every bidding period. The COE value used in this study is an approximate based on 

values of historical COE prices of Category C vehicles, assumed to be S$50,000. The registration fee is S$140 for 

each vehicle, whereas the ARF is not charged to EVs (Land Transport Authority, 2016). The ARF is 5% of the 

purchase price of the vehicle (see Equation (23)). The total cost of each vehicle is thus the sum of the vehicle purchase 

price and these fees (see Equation (24)). 

 

𝑎𝑟𝑓𝑉 = {
5% ∗ 𝑝𝑟𝑖𝑐𝑒𝐷𝑉

0

𝑓𝑜𝑟 𝑉 = {𝐷𝑉}

𝑓𝑜𝑟 𝑉 = {𝐵𝐸𝑉}
 

(23) 

 
𝑐𝑜𝑠𝑡𝑉 = 𝑝𝑟𝑖𝑐𝑒𝑉 + 𝑐𝑜𝑒 + 𝑟𝑒𝑔 + 𝑎𝑟𝑓𝑉 𝑉 = {𝐵𝐸𝑉, 𝐷𝑉} (24) 

 𝑎𝑟𝑓𝑉 is the ARF payable for DV in S$ 

𝑝𝑟𝑖𝑐𝑒𝐷𝑉 is the price of the DV in in S$ 

𝑐𝑜𝑠𝑡𝑉 is the final cost of purchasing the vehicle in S$ 

𝑝𝑟𝑖𝑐𝑒𝑉 is the price of the vehicle (either DV or EV) in S$ 

𝑐𝑜𝑒 is the cost of the COE in S$ 

𝑟𝑒𝑔 is the registration cost of the vehicle in S$ 
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The resale of a vehicle depends on the market and condition of the vehicle. However, it is necessary to be able to 

estimate this value, if it is to be included in the cost evaluation. The percentage of the resale price to estimated price 

of a new vehicle is estimated using the same second-hand vehicle price database (Figure 3). A linear regression 

analysis yields Equation (25), with regression parameters in Table 5.  

 

Figure 3 Resale value of an aged vehicle compared to a new vehicle in percentage 

 

 𝑟𝑒𝑠𝑉
𝑝𝑟𝑖𝑐𝑒𝑉

% = 𝑚𝐴𝐺𝐸 ∗ 𝑌𝐸𝐴𝑅 + 𝑏 
(25) 

Table 5 Regression results for vehicle resale value ratio (standard deviations from mean) 

Regression statistics 

R-squared 0.831 

Standard Error of Regression [S$] 0.103 

Sample size 152 

Coefficient estimates (P-values) 
𝑚𝐴𝐺𝐸 [S$/year] -0.082 (0.000) 

𝑏 [%] 0.995 (0.000) 

 

For the end of the 10th year, the vehicle is estimated to be sold for 17% of the initial purchase price using Equation 

(25). The resale value does not take into account battery replacement and any other major spare parts replacement. 

Charging equipment are not assumed to be resold. 

2.4.2. Battery replacement cost 

 

The battery replacement cost is incurred once the average lifetime of the battery is reached, which may happen 

more than once in the lifetime of the vehicle. This average lifetime is calculated based on the average charges made 

per year 𝑐𝑦𝑐𝑙𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒  and the battery charge cycle lifetime specification of 3,000 charge cycles (Burke, 2007). The 

understanding of the influence of fast charging on the battery discharge capacity is not yet mature in research, but 

Anseán et al. (2013) shows that a 3,000 charge cycle only degrades the battery capacity by about 12%. As only 80% 

of the total battery capacity is being used in operations, the battery is replaced before it affects the transport operation. 

The years that the battery is replaced 𝑡𝑟𝑒𝑝 is calculated using Equation (26). 
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𝑡𝑟𝑒𝑝 = ⌊

𝑐𝑦𝑐𝑙𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑐𝑦𝑐𝑙𝑒𝐵𝑇 
⌋ ∗ 𝑚 

𝑡𝑟𝑒𝑝 < 𝑡𝑙𝑖𝑓𝑒  

𝑚 = 0,1, … 

(26) 

 𝑡𝑟𝑒𝑝 is the year in which the battery must be replaced 

𝑐𝑦𝑐𝑙𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 is average charges made per year 

𝑚 is an increasing index 

𝑡𝑙𝑖𝑓𝑒 is the assumed service lifetime for the calculation 

 

 

The cost to replace the battery uses a similar linear relation as in Equation (20), except that the cost parameter is 

expected to decrease yearly. Though Nykvist and Nilsson (2015) estimate the annual reduction to be 8%, in this study, 

a more conservative estimate of 3% is used. In my opinion, it better reflects the estimates their analysis was based on. 

The calculation of the battery replacement cost 𝑐𝑜𝑠𝑡𝐵𝑇𝑟𝑒𝑝(𝑡𝑟𝑒𝑝) is presented in Equation (27). 

 
𝑐𝑜𝑠𝑡𝐵𝑇𝑟𝑒𝑝(𝑡𝑟𝑒𝑝) = 𝑝𝑟𝑖𝑐𝑒𝐵𝑇 ∗ (1 − 𝑎𝐵𝑇𝑟𝑒𝑝)

𝑡𝑟𝑒𝑝
 

(27) 

 𝑐𝑜𝑠𝑡𝐵𝑇𝑟𝑒𝑝 is the cost of the replacement battery at the year 𝑡𝑟𝑒𝑝 

𝑎𝐵𝑇𝑟𝑒𝑝 is yearly percentage decrease of the battery cost 

 

2.4.3. Charging system prices 

 

The fleet owner directly pays for the overnight charging equipment, which is used for both EV scenarios, S1 and 

S2. The estimates of the cost are developed based on estimates of the charging station equipment, electrician materials, 

labour and mobilization, and permits for installation in the US (Agenbroad and Holland, 2014). Depending on the 

battery capacity and the duration the vehicle is parked overnight, the required power level of the charger can be 

calculated. The total costs are presented in Table 6. The opportunity charging equipment is not purchased, but the use 

of its service is part of the operating costs. 

Table 6 Total cost for the charging system for three levels of power 

Charger type Range of power, 𝑃𝐶𝐺𝑂𝐶 (kW) Total cost, 𝑐𝑜𝑠𝑡𝐶𝐺 (S$) 

Level 1 ≤ 2 kW 1,600 

Level 2 ≤ 20 kW 7,300 

Level 3 > 20 kW 80,000 

2.4.4. Operating costs 

 

In this study, operating costs are only annual maintenance and energy costs incurred in each year of service by the 

whole fleet. This is calculated using Equation (28). 

 𝑐𝑜𝑠𝑡𝑜𝑝(𝑡) = 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝑉 + 𝑐𝑜𝑠𝑡𝐸 (28) 

 𝑐𝑜𝑠𝑡𝑜𝑝(𝑡) is the operating cost for year 𝑡 

𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝑉 is the maintenance cost 

𝑐𝑜𝑠𝑡𝐸  is the energy cost 
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Maintenance costs of both vehicle and charging infrastructure are considered (see Equation (29)). Vehicle 

maintenance costs are dependent on the mileage in the year, whereas the charger maintenance costs are given as fixed 

values. 

 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝑉 = 𝑎𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝑉 ∗ 𝑙𝐹𝑙𝑒𝑒𝑡 ∗ 𝐷𝑎𝑦𝑠 + 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝐶𝐺 ∗ 𝐾 (29) 

 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝑉 is the annual maintenance cost in S$ 

𝑎𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝑉 is the rate of maintenance cost for the vehicle in S$/km 

𝑙𝐹𝑙𝑒𝑒𝑡 is the total mileage of the fleet in an operational day 

𝐷𝑎𝑦𝑠 is the number of operation days per year 

𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝐶𝐺 is the cost of maintenance for an overnight charger 

𝐾 is the size of the vehicle fleet 

 

The cost for both DV and EV are presented in Table 7. The values for the maintenance cost rate for DVs are taken 

from Sinha & Labi (2007). Since EVs are expected to have significantly less maintenance costs than DVs, the 

maintenance cost rates for EVs are assumed to be half (Davis and Figliozzi, 2013). 

Table 7 Maintenance cost coefficient for DV and EV 

GVW range 
Maintenance cost coefficient, 𝑎𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝑉 (S$/km) 

DV EV 

GVW≤3,500 0.09 0.05 

3,500<GVW≤12,000 0.19 0.10 

12,000<GVW 0.35 0.18 

 

The average annual maintenance cost of the charger is assumed to be 5% of the equipment costs (own calculations 

based on Miller et al. (2013)). This gives the total annual maintenance cost for the chargers as presented in Table 8.  

Table 8 Annual maintenance cost of the overnight charging system 

Power level Annual maintenance cost of chargers, 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝐶𝐺  (S$) 

Level 1 48 

Level 2 135 

Level 3 1,600 

 

The annual cost for energy depends on the cost for diesel and electricity. The electricity cost rate and the charging 

efficiency depends on the method and technology for charging. Opportunity charging is also considered a service, 

which will include a certain profit margin.  

 

 
𝑐𝑜𝑠𝑡𝐸 = 𝐷𝑎𝑦𝑠 ∗∑𝑝𝑟𝑖𝑐𝑒𝐸𝑒 ∗

𝐸𝑒
𝛾𝑒

𝑒

 
(30) 

 𝑒 is an index for the type of energy supply and mode of charging 

𝑐𝑜𝑠𝑡𝐸  is the cost of electricity used per year 

𝐷𝑎𝑦𝑠 is the number of operation days per year 

𝑝𝑟𝑖𝑐𝑒𝐸𝑒 is the price per unit of energy per 𝑒 in S$/kWh 

𝐸𝑒 is the amount of energy used per 𝑒 in kWh 

𝛾𝑒 is the efficiency of charging in % 

 

 

The unit price of energy are presented in Table 9. The diesel price is based on a single rate of S$0.90 per liter, 

which is a discounted value for bulk purchases, discovered during an interview with one of the logistics managers. 

Using the net calorific value and density of diesel fuel, the amount of energy which a liter of diesel is equivalent to is 

10.01 kWh (DEFRA, 2012). This yields a unit price of 0.09 S$/kWh for at tank-to-wheel cost. The electricity costs is 

S$0.15 per kWh (source: own estimate based on published tariffs for month of January 2016 (Energy Market Authority 
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(Singapore), 2017)). Additionally, in order to finance opportunity charging facilities (both on and off-site), a premium 

on the energy cost is levied (Borden, 2012). Only Level 3 charging systems are assumed to be used for on operation 

charging. Hence, assuming a usage of 12 hours a weekday and an amortization in 7 years (Chang et al., 2012) for a 

100-kW charger, an additional charge of 5 cents (own calculation) is levied, for conductive charging systems.   

Table 9 Energy prices per kWh for diesel, overnight and on operation charging 

Energy supply Rate of energy price, 𝑝𝑟𝑖𝑐𝑒𝐸𝑒(S$/kWh) 

Diesel 0.09 

Overnight charging 0.15 

Opportunity charging (Level 3) 0.20 

 

The efficiency of electricity charging of the EV is dependent on the power level of the charging system used (see 

Table 10). The efficiency of refueling for DV is assumed to be 100%.  

Table 10 Efficiency of charging 

Charging type, 𝑒 Efficiency of charging, 𝛾𝑒 (%) Source 

Level 1 85.8% (Sears et al., 2014) 

Level 2 90.2% (Sears et al., 2014) 

Level 3 88.7% (INL, 2014) 

 

2.4.5. Miscellaneous costs 

Equation (31) is used to calculate the annual cost for road taxes, driver salary and insurance premiums for the entire 

fleet.  

𝑐𝑜𝑠𝑡𝑚𝑖𝑠𝑐(𝑡) = (𝑟𝑜𝑎𝑑𝑡𝑎𝑥(𝑡) + 𝑠𝑎𝑙𝑎𝑟𝑦 + 𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒) ∗ 𝐾 (31) 

𝑐𝑜𝑠𝑡𝑚𝑖𝑠𝑐(𝑡) is total miscellaneous costs incurred in year 𝑡 

𝑟𝑜𝑎𝑑𝑡𝑎𝑥(𝑡) is the roadtax to be paid for year 𝑡 
𝑠𝑎𝑙𝑎𝑟𝑦 is the annual salary of the driver 

𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 is the annual insurance premium  

𝐾 is the size of the fleet 

 

 

Road taxes in Singapore are categorized by GVW, propulsion type and age in Table 11. The salary value used in 

the study is taken from the government statistics on median wages for a van driver, lorry driver and a trailer-truck 

driver (MOM, 2014). This is assumed to correspond to the GVW classification of the light, medium, and heavy duty 

truck, respectively. The annual salary is taken as 13 times the monthly salary to account for other bonuses or expenses 

that might be included in the compensation package. The salary is presented in Table 12.  

Table 11 Road tax incurred for diesel and electric goods vehicles in Singapore (Land Transport Authority, 2016). 

GVW range (kg) 
Annual road tax for vehicles, 𝑟𝑜𝑎𝑑𝑡𝑎𝑥(𝑡) (S$) 

Electric Diesel 

0<GVW≤3,500 340 426 

3,500<GVW≤7,000 524 656 

7,000<GVW≤11,000 578 724 

11,000<GVW≤16,000 782 978 

16,000<GVW≤20,000 1,122 1,403 

20,000<GVW 1,224 1,530 

Table 12 Median monthly salary and yearly salary according to GVW of vehicle 
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GVW range (kg) Median monthly wage (S$) Yearly salary, 𝑠𝑎𝑙𝑎𝑟𝑦 (S$) 

GVW≤3,500 2,079 27,027 

3,500 <GVW≤12,000 2,337 30,381 

GVW>12,000 2,621 34,073 

 

Annual insurance premiums are taken to be 4% of the purchase of the vehicle (own calculations based on (Cuellar, 

2014)) and is calculated using Equation (32).  

 𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 = 4% ∗ 𝑝𝑟𝑖𝑐𝑒𝑉 (32) 

 𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 is the annual cost for insurance 

𝑝𝑟𝑖𝑐𝑒𝑉 is the purchase price of the vehicle 

 

 

2.4.6. Lifecycle cost calculation 

 

The NPV calculated in S$ is used for the LCC calculation and sums up all the (present adjusted) costs incurred 

throughout the service lifetime 𝑡𝑙𝑖𝑓𝑒  of the vehicle (see Equation (33)). Costs which are incurred in the future are 

adjusted using a discount factor 𝑑𝑓 to a “present value”. The study assumes the discount rate to be 5% though EV 

evaluation studies have used values ranging from 5 to 15%. This results in a discount factor of 0.9524. This calculation 

is done for service lifetime of 10 years. 

𝑁𝑃𝑉(𝑡𝑙𝑖𝑓𝑒) = (𝑐𝑜𝑠𝑡𝑉 + 𝑐𝑜𝑠𝑡𝐶𝐺 − 𝑟𝑒𝑠𝑣 ∗ 𝑑𝑓
𝑡𝑙𝑖𝑓𝑒+1 +∑ 𝑐𝑜𝑠𝑡𝐵𝑇𝑟𝑒𝑝(𝑡𝑟𝑒𝑝) ∗ 𝑑𝑓

𝑡𝑟𝑒𝑝

𝑡𝑟𝑒𝑝

) ∗ 𝐾

+ ∑ 𝑐𝑜𝑠𝑡𝑜𝑝(𝑡) ∗ 𝑑𝑓
𝑡

𝑡𝑙𝑖𝑓𝑒

𝑡

 

(33) 

 𝑁𝑃𝑉(𝑡𝑙𝑖𝑓𝑒) is the net present value for the LCC for service lifetime 𝑡𝑙𝑖𝑓𝑒 

𝑐𝑜𝑠𝑡𝑉 is the cost for the purchase of the vehicle 

costCG is the cost for purchase of the overnight charger 

𝑟𝑒𝑠𝑣 is the resale value of the vehicle  

𝑐𝑜𝑠𝑡𝐵𝑇𝑟𝑒𝑝(𝑡𝑟𝑒𝑝) is the cost for battery replacement in year 𝑡𝑟𝑒𝑝 

K is the fleet size 

𝑐𝑜𝑠𝑡𝑜𝑝(𝑡) is the operating cost in year 𝑡 
df t is the discount factor, with a value of 0.9524, assuming a discount rate of 5%. 

 

2.4.7. Calculation of CO2 emissions 

 

The calculation of CO2 emission is based only on a fixed average rate for CO2 production depending on the energy 

source. For the DV, the emission factor of 0.2677 kg CO2/kWh is used (DEFRA, 2012). For the EV, the fuel is burned 

at the power plant with an emission factor of 0.4332 kg CO2/kWh (Energy Market Authority (Singapore), 2016). 

There is also an efficiency loss due to the transmission of electricity in the grid, which adds 3.83% to the energy 

required (MyPower, 2016). The equations for CO2 emissions for a day for DV and EVs, are (34) and (35), respectively. 

Note that for the EVs, the type of charging used affects the amount of electricity used because of the efficiency 𝛾𝑒 

(see Table 10) 

 

 𝐶𝑂2𝐷𝑉 = 0.2677 ∗ 𝐸𝑓𝑙𝑒𝑒𝑡  (34) 
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𝐶𝑂2𝐸𝑉 = 0.4332 ∗ 1.0383 ∗∑

𝐸𝑒
𝛾𝑒

𝑒

 
(35) 

 𝐶𝑂2𝐷𝑉 is the amount of CO2 emitted per day by the DV fleet in kg 

𝐶𝑂2𝐸𝑉 is the amount of CO2 emitted per day by the EV fleet in kg 

𝐸𝑒 is the energy transferred to the vehicle during the charging process using charger 𝑒 in kWh 
𝛾𝑒 is the efficiency of charging in %  

𝑒 is the charging type (see Table 10) 

 

3. Results and discussions 

3.1. Description of case studies 

The result of the routing and scheduling are presented in Table 13. The average distance travelled by a vehicle in 

Case A is almost double that for Case B. One of the limiting factors for the vehicles in Case B is that the eutectic 

refrigeration system can only last for 8 hours, which significantly reduces the operating time of the vehicle. Case B 

only has one route per vehicle, while in Case A there are two routes daily per vehicle. On average the route distances 

are the almost the same. The average route legs in Case A are double, but the maximums are about equal.  

Table 13. Route description according to various distance categories 

Case Case A Case B 

Fleet size 4 24 

Total distance (km) 416.0 1,310.8 

Distance statistics  Mean Max Mean Max 

Distance driven per vehicle (km) 104.0 133.2 54.6 83.8 

Distance per route (km) 52.0 77.9 54.6 83.8 

Distance per leg (km) 6.0 33.4 3.4 35.7 

3.2. Vehicle and energy profile 

Table 14 presents the GVW, battery capacity and the energy consumption of the whole fleet. In case A, the weight 

of the EV increases by 1,100 kg compared to the DV. Opportunity charging can bring it down to only a 400 kg 

increase. In Case B, opportunity charging can reduce the battery by more than half. Despite the increase in vehicle 

weight, the energy consumption of both EV scenarios are still drastically reduced compared to the DV scenario. If 

non-refrigerated vehicles were used instead of refrigerated vehicle, the impact of refrigeration to the energy 

consumption can be calculated. The calculation shows that the impact ranges from 20 to 27%, which are significant.  
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Table 14 Vehicle parameters and energy consumption. 

Case Case A Case B 

Scenario S0 S1 S2 S0 S1 S2 

GVW (kg) 4,400 5,500 4,800 3,200 3,700 3,400 

Battery capacity (kWh) - 110 39 - 54 24 

Total energy consumption (kWh) 1,161 266 247 2,023 674 646 

Energy consumption in case where 

refrigeration was not included (kWh) 
887 205 188 1,482 534 515 

Refrigeration energy demand (kWh) 274 62 59 540 139 131 

Proportion used for refrigeration (%) 24% 23% 24% 27% 21% 20% 

3.3. Lifecycle costs 

Next, the LCC of the EV and DV are compared. The overall breakdown of average NPV per vehicle in the fleet is 

presented in Figure 4. The investment increase (vehicle, battery and charger) for EVs are considerable. For Case A, 

the system’s cost increase are 46% and 27% for S1 and S2, respectively. For Case B, the system’s cost increase are 

24% and 17% for S1 and S2, respectively. However, over the lifetime of the vehicle, operational costs can be saved. 

This leads to both EV scenarios in Case A having a lower NPV than for the DV scenario. Unfortunately, the savings 

in Case B are insufficient to reduce the NPV to lower than for the DV scenario.  

 

Figure 4 Breakdown of average NPV per vehicle 

The following indicators are calculated to gain insight to the size of the influence of the use of EVs, different 

charging strategies, and the case of refrigeration:  

 Change of NPV categories of S1 and S2 compared to S0 in %  

 Change of NPV categories of S0, S1 and S2 compared to non-refrigerated case in % 

 

The first is presented in Table 15, where the percentage increase in costs per category are calculated. There are 

several insights that the data point to.  

1. For both EV scenarios, the battery cost significantly increases to the overall NPV. The cost of the vehicle without 

the battery (i.e. the glider and the motor) generally also increase.  

 -

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

S0 S1 S2 S0 S1 S2

Case A Case B

C
o

n
tr

ib
u

ti
o

n
 t

o
 N

P
V

 (
S$

 1
,0

0
0

)

Breakdown of average NPV of each vehicle

Miscellaneous

Operating costs

Charger

Battery

Vehicle (minus battery)



18 Author name / Transportation Research Procedia 00 (2018) 000–000 

2. Opportunity charging (S2) reduces cost for purchases. But, it also reduces the operating cost savings, due to 

the higher energy price for fast charging. Battery costs are only slightly reduced since opportunity charging 

also increases the need for battery replacement, sometime along the lifetime of the vehicle. 

3. Miscellaneous costs, such as increase in salary because of a different vehicle category (i.e. S1 in Case B), can 

significantly impact the calculations. This effect may be mitigated, if appropriate policy decisions regarding 

commercial vehicle driver licensing are made.  

4. Comparing the operating cost savings of Case A and B reveals the influence that different tour patterns might 

have on the suitability of EVs. This merits further analysis as the business case of the EV relies strictly on the 

operating cost savings. 

Table 15 Comparison of NPV of EV scenarios with DV scenario according to cost categories 

Case Scenario Vehicle (minus battery) Battery Charger Operating costs Miscellaneous NPV Total 

A 
S1 4.0% 3.6% 1.5% -12.1% 2.4% -0.6% 

S2 0.6% 3.2% 1.5% -10.9% 0.4% -5.2% 

B 
S1 1.8% 2.3% 2.0% -1.3% 8.7% 13.5% 

S2 -0.1% 2.3% 2.0% -2.6% 0.1% 1.8% 

* Positive figures imply increase in costs for the EV scenarios compared to the S0 scenario. 

 

Several reasons could be offered, as to why the operating costs savings in Case B are not significant. Operating 

costs are composed of both maintenance and energy costs. The costs depend on the use (e.g. in distance travelled), 

and the rates are supposed to be lower for EVs in the same vehicle class. In S1 of Case B, the vehicle class increased, 

thus increasing the maintenance cost rates per kilometer. Maintenance costs were therefore higher than the DV 

scenario. But, this does not apply to S2, hence a more relevant reason is the lower utilization of the vehicle. In Case 

A, each vehicle is used on average almost double that for Case B. Consequently, both the energy and maintenance 

cost savings were higher. Unfortunately, the eutectic system in Case B restricted the vehicles from being used for 

longer than 8 hours per day. Only a refrigeration system can change this operational restriction. 

Without changing the duration of operation, fleet managers could reduce battery and vehicle costs, by optimizing 

the routes based on energy use. Alternatively, fleet managers could also introduce different EV variants with battery 

capacity suited to the individual operation schedules. Route optimization methods that deal with both are well 

represented in operation research models (Juan et al., 2016).  

On the impact of refrigeration on the NPV (presented in Table 16), the data shows that the NPV is increased on the 

whole by roughly 3 to 5 %, if miscellaneous costs are not considered. Interestingly, the refrigeration impacts the EV 

scenarios more than the DV scenario. This impact is slightly reduced with the use of opportunity charging. This points 

to another important characteristic of EVs, which is that the energy use and the consumption rate has a compounding 

effect. The increased energy demand, increases the battery needs, which consequently increases energy consumption 

rate on a whole, due to the increased battery weight. Hence, the effect increases the operating and the purchases costs. 

Table 16 Comparison of NPV of refrigerated and non-refrigerated contexts.  

Case Scenario Vehicle (minus battery) Battery Charger Operating costs Miscellaneous NPV Total 

A 

S0 0.0% 0.0% 0.0% 3.2% 0.0% 3.2% 

S1 1.0% 0.7% 0.0% 1.4% 0.6% 3.6% 
S2 0.5% 0.8% 0.0% 1.8% 0.3% 3.4% 

B 

S0 1.2% 0.0% 0.0% 1.4% 0.4% 3.0% 

S1 1.7% 0.5% 0.0% 2.4% 8.2% 12.7% 
S2 1.1% 1.4% 0.0% 0.8% 0.4% 3.6% 

* Positive figures imply increase in costs for the refrigerated case compared to the non-refrigerated case. 

3.4. Carbon dioxide emissions 

Table 17 presents the calculated CO2 emissions and several comparisons. The EV scenarios significantly reduce 

CO2 emissions compared to the DV ranging from 38 to 60%. The high reduction rate is beneficial since many 

governments have pledged to reduce CO2 emissions by more than 20%. The impact in Case A with the compressor-



 Author name / Transportation Research Procedia 00 (2018) 000–000  19 

based refrigeration is much stronger than in Case B, which used the eutectic system. The use of opportunity charging 

reduces CO2 emissions compared to S1, despite using the less efficient charging method. This could be attributed to 

the reduced weight of the vehicle and the corresponding energy consumption rate. Refrigeration seems to increase 

CO2 emissions by 25 to 36%.  

Table 17 CO2 emissions for refrigerated, non-refrigerated vehicles and the percentage changes 

Case Scenario 
Average CO2 emissions for refrigerated 

vehicle for 10 years (tCO2e) 

Change of CO2 emissions 

compared to S0 (%) 

Change of CO2 emissions compared to 

non-refrigerated vehicles (%) 

Efficiency of CO2 

reduction (%/%) 

A 

S0 242 - 31% - 

S1 103 -57% 30% -1.3 

S2 97 -60% 31% -2.3 

B 

S0 70 - 36% - 

S1 44 -38% 26% -1.6 

S2 42 -40% 25% -2.4 

 

The efficiency of both EV systems to reduce CO2 emissions is important consider. To estimate this, the change in 

CO2 emissions (as the output) is divided by the increase in vehicle and charger investment costs (as the input), and 

summarized in Table 17. For Case A, an increase of 1% in vehicle and charger investment costs, results in a 1.3% 

reduction of CO2 emissions for S1 and 2.3% reduction for S2. Case B shows a similar pattern, which is that the use of 

opportunity charging (in S2) is more cost-effective (almost double) for fleet operators to reduce their emissions.  

4. Conclusion 

The study focused on evaluating the use of EVs for two refrigerated food UFT cases. The first was a dedicated 

restaurant replenishment operation using a compressor-based refrigerated vehicle. The second was a frozen food 

delivery to supermarkets and small shops using a eutectic-based refrigerated vehicle. A model for estimating the 

technical, energy and cost parameters of both the DV and EV was developed, considering both the refrigerated and 

non-refrigerated vehicles. Calculation models for the lifecycle costs and CO2 emissions were used to calculate the 

impacts of electrification (and the use of opportunity charging) on the operations.  

The results show that refrigeration increases the energy consumption and CO2 emissions by 20 to 27% and 25 to 

31%, respectively. Electrification can reduce the energy consumption and CO2 emissions by 67 to 79% and 38 to 60%, 

respectively. The results strongly point to the effectiveness of reducing CO2 emissions by using EVs. However, there 

is an important question of costs. The calculation of the lifecycle costs indicates that for the first case the use of EVs 

can reduce the NPV by 0.6% without the use of opportunity charging and 5.2% with opportunity charging. In second 

case, the NPV is increased by 13.5% and 1.8%, respectively. Two important implications are that financial viability 

of EVs are heavily dependent on the intensity of use, and that use of opportunity charging can improve it significantly. 

The use of the eutectic system in the second case limits the utilization of the vehicle, thus making the EV unviable.  

There is room for further research. In the study, a parametric vehicle model was used for defining the technical, 

energy and cost parameters of both the DV and EV. The potential for established methods and tools to create synthetic 

fleets proved to be invaluable for evaluation studies, particularly of markets that are not yet mature. Future researchers 

could contribute to this field, by examining different approaches to vehicle design, particularly by borrowing more 

from the vehicle manufacturing and prototyping domain. The methods used here to estimate refrigeration energy are 

also only suitable for high level strategic evaluation. There is room and need for improvement, which will help fleet 

operators more accurately gauge the impact of electrification on the operating cost.  
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