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Abstract 

This paper proposes a methodology to estimate passengers’ OD flows in a flat fare bus system. The proposed methodology is based 
on two-stage approach. The first stage estimates the leg OD flows, the OD flows within a line without considering transferring 
behavior, using the number of boarding and alighting passengers and prior information of the leg OD flows. The second stage 
estimates the journey OD flows, the OD flows between true origins and true destinations considering the transferring behavior, 
using the leg OD flows estimated at the first stage and the public transportation network information. The estimation accuracy of 
the first stage is investigated using passengers’ OD flows in a certain line collected by on-board survey. As a result, we confirm 
that the estimation accuracy of the first stage depends on the observation error of the prior information of the leg OD flows. Then, 
the estimation accuracy of whole of the proposed methodology is investigated using assumed journey OD flows data in a 
hypothetical bus network. As a result, we confirmed that the estimation accuracy of whole of the model is as equally good as that 
of the traditional estimation model of automobile OD flows. 
 
© 2018 The Authors. Published by Elsevier B.V.  
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1. Introduction 

It is required for public transportation operators to take effective measures to improve the level of service of public 
transportation, such as increasing service frequency, expanding vehicles’ capacity, and so on, for the sake of promoting 
the use of public transportation. Passengers’ OD flows are essential information for taking such effective measures. 
Therefore, many researchers so far proposed methodologies to estimate passengers’ OD flows. 

One of the approaches to estimate passengers’ OD flows is based on inverse problem. For example, William et. al. 
[1] proposed a bi-level programming approach to estimate passengers’ OD flows whose upper problem minimizes the 
sum of error measurements in passenger counts and OD matrices, and whose lower problem is a frequency-based SUE 
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transit assignment model. Wu et. al. [2] further considered the elastic line frequencies in the lower problem. Wong et. 
al. [3] proposed passengers’ OD flows estimation model based on entropy maximization approach and Wong et. al. 
[4] further expand the model so as to estimate OD flows of multimodal public transportation network. 

Although above methodologies are similar approach with automobiles’ OD flows estimation, the smart card 
payment system has been widely adopted in the public transportation systems all over the world. The smart card data 
can be expected to make the use of estimating passengers’ OD flows. However, in the public transportation system 
under the flat fare system, passengers have to tap a smart card only once; when they board or alight a vehicle. Therefore, 
many researchers have been proposing methods to estimate passengers’ OD flows using the smart card data. Barry et. 
al. [5] estimated passengers’ OD flows using entry-only automatic fare collection data. When they inferred alighting 
location, they made two simple assumptions that most riders start their next trip at or near the destination of their 
previous trip and that most riders end their last trip of the day at or near the start of their first trip of the day. Gordon 
et. al. [7] inferred boarding time and location for individual bus passengers in London by combining smart card data 
and vehicle location data. They further estimated the all passengers’ journey so as to satisfy the observed total volume. 
These methodologies require detailed individual smart card data, however, individual smart card data cannot always 
used for the transportation planning due to the privacy issues. 

Based on these backgrounds, this paper aims to propose a model to estimate passengers’ OD flows estimation model 
for the flat fare bus systems. The proposed methodology assumed to use smart card data which is aggregated in each 
bus run due to the privacy issue. As described later, the proposed model is based on the two-stage approach. The 
reminder of this paper is organized as following. Section 2 describes the proposed model. Section 3 evaluates the 
estimation accuracy of the first stage of the proposed model. Then, Section 4 evaluates the estimation accuracy of the 
whole of the proposed model. Finally, Section 5 summarizes the conclusions and proposed future works. 

 

2. The model 

2.1. Assumptions 

The proposed model in this study is with in mind for applying for a flat fare bus system where passengers pay fare 
when they alight. Because bus lines in a bus network in general do not connect to all of bus stop pairs, some passengers 
have to transfer to arrive at their destinations. Figure 1 shows an example of passengers’ movement, in which a 
passenger boards line I at bus stop A, transfers to line II at bus stop B, and alights line II at bus stop C. We define two 
types of OD pair for the consideration of such transferring behavior. One is the “leg OD pair”, which is an OD pair 
within a line without considering transferring behavior. The other is the “journey OD pair”, which is an OD pair 
between true origin bus stop and true destination bus stop with considering transferring behavior. In the example 
shown in Figure 1, the leg OD pair corresponds to between A and B-I, and between B-II and C. The journey OD pair 
corresponds to between A and C. 

 
Fig. 1 Example of passengers’ movement 
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• Following data are assumed to be available for the estimation; the number of alighting passengers at each bus stops 
from the smart data. 

• The number of boarding passengers at some of bus stops by the manual count. 
• The prior information of leg OD flows between bus stops in the same line. 
• The bus network data including travel times between adjacent bus stops and the service frequency of each line. 

Note that the penetration rate of the smart card is not necessarily assumed to be high, which means the observation 
accuracy of the number of alighting passengers may not be good. The number of boarding passengers is assumed to 
be obtained by manual count at some of bus stops as complementary information for the estimation. 

 

2.2. Outline of the estimation model 

We adopt a two-stage approach for estimating the passengers’ OD flows as shown in Figure 2. In the first stage, 
the leg OD flows are estimated based on the observed number of alighting passengers at all of bus stops, the observed 
number of boarding passengers in some bus stops, and the prior information of log OD flows. In the second stage, the 
journey OD flows are estimated based on the leg OD flows estimated at the first stage and the bus network information. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Outline of the proposed model 

2.3. Leg OD estimation model 

In the first stage, the leg OD is estimated based on the entropy model proposed by Sasaki [7], which can utilize the 
prior information of OD flows for the estimation. The model of the first stage can be formulated as following; 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥𝑖𝑖𝑖𝑖
𝑟𝑟𝑙𝑙(𝜏𝜏);𝑖𝑖<𝑗𝑗≤𝑁𝑁

∑ ∑ �𝑥𝑥𝑚𝑚𝑚𝑚
𝑟𝑟𝑙𝑙(𝜏𝜏) 𝑙𝑙𝑙𝑙 𝑥𝑥𝑚𝑚𝑚𝑚

𝑟𝑟𝑙𝑙(𝜏𝜏)

𝑞𝑞𝑚𝑚𝑚𝑚
𝑟𝑟𝑙𝑙(𝜏𝜏) − 𝑥𝑥𝑚𝑚𝑚𝑚

𝑟𝑟𝑙𝑙(𝜏𝜏)�𝑛𝑛−1
𝑚𝑚=1

𝑁𝑁
𝑛𝑛=1 ,   𝑙𝑙 ∈ 𝐿𝐿, ∀𝑟𝑟 ∈ 𝑅𝑅𝑙𝑙 , 𝜏𝜏 ∈ 𝑇𝑇  (1) 

such that 

∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑟𝑟𝑙𝑙(𝜏𝜏)

𝑗𝑗≥𝑛𝑛+1𝑖𝑖≤𝑛𝑛 ≤ 𝐶𝐶𝑟𝑟𝑙𝑙  𝑛𝑛 = 1,2, … ,𝑁𝑁𝑙𝑙 − 1   (2) 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑟𝑟𝑙𝑙(𝜏𝜏)

𝑖𝑖≤𝑛𝑛 = 𝜉𝜉𝑌𝑌𝑛𝑛
𝑟𝑟𝑙𝑙(𝜏𝜏) ,𝑛𝑛 = 1,2, … ,𝑁𝑁𝑙𝑙   (3) 

∑ 𝑥𝑥𝑛𝑛𝑛𝑛
𝑟𝑟𝑙𝑙(𝜏𝜏)

𝑛𝑛<𝑗𝑗≤𝑁𝑁 = 𝑋𝑋𝑛𝑛
𝑟𝑟𝑙𝑙(𝜏𝜏) ,𝑛𝑛 ∈ 𝐵𝐵𝑙𝑙   (4) 
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where 𝐿𝐿 is the set of lines, 𝑅𝑅𝑙𝑙 is the set of bus runs in line 𝑙𝑙 ∈ 𝐿𝐿, 𝑇𝑇 is the set of time periods, 𝑁𝑁𝑙𝑙 is the set of bus stops 
(which is labeled from the starting bus stop), 𝐵𝐵𝑙𝑙 is the set of bus stops where the number of boarding passengers are 
counted, 𝐶𝐶𝑟𝑟𝑙𝑙 is the capacity of bus 𝑟𝑟 ∈ 𝑅𝑅𝑙𝑙, 𝑙𝑙 ∈ 𝐿𝐿, 𝑋𝑋𝑛𝑛

𝑟𝑟𝑙𝑙(𝜏𝜏) is the observed number of boarding passengers from bus 𝑟𝑟 ∈
𝑅𝑅𝑙𝑙, 𝑙𝑙 ∈ 𝐿𝐿 at bus stop 𝑛𝑛 ∈ 𝐵𝐵𝑙𝑙 at time period τ ∈ 𝑇𝑇, 𝑌𝑌𝑛𝑛

𝑟𝑟𝑙𝑙(𝜏𝜏) is the number of alighting passengers from bus 𝑟𝑟 ∈ 𝑅𝑅𝑙𝑙, 𝑙𝑙 ∈ 𝐿𝐿 
at bus stop 𝑛𝑛 at time period τ ∈ 𝑇𝑇, 𝜉𝜉 is the expansion rate (which is to be estimated from the usage rate of the smart 
card historical data), 𝑞𝑞𝑚𝑚𝑚𝑚

𝑟𝑟𝑙𝑙(𝜏𝜏) is the prior passengers’ demand between on bus 𝑟𝑟 ∈ 𝑅𝑅𝑙𝑙, 𝑙𝑙 ∈ 𝐿𝐿 at time periodτ ∈ 𝑇𝑇. 𝑥𝑥𝑚𝑚𝑚𝑚
𝑟𝑟𝑙𝑙(𝜏𝜏) 

is unknown variable in the model which represents for the passenger demand between on bus 𝑟𝑟 ∈ 𝑅𝑅𝑙𝑙, 𝑙𝑙 ∈ 𝐿𝐿 at time 
periodτ ∈ 𝑇𝑇. 

Equation (2) represents for the capacity constraints condition that the number of passengers between bus stops 𝑛𝑛 
and (n + 1) cannot exceed the capacity of the bus. Equation (3) represents that the number of alighting passengers at 
bus 𝑟𝑟 ∈ 𝑅𝑅𝑙𝑙, 𝑙𝑙 ∈ 𝐿𝐿 should coincide with the estimated number of alighting passengers from the smart card historical 
data. Equation (4) represents that the number of boarding passengers at bus 𝑟𝑟 ∈ 𝑅𝑅𝑙𝑙, 𝑙𝑙 ∈ 𝐿𝐿 should coincide with the 
observed number of boarding passengers. 
 

2.4. Journey OD estimation model 

In the second stage, the relationship between the leg OD and the journey OD is formulated under the condition that 
the line choice probabilities of the journey OD pairs are given. Suppose that the journey OD accords to following 
gravity model; 

𝑇𝑇�𝑂𝑂𝑂𝑂𝜏𝜏 = (𝑁𝑁𝐵𝐵𝑂𝑂𝜏𝜏 )𝛼𝛼(𝑁𝑁𝐴𝐴𝐷𝐷𝜏𝜏 )𝛽𝛽(𝑑𝑑𝑂𝑂𝑂𝑂)𝛾𝛾(𝐿𝐿𝐿𝐿𝐿𝐿𝑂𝑂𝑂𝑂𝜏𝜏 )𝛿𝛿, ,∀𝑂𝑂𝑂𝑂 ∈ 𝛺𝛺  (5) 

where, 𝑇𝑇𝑂𝑂𝑂𝑂𝜏𝜏  is the journey OD flow between 𝑂𝑂 and 𝐷𝐷 at time period 𝜏𝜏, 𝑁𝑁𝑁𝑁𝑜𝑜𝜏𝜏 and 𝑁𝑁𝑁𝑁𝐷𝐷𝜏𝜏  respectively represents for the 
number of boarding and alighting passengers at bus stop 𝑂𝑂 and bus stop 𝐷𝐷 at time period 𝜏𝜏, 𝑑𝑑𝑜𝑜𝑜𝑜  is the distance 
between 𝑂𝑂 and 𝐷𝐷, 𝐿𝐿𝐿𝐿𝐿𝐿𝑂𝑂𝑂𝑂𝜏𝜏  is the generalized cost by bus between 𝑂𝑂 and 𝐷𝐷 at time period 𝜏𝜏,and 𝛺𝛺 is the set of journey 
OD pairs. α,β, γ, δ are parameters to be estimated by the model. 

Furthermore, following relationship should be satisfied between the journey OD and leg OD; 

𝑦𝑦�𝑚𝑚𝑚𝑚
𝑟𝑟𝑙𝑙(𝜏𝜏) = ∑ 𝜇̂𝜇𝑟𝑟𝑟𝑟,𝑙𝑙

𝑂𝑂𝑂𝑂 (𝜏𝜏)𝑇𝑇�𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂∈𝛺𝛺 ,∀ 𝑙𝑙 ∈ 𝐿𝐿,𝑚𝑚𝑚𝑚 ∈ 𝜔𝜔𝑙𝑙 , 𝑟𝑟 ∈ 𝑅𝑅𝑙𝑙 , 𝜏𝜏 ∈ 𝑇𝑇  (6) 

where 𝜔𝜔𝑙𝑙 is the set of leg OD pairs, 𝜇𝜇𝑟𝑟𝑟𝑟,𝑙𝑙
𝑂𝑂𝑂𝑂 (𝜏𝜏) is the probability that the journey OD pair 𝑂𝑂𝑂𝑂 choose line 𝑙𝑙 between 𝑟𝑟𝑟𝑟 

at time period 𝜏𝜏, and 𝐴̂𝐴 is the estimated value of 𝐴𝐴. On the other hand, the leg OD by each bus run 𝑥𝑥�𝑚𝑚𝑚𝑚
𝑟𝑟𝑙𝑙(𝜏𝜏) (which is 

estimated at the first stage) can be aggregated with respect to bus runs as following; 

𝑦𝑦�𝑚𝑚𝑚𝑚
𝑙𝑙(𝜏𝜏) = ∑ 𝑥𝑥�𝑚𝑚𝑚𝑚

𝑟𝑟𝑙𝑙(𝜏𝜏)
𝑟𝑟∈𝑅𝑅𝑙𝑙(𝜏𝜏) ,∀𝑚𝑚𝑚𝑚 ∈ 𝜔𝜔𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿   (7) 

Now, let us suppose that the residual errors between the leg OD obtained from Eqs (6) and (7) follows the normal 
distribution with 0 mean. Then, the likelihood function, which correspond with the joint probability density of all of 
leg OD pairs, is given as following (Hazemoto et, al. [8]); 

𝐿𝐿𝜏𝜏 = ∏ ∏ � 1
�2𝜋𝜋𝜎𝜎2

𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2

�𝑙𝑙𝑙𝑙�𝑦𝑦�𝑚𝑚𝑚𝑚
𝑙𝑙(𝜏𝜏)�−𝑙𝑙𝑙𝑙�𝑦𝑦�𝑚𝑚𝑚𝑚

𝑙𝑙(𝜏𝜏)��
2

𝜎𝜎2
��

 𝛿𝛿𝑚𝑚𝑚𝑚
𝑙𝑙

→ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚∈𝜔𝜔𝑙𝑙𝑙𝑙∈𝐿𝐿   (8) 

where 𝛿𝛿𝑚𝑚𝑚𝑚𝑙𝑙  takes 1 if leg OD pair 𝑚𝑚𝑚𝑚 uses line 𝑙𝑙 ∈ 𝐿𝐿. 
The parameters in Eq (5) and the dispersion parameter in Eq (8) can be estimated so as to maximize the likelihood 

function shown in Eq (8) for each time interval. 
Not that the proposed model is assumed to apply for a city where a complex bus network is formed and high 

frequency bus service is provided. Therefore, the generalized cost of journey OD pairs are calculated using the transit 
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assignment model [9]. Furthermore, the probability that the journey OD pair 𝑂𝑂𝑂𝑂 choose line 𝑙𝑙 between 𝑟𝑟𝑟𝑟 at time 
period 𝜏𝜏, 𝜇𝜇𝑟𝑟𝑟𝑟,𝑙𝑙

𝑂𝑂𝑂𝑂 (𝜏𝜏), can also be estimated from the line choice probability obtained from the transit assignment model. 
Hereafter, the estimation accuracy of the proposed methodology is investigated. 
 

3. Estimation accuracy of the first stage 

This chapter evaluates the estimation accuracy of the leg-OD, which is estimated in the first stage, using passengers’ 
demand data based on on-board survey. 

3.1. Investigation condition 

For the investigation of the estimation accuracy of the first stage, we utilize passengers’ OD flows in a certain line 
which is collected by on-board survey conducted in a certain city in Japan. Flat fare system, where passengers pay 
fare when they alight, is adopted in that city. The number of bus stops and the number of leg OD pairs are respectively 
56 and 1,540 in a line utilized for investigation. 

3.2. The effect of the observation errors 

Firstly, in order to investigate the effect of observation error onto the estimation accuracy, we set 9 scenarios as 
shown in Table 1 by combining the error of prior passengers’ demand, the error of the number of observed boarding 
passengers, and the error of the number of observed alighting passengers. For each scenario, 10 sets of the input data 
is created by generating 10 sets of random number. Figure 3 shows the comparison of the estimation accuracy of each 
scenario. Although the accuracy of the prior passengers’ demand information affects to the estimation accuracy, the 
accuracy of the number of boarding and alighting passengers does not affect to the estimation accuracy so much. 

Table 1. Observation errors for each scenario 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Relationship between the observation errors and the estimation accuracy 
 

Prior Info Boarding Alighting
1 0.1 0.00 0.1
2 0.1 0.05 0.2
3 0.1 0.10 0.3
4 0.2 0.00 0.2
5 0.2 0.05 0.3
6 0.2 0.10 0.1
7 0.3 0.00 0.3
8 0.3 0.05 0.1
9 0.3 0.10 0.2

Scenario
Observaion Error
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3.3. The ratio of observing number of boarding passengers 

Secondly, the relationship between the ratios of bus stops of observing the number of boarding passengers and the 
estimation accuracy is compared. Note that 10 sets of input data for each scenario is created by generating 10 sets of 
random numbers with the average error of both of the prior passengers’ demand information and the number of 
alighting passengers as 10%. The bus stops which is assumed to observe the number of boarding passengers is selected 
in the descending order of the true number of boarding passengers. Figure 4 shows the estimation errors. We can 
confirm that the estimation accuracy with the lower observation ratios is high. However, the estimation result does 
not improve as the observation ratio increase. This is because the number of equality conditions becomes too larger 
to satisfy all of them. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Relationship between the observation bus stop rate and the estimation accuracy 

4. Estimation accuracy of the whole of the model 

This chapter investigates the estimation accuracy of whole of the methodology is investigated using artificial data. 

4.1. Investigation condition 

Because the true journey OD flows in a city mentioned in the previous chapter is not unknown, we apply the 
proposed methodology to the Sioux Falls network, which is often utilized as a benchmark of transportation network 
analysis. The Sioux Falls network with assumed bus lines is shown in Figure 5. We assumed the buses are operated 
based on frequency-based service; frequency of lines 1, 2, 5 and 6 is 1/5(1/minute) and that of line 3, 4, 7, 8 is 1/10 
(1/minute). We utilized the OD flows published on-line [10] as the true journey OD flows. Because we confirmed in 
the previous chapter that the observation ratio of the number of boarding passengers does not affect to the estimation 
accuracy of the leg-OD flows, we assume hereafter that the number of boarding passengers are not observed at any 
bus stops. We generate the true leg OD flows (prior information) and the true number of passengers by the traffic 
assignment model [9] with infinity capacity. Against these true data, we assume that both of the average observation 
error of the prior information and that of the number of alighting passengers is 10%. 

4.2. Estimation accuracy of the model 

First of all, a set of input data is created by generating a set of random numbers with the average error of the prior 
information and the number of alighting number of passengers as 10%. Then, the leg-OD patters are estimated for 
each line. Table 2 shows the estimation accuracy of each line. Because the coefficient of determination of all of the 
lines is more than 0.97, we can estimate the leg-OD flows accurately in this case. 
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Fig. 5. Sioux Falls network with assume bus lines 
 

     Table 2. Estimation accuracy of the leg OD flows 
 
 

 
CoD: Coefficient of Determination 

 
Secondly, the journey OD flows are estimated using the leg-OD flows estimated previously. The distribution of 

the true OD flows may affect to the accuracy of the estimation result. Therefore, the traditional gravity model for 
automobile is also estimated for the comparison. Table 3 shows the estimated results of both models. The generalized 
cost is not included as an explanatory variable in the gravity model for automobile because it is expected to be strong 
correlation with the direct distance. (Note that the generalized cost of the public transportation network would not be 
strong correlation with the direct distance due to the existing of the service frequency.) All of the parameters in the 
model are statistically significant at the 0.01 level. The signs of the parameters of the number of boarding passengers 
and that of alighting passengers take positive. This implies that the journey OD flows between bus stops with larger 
number of boarding or alighting passengers tend to be larger. Also, the signs of parameters of the direct distance and 
the generalized cost is negative. This implies that the journey OD flows between longer distance and the larger 
generalized cost tend to be smaller. Therefore, the signs of all of the parameters are reasonable. Figure 6 compares the 
true journey OD flows and the estimated journey OD flows. Most of the plots are scattered along 45-degree line, and 
hence the coefficient of determination is very large. Based on above consideration, we can estimate the journey OD 
flows as well as the leg OD flows very accurately. 

 
 
 
 

Line 1 (1  20)
Line 2 (2  13)
Line 3 (7  13)
Line 4 (clockwise)

Line 5 (20  1)

Line 7 (13  7)
Line 8 (counter-clockwise)

Line 6 (13  2)

Line 1 2 3 4 5 6 7 8
RMSE 1721 1094 231 1791 1911 1290 888 1210
CoD 0.987 0.981 1.000 0.983 0.985 0.978 0.995 0.993
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     Table 3. Estimation result of the models 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6. Comparion between true and estimated journey OD flows 

4.3. Effect of the average error onto the estimation accuracy 

So far, we only investigate the estimation accuracy using one set of input data with the average error as 10%. This 
section investigates the effect of the average errors onto the estimation accuracy by assuming 4 scenarios with different 
average error of the priori information and that of the number of alighting passengers respectively as following; i) 
(10%, 10%), ii) (10%, 20%), iii) (20%, 10%) and iv) (20%, 20%). In order to take consideration of the effect of 
random numbers, 10 sets of input data for the estimation of the leg-OD flows of each line are created for each scenario; 
i.e. the leg-OD flows of each line are estimated 10 times for each scenario. Then, the journey OD flows are estimated 
using the combination of the estimated results of leg-OD flows with the highest accuracy cases (hereafter called “best 
case”). We further estimate the journey OD flows using the combination of the estimated results of leg-OD flows with 
the lowest accuracy cases (hereafter called “worst case”). Table 4 shows the coefficient of determination of both of 
the best case and worst case for each scenario. Because the coefficient of determinations in both of the best case and 
the worst case take close value for each scenario, the random number does not affect to the estimation accuracy in this 
case. Also, the coefficient of determination keeps high value even if the average observation errors become higher. 
This may be because the size of the network used in this chapter is smaller compared with the real network size. 

 
Table 4. Estimation accuracy of the proposed model 

 
 
 
 
 

Parameter t-value P-value Parameter t-value P-value
# of boarding passegers 0.8500 38.396 0.000 0.8171 37.813 0.000
# of alighting passegers 0.8399 38.674 0.000 0.8201 37.978 0.000

direct distance -0.5821 -29.426 0.000 -0.7665 -39.065 0.000
generalized cost -0.4230 -4.907 0.000 - - -

ρ 2 0.1273 12.591 0.000 - - -
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5. Conclusion 

This paper proposed the methodology for estimating passengers’ OD flows in a flat fare bus service using prior 
OD flows information, the number of boarding and alighting passengers’ and the bus network information. The 
proposed methodology is based on two-stage approach, where the leg OD flows are estimated in the first stage and 
then the journey OD flows are estimated in the second stage. As the results of confirming the estimation accuracy of 
the proposed model, followings are confirmed; 
• The estimation accuracy of the first stage depends on the observation error of the prior information of the leg OD 

flows 

• The estimation accuracy of whole of the model is as equally good as that of the traditional estimation model of 
automobile OD flows. 

However, due to the data limitation, we evaluated the accuracy of whole of the model using assumed journey OD 
flows data in a hypothetical bus network, whose size is smaller than existing bus networks. Therefore, it is required 
to evaluate the estimation accuracy of the proposed model in a real size network. 
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