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Abstract 

A major problem faced by state of the art incident detection algorithms is their high false alert rates, which are 
caused in part by failing to differentiate incidents from contexts. Contexts are referred to as external factors that 
could be expected to influence traffic conditions, such as sporting events, public holidays and weather conditions. 
This paper presents RoadCast Incident Detection (RCID), an algorithm that aims to make this differentiation by 
gaining a better understanding of conditions that could be expected during contexts’ disruption. RCID is based on a 
previously developed random forest traffic forecasting algorithm, RoadCast, which uses contextual data to create 
forecasts of traffic conditions that could be expected if no incident occurred. RCID compares these forecasts with 
real-time conditions, and raises alerts when there is a sufficient difference. RCID was evaluated on loop detector 
flow data and city council incident logs from Southampton, U.K. Comparisons were made with and without context, 
and to a state of the art algorithm, RAID. RCID was found to outperform RAID in terms of detection rate and false 
alert rate. RCID was also found to have a 25% lower false alert rate when incorporating contextual data. This 
improvement suggests that if RCID were to be implemented in a Traffic Management Centre, operators would be 
distracted by far fewer false alerts from contexts than is currently the case with state of the art algorithms, and so 
could detect incidents more effectively. 
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1. Introduction 

Road congestion places a burden on citizens worldwide. In 2016 alone, road congestion cost U.S. drivers more 

than $295 billion, U.K. drivers £30 billion, and German drivers €69 billion (Cookson and Pishue (2016)). A major 
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cause of this congestion is from incidents (Chin et al. (2016)). Incident detection algorithms (IDAs) help traffic 

management centres (TMCs) detect incidents more quickly, allowing their disruption to be minimised by responding 

more quickly and effectively. 

 

The causes of disruption in traffic conditions can be categorised into two main types, incidents and contexts. 

Incidents are defined as unexpected events that disrupt traffic conditions (Cambridge Systematics (2001)). Examples 

include vehicle collisions, illegal parking and unloading, vehicle breakdowns and emergency roadworks. Contexts 

are referred to as external factors that are planned in advance or predictable, and could be expected to influence 

traffic conditions at a particular time in the future. Examples include planned roadworks, sporting events, rush hours, 

schools closing and weather conditions. The key difference is that contexts could be expected to occur, but incidents 

are inherently unexpected. 

 

High false alert rates have been found to be the ‘primary and most commonly cited’ deterrent of the deployment 

of IDAs in TMCs (Williams and Guin (2007)). This limitation is often reported to be caused by failing to 

differentiate between disruption from contexts and incidents (Balke (1993), Parkany and Xie (2005)). High false 

alert rates are a problem in practice because they distract TMC operators, which has often led to IDAs being ignored 

and discarded (Williams and Guin (2007), Parkany and Xie (2005)).   

 

Vast arrays of IDAs have been presented in the literature, but few have given focus to the problem of 

differentiating incidents from contexts (Parkany and Xie (2005)). Of those IDAs that have, many different 

approaches have been taken. Some assumed that incidents and contexts are characteristically different in terms of 

traffic conditions, and so attempted to ‘learn’ the conditions expected in both situations from traffic data (Persaud et 

al. (1990), Payne and Tignor (1978)). But others have argued that they are too similar to tell apart from traffic 

conditions alone (Cook and Cleveland (1974)). Some IDAs left the responsibility of differentiation with the TMC 

operator, such as RAID (Cherrett et al. (2002)). However, this approach is unlikely to be suitable for 

implementations in large networks with congestion occurring frequently, because of the time required of the operator 

to filter out the false alerts (Williams and Guin (2007)). 

 

Some IDAs have taken data from external sources to improve the understanding of the prior likelihood of 

incidents occurring (Lam et al. (2016)). Such sources include the weather, road geometry and speed limits. In 

situations where an incident is deemed more likely to have occurred, IDAs have been made more sensitive to raising 

alerts, which has been found to improve performance. Although this approach does not explicitly tackle the problem 

of differentiating incidents from contexts, it does show that IDA performance can be improved by incorporating 

external data sources. However, in real-world implementations, the number of incidents that occur in each scenario 

(e.g. weather condition, speed limit etc.) is often very infrequent. This means that this approach would either require 

vast amounts of data for training, or a very limited understanding of the prior likelihood of an incident would be 

gained. 

 

Presented is a novel IDA, RoadCast Incident Detection (RCID), which is the first to be based on a traffic forecast 

that incorporates contextual data. The approach is to raise alerts when real-time traffic conditions differ from a 

context-based traffic forecast. This approach attempts to use contextual data to better understand the variation in 

traffic conditions that can be expected from contexts, allowing contexts to be better differentiated from incidents, 

and hence reducing false alerts and improving detection rates. RCID also has the advantage of only attempting 

understanding of conditions that could be expected to occur in the case that no incident occurs, and so should require 

comparatively less data for training. IDAs that attempt to understand conditions expected in both incident and non-

incident scenarios often require far more training data because of the infrequency of incidents (Lee et al. (1998), 

Khan and Ritchie (1998)). The aim of this research is to understand the extent to which the proposed approach is 

able to differentiate incidents from contexts, and hence improve on the performance of state of the art IDAs. 
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2. Methodology 

The methodology of RCID can be described as two key steps. Firstly, to create a forecast of a target traffic 

variable (e.g. flow) for what would be expected if no incident were to occur (herein ‘expected’). Then, to compare 

this forecast to real-time values of the target variable, and to raise an alert when a sufficient difference is observed. 

The sections below describe the traffic forecasting algorithm, and the incident detection logic. 

2.1. Traffic forecasting algorithm 

Integral to RCID is an accurate traffic forecasting algorithm that forecasts expected traffic conditions. For RCID 

to be able to differentiate incidents from contexts, the algorithm needs to be able to accurately forecast the disruption 

from contexts, but be unable to accurately forecast the disruption from incidents (which could be inferable if, for 

example, recent traffic condition observations were used as input). 

 

A previously developed random forest algorithm, RoadCast, was considered for use as the required traffic 

forecasting algorithm (Evans et al. (2018)). RoadCast was developed with the aim to forecast traffic conditions at a 

horizon of up to one year. As such, it used input features that would account for the medium and long term variation 

in traffic conditions (such as the day of the week), rather than being based on recent traffic observations. It also 

incorporated contextual data with the aim of improving its accuracy.  

 

RoadCast used one random forest algorithm for each detector and each target variable being forecasted. A 

random forest approach was chosen because it was most accurate in preliminary tests relative to other machine 

learning and statistical approaches. It was also found to have quick training and testing times relative to other 

complex machine learning algorithms, which would be important for the practicality of implementation in ITS 

applications. Algorithm 2 describes the random forest algorithm used in RoadCast, which is an ensemble method 

that uses a collection of decision trees (algorithm 1). (Breiman (2001)) provides detail of the theory of the random 

forest algorithm. The algorithm was developed using the Scikit-learn library in Python (Pedregosa et al. (2011)). 

 
Algorithm 1. Decision tree algorithm   
Procedure: Training (set of training messages    )  

Create a node    and assign all training messages     to it 
While every leaf has more than   messages assigned to it: 

Find the leaf node    with the most messages 
From a random subset of features of size  , find the attribute   to split   ’s messages into two subsets such that 
the sum of the variances of each subset’s target variable values is minimised 
Create child nodes    and      from    
Assign   ’s messages to    and      according to their value of   

End procedure   
 

Algorithm 2. Random forest algorithm   
Procedure: Training (set of training messages    )  

For a pre defined number of trees   do: 
Create a bootstrap random sample   

   from     of size |   | 
Create a decision tree    with   

   using algorithm 1 
End procedure 

 Procedure: Testing (set of testing messages    ) 
  For each message   in     do: 
   Predict a value    for message   using each of the decision trees         
   Return the mean of the predicted values    
 End procedure   
 

RoadCast was tested by forecasting messages of five minute flows and average speeds from loop detectors in 

Southampton, U.K., and was compared to a historical average, which is a commonly used predictor in ITS 

applications (Chrobok (2000), Syrjarinne (2016)). Contexts that could be expected to disrupt Southampton’s traffic 

conditions were incorporated as input features in the algorithm. Overall, RoadCast was found to be more accurate 

than the historical average by 4.4% and 4.0% mean squared error for flow and average speed respectively. It was 
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also found to be able to use contexts to improve its forecasts, which it did by ‘learning’ from the disruption caused 

by previous occurrences of contexts in the training data. Comparing the flow forecasts of RoadCast and the historical 

average, RoadCast was 32% more accurate over the Christmas holiday, 27% more accurate over Easter, and 7.3% 

more accurate on the day of a football match (note that disruption could only be seen for a couple of hours of the 

day). The benefit of using machine learning to incorporate contexts was that it could automatically ‘learn’ how each 

context, or combination of contexts, could be expected to affect each detector at each time. 

 

It was clear that the forecasts produced by RoadCast would be unable to forecast the disruption from incidents, 

because the horizon used was up to one year and incidents cannot be predicted before they occur (incidents’ 

disruption rarely last for multiple hours, so the disruption could not be forecast if a horizon of multiple hours were 

used). RoadCast also demonstrated the ability to accurately forecast traffic conditions, including the disruption from 

contexts. Because of this, the methodology of RoadCast was chosen to be developed for use as the traffic forecasting 

algorithm within the incident detection algorithm RCID. 

 

A key consideration of RCID was the amount of manual calibration required for implementation. The time, 

expertise and manual labour required to calibrate IDAs is another common reason for lack of use in TMCs (Williams 

and Guin (2007), Parkany and Xie (2005)). Commonly required manual calibration requirements include the setting 

of algorithm parameters (often at each detector individually), creating traffic simulations of the road network for 

training, and the collection and pre-processing of various datasets for training (traffic, context, incidents etc.). 

Because of this, standard methods to encode data into input features were developed, and a previously developed 

automatic optimisation algorithm was re-used to calibrate RoadCast (Evans et al. (2018)).  

 

The standard encoding methods can be seen in table 1. These methods were developed for the intention that they 

could be re-used to encode different contextual features when implementing RCID in new locations (e.g. St 

Andrew’s Day in Scotland), ensuring accuracy while saving time and expertise required for implementation. Note 

that a multiple day event context (with reference) is an event which ends on a different day than it starts, and has a 

particular time/day of interest (i.e. the reference) during the event which can occur at different times on different 

occurrences, such as Christmas Day during the Christmas holiday (which can occur on different days of the week, 

and different durations from the start of the holiday). The use of this type of context would allow RoadCast to 

differentiate between different important days during the event. The modified day of week feature would stop an 

issue that decision trees would often split the training data based on the day of the week high up the tree, and hence 

were unable to forecast using contexts that happened to occur on different days of the week in the training data. 

 

Table 1. Encoding methods and features 

 

Feature type Standard encoding method Feature used in this study 

Time of day Hour of day + (minutes/60)   

 

Time of day 

Day of week 
 

Integer ranging from 0 to 6 based on the day of the week 
 

If during a multiple day event (with reference): 

 7 
Else:       

 Integer ranging from 0 to 6 based on the day of the week 

 

Day of week   

Modified day 

of week 

Modified day of week (used when a 

multiple day event (with reference) 
is included) 

Single day 

events 

If on the day of the event: 

 The number of days + hours/24 + minutes/1440 + until the start of the event  

Else:       

 100 

 

Football matches, half marathon 

event. 

Multiple day 

events (without 

reference) 

If during the event: 

 The number of days + hours/24 + minutes/1440 + until the end of the event 

Else: 
 0 

 

Easter, other public holidays.  
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Multiple day 
events (with 

reference) 

If during the event: 
 The number of days + hours/24 + minutes/1440 + until the reference time 

Else: 

 100 

Christmas (defined as starting on the 
first public holiday day before 

Christmas Day, and ending on the 

first working day after New Year’s 
Day)  

 

The optimisation algorithm can be seen in algorithm 3 below. Its aim is to find the optimal contextual features 

and random forest parameters at each detector, by running a grid search method with cross-validated tests on the 

training data with different combinations of contexts and random forest parameters. It was found to result in 

accuracy improvements because certain detectors were more suited to certain parameter values (which appeared to 

be correlated to the amount of noise at each detector), and because contexts that did not disrupt a detector’s traffic 

conditions would at times result in over-fitting, due to decision trees splitting on the contextual feature 

unnecessarily. The optimisation algorithm did not require any manual calibration, but improved RoadCast’s 

accuracy by tailoring it to each detector. Further explanation of the optimisation algorithm can be found in reference 

(Evans et al. (2018)). 

 
Algorithm 3. RoadCast optimisation algorithm   

Procedure: Context inclusion (set of training messages    , set of contextual features  )  
Shuffle the order of the messages  
Set the benchmark score as the score on     with ‘time of day’ and ‘day of week’ features only  
For each feature in  : 

 
If the score does not improve when the feature is added: 

Remove the feature from    
End if  

End for 
 

Set the benchmark score as the score with the features currently in the algorithm  

For each feature in  : 
   Remove the feature from the algorithm and find the algorithm’s score 

 
If the score improves on the benchmark on at least two folds: 

Remove the feature from    
End if  

End for 
     If a multiple day event (with reference) feature is included: 

 
     Replace the ‘day of week’ feature with ‘modified day of week’ end if  

End procedure  
Procedure: Grid search parameter optimisation (set of training messages    , set of features included in the algorithm  )  

for   in [2, 5, 10, 25, 100, 200]:  
for     to    : 

Find the score with parameters   and    
End for  

End for  
Return the parameters that achieved the best score,  * and  *  
Retrain the algorithm on all available training data with parameters  *,  * and        

End procedure  
 

The implementation procedure of RoadCast is to first identify contexts local to the network being implemented 

(e.g. Southampton F.C. football matches in Southampton). Then, historical traffic data and contextual data are 

collected over a particular period for training. At least one year of historical data is recommended, so that all 

annually occurring contexts can be ‘learnt’ from in training. For the future time period to be forecasted, data for 

RoadCast’s inputs must also be collected, including contextual data (schedules of contexts) and information on the 

time of day and day of week. Next, the contextual data is encoded using the standard encoding methods in table 1. 

The optimisation algorithm is then run on the historical data. At this point, forecasts for the future time period are 

ready to be made. 

 

The RoadCast algorithm presented in reference (Evans et al. (2018)) would produce a prediction of a single value 

for each message, representing the algorithm’s ‘best guess’. This prediction would not suit the incident detection 
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application because it would not account for prediction uncertainty. Clearly, the uncertainty of a forecasting 

algorithm’s prediction can vary based on the message being forecast. For example, football matches in Southampton 

appeared to have more variation in disruption between occurrences than public holidays, resulting in more 

uncertainty in future forecasts. As such, RCID would improve its performance if it were less sensitive to raising 

alerts when the forecast was less certain, and vice versa. Hence, it would be more suitable for RCID to raise alerts 

when real-time values of the traffic variable fell outside a range of expected values, i.e. a prediction interval, rather 

than a pre-set difference from a single value prediction. A benefit of the random forest algorithm is that there exist 

methods to produce prediction intervals (Meinshausen (2006)). As such, RoadCast would be modified to produce 

prediction intervals, which would be used as input to RCID. 

 

A prediction interval is an estimate of an interval for which future observations (of the target variable) will fall 

into with a given probability. The method in reference (Meinshausen (2006)) was implemented to acquire these 

prediction intervals. A random forest’s forecast is the mean of each tree’s forecast, and each tree’s forecast is the 

mean of the target variable values in the tree’s predicted leaf. Instead of using this, prediction intervals were created 

by taking the appropriate percentiles of all the target variable values of the messages in every tree’s predicted leaf. 

For example, a 95% interval is the range from the 2.5
th

 and 97.5
th

 percentiles of the values. This means that real-time 

traffic variable values should fall within the prediction interval approximately 95% of the time.  

2.2. Incident detection logic 

This section describes RCID’s use of the traffic forecasting algorithm’s prediction intervals, in order to raise 

incident alerts in real-time. In a preliminary test on the training data, RCID would simply raise an alert when real-

time values of the target variable fell outside of the prediction interval. However, variation from noise in the traffic 

data would result in many unnecessary false alerts. As such, a persistence test of three messages was introduced. 

This would ensure that alerts would only be raised when the underlying trend of the target variable had truly 

deviated from what the forecasting algorithm expected. This persistence test would improve RCID’s false alert and 

detection rate, but would worsen its average time to detect. 

3. Data 

3.1. Traffic data 

Southampton City Council provided the traffic data for this study. Figure 1 shows the location of the 109 single 

inductive loop detectors used. 726 days worth of data was collected from 16
th

 March 2015 to 16
th

 March 2017 (5 

days of data were missing). The first year of data was used for training, and the period between 14
th

 December 2016 

and 16
th

 March 2017 was used for testing. Flow values from detectors’ messages, i.e. the number of vehicles in each 

five minute period (over the lane of the detector) were used as the target variable in this study. RoadCast would be 

implemented on each detector separately. At times, some detectors would return messages with zero flow due to 

detector system fault. As such, all messages of zero flow (plus one message before and afterwards) were removed. 

Although this method would remove some representative messages (e.g. during the night), it would ensure that none 

of the unrepresentative messages would be considered in the training or evaluation of RCID. 
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Fig. 1. Locations of the detectors used in this study. This image was created with Google Earth. 

3.2. Contextual data 

In a previous study, the disruptive contexts in Southampton were identified. The methods employed to identify 

these contexts can be found in reference (Evans et al. (2018)). In this study, these disruptive contexts were again 

used as inputs to RoadCast. Table 1 shows each of the features used in this study, alongside the method used to 

encode each feature. 

 

A caveat of this study was that the contextual data used to create RoadCast’s forecasts was collected after the 

contexts took place. If RoadCast were to make forecasts into the future, it would need to use schedules of these 

contexts, which may change before the event (such as rescheduled football matches). If contexts were rescheduled, 

RoadCast could account for this if it re-made its forecasts with updated contextual features, albeit at a shorter 

forecasting horizon. 

3.3. Incident data 

Incident data was collected from a Twitter feed provided by Southampton City Council and Balfour Beatty 

(Southampton City Council (2018)). The feed takes incident logs created by operators at the Council’s TMC, and 

disseminates incident information to the public via ‘tweets’. The tweets covered the testing period of 14
th
 December 

2016 to 16
th

 March 2017. By comparing this dataset with the available loop detector data and cross-referencing with 

other online sources, including the STATS19 crash dataset (UK Government (2018)), this Twitter feed was judged 

to have sufficient coverage and reporting quality to evaluate RCID. 

 

However, not all of the tweets on the feed were suitable for the evaluation of RCID. Firstly, many described 

disruption from contexts rather than incidents. As such, only tweets with a description of an incident were 

considered. RCID could not be reasonably expected to detect incidents that did not cause any disruption to a 
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detector’s traffic conditions. Hence, to ascertain which detectors were affected by which incidents, each tweet of an 

incident was investigated by manually observing nearby loop detectors’ traffic data and historical average values. 

Only tweets of incidents which visibly disrupted at least one detector’s traffic conditions (of any of its variables) 

were considered. After completing this process, 28 cases of an incident disrupting a detector’s traffic conditions 

were identified. 

4. Results 

Using the described methodology, RCID was implemented on the study’s traffic flow, context and incident 

datasets. Figure 2 shows how often the optimisation algorithm included each context (out of a possible 109 

detectors). It can be seen that holiday features were used most often, and that the football feature was used more 

often than the half marathon feature due to the greater travel demand created. It could be seen that holiday features 

affected detectors throughout the city, but event contexts were only included at detectors on routes into and out of 

the event location.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Bar chart showing the number of times each context was chosen for use by the optimisation algorithm. 

 

The following sections evaluate the performance of RCID, and make comparisons to an existing IDA, RAID.  

4.1. IDA comparison 

RCID would be compared to a state of the art IDA, RAID (Cherrett et al. (2002)). RAID used average loop-

occupancy time per vehicle (ALOTPV) and average time-gap between vehicles (ATGBV) to detect incidents. 

ALOTPV is the average time period that each vehicle spends occupying the road space above a loop detector, and 

ATGBV is the average time period in-between each vehicle occupying a detector. Each variable was calculated 

directly from the ‘occupied’ or ‘non-occupied’ states of the loop detectors which were sampled every 0.25 seconds. 

The IDA would judge a message as being representative of an incident if it was above the 85
th

 percentile of the 

training data ALOTPV values, and below the 15
th

 percentile of ATGBV values in the given peak or off-peak period. 

Peak periods were defined as being 07:00-09:30 and 16:00-19:00. If the values broke these thresholds for three 

consecutive messages during the off-peak period, or four consecutive messages during the peak period, an incident 

alert would be raised. This alert would then stop when either of the thresholds was not met. Although RAID was 

originally developed for use on 30 second values of ALOTPV and ATGBV, it is thought that the logic would 

transfer across to the five minute values used in this study. 

 

RCID would also be tested multiple times with different prediction intervals in order to understand the trade-off 

between different performance metrics. With a greater prediction interval, RCID would be less sensitive to raising 

alerts, meaning that a relatively better false alert rate but worse detection rate would be expected. The prediction 

intervals used were 90%, 93%, 95%, 97% and 99%. To understand whether the incorporation of contexts can 
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improve IDAs’ performance, RCID would also be tested with and without contextual data. That is, RCID (with 

context) would use a version of RoadCast with access to all the available input features (described in table 1), and 

RCID (without context) would use a version of RoadCast that only used the input features ‘time of day’ and ‘day of 

week’. 

4.2. Performance metrics 

The most commonly used performance measures of IDAs are detection rate (DR), false alert rate (FAR) and 

average time to detect. Unfortunately, the exact time of incidents was not stated in the incident tweets. Because there 

would be a variable delay between incidents occurring, operators detecting them, and tweets being posted, the time-

stamp of tweets would also be unsuitable for evaluating RCID’s average time to detect. As such, only the detection 

and false alert rate were used as performance metrics. 

 

RCID would be judged to have correctly detected an incident if an alert was raised while an incident was 

disrupting the detector’s traffic conditions (this period was ascertained by comparing the detector’s traffic data with 

a historical average). DR was defined as the number of correctly detected incidents divided by the total number of 

incidents (from the Twitter dataset). FAR was defined as the number of messages where an alert was raised 

incorrectly, divided by the total number of messages where an incident was not occurring. Another metric, FARpdpd, 

was also used to give a more clear understanding of the number of false alerts that TMC operators could expect 

when implemented. FARpdpd was defined as the number of false alerts raised per detector per day. Note that an 

incident alert could span multiple consecutive messages. 

4.3. Performance 

RCID was found to outperform RAID in terms of detection rate and false alert rate (with a 95% and 97% 

prediction interval). RCID was also found to be able to reduce its false alert rate by at least 25% by incorporating 

contextual data (at least 25% at every prediction interval used). Such improvements could be seen to be because of 

an increased ability to forecast the disruption caused by contexts, and hence differentiate contexts from incidents 

more effectively. 

 

As expected, there is a trade-off to be made between detection and false alert rate. Figure 3 shows that with a low 

percentage prediction interval, RCID (with context) had a better DR and worse FAR than RAID, and vice versa for 

higher percentage intervals. However, for 95% and 97% intervals, RCID (with context) had a better DR and FAR 

than RAID. Comparing RAID to RCID (with context) with a 97% prediction interval, RCID had a 27% higher 

detection rate (68% against 41%) and a 0.29% lower false alert rate (0.49% against 0.78%). At this prediction 

interval, it was also found to improve its false alert rate from 0.77% to 0.49% by using contexts. 

 

 

 

Fig. 3. IDAs’ performance. (a) Detection rates (b) False alert rates.  
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A survey of TMC operators found that acceptable IDA performance boundaries would be at least 88.3% 

detection rate, and at most 1.8% false alert rate (Ritchie and Abdulhai (1997)). With a 90% prediction interval, 

RCID (with context), met these boundaries, with a 90.9% DR and 1.31% FAR. However, RCID (without context) 

and RAID did not meet these boundaries. This suggests that if RCID (with context) were to be implemented in a 

TMC, operators may find the performance acceptable enough to detect incidents effectively, unlike previous IDAs 

which were often ignored or disabled.  

 

Figure 4 shows how RCID used the football context to ‘learn’ what disruption could be expected, resulting in it 

not raising a false alert before the match. RCID (without context) raised a false alert because it did not accurately 

forecast the context’s disruption. In general, RCID (with context) was able to ‘learn’ what disruption could be 

expected from each of the contexts used, and so was better at differentiating incidents from contexts, and hence had 

a lower false alert rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. RCID’s alerts (with and without context) on the day of a Premier League Football match against Leicester F.C., which kicked off at 

12:00 at St Mary’s Stadium. No incident occurred. Sunday 22nd January 2017, at detector B. RCID used a 90% prediction interval. Note that the 

forecasts and prediction intervals are indicated by the blue lines and error bars respectively, and the red highlighted areas are times when the IDA 

raised an alert. (a) RCID (with context) (b) RCID (without context). 

 

At the typical time of day and day of the week of a context’s disruption, RCID (without context) would often 

create prediction intervals wide enough to cover the context’s disruption, both when the context occurred and when 

it didn’t. This occurred more often and to a greater extent when higher percentage prediction intervals were used. 

Figure 5 shows a wide prediction interval caused by the disruption from occasional weekday evening football 

matches. This may have caused the incident to go undetected if it occurred an hour later. In general, RCID was seen 

a 

b 
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to be less effective at detecting incidents when not using contexts (particularly with high percentage prediction 

intervals), because it would produce more naive and uncertain prediction intervals. In this study, RCID’s detection 

rate was (largely) the same with and without context because contexts (coincidentally) did not disrupt any of the 28 

incidents in the test dataset, but this may not be the case for repeated tests on different datasets. Figure 5 also shows 

RAID failing to detect an incident because ALOTPV and ATGBV values were not disrupted sufficiently. In general, 

RAID was found to be somewhat effective at detecting congestion, but performed worse than RCID because it 

would raise false alerts during context caused disruption, and it would fail to detect incidents that didn’t cause 

congestion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. RCID (with and without context) and RAID’s alerts at a time where an emergency roadworks incident caused one lane of a nearby 

roundabout to be closed, causing disruption between 6pm and 11pm. Thursday 15th December, at detector A. A 93% prediction interval was used. 

(a) RCID (with context) (b) RCID (without context) (c) RAID. 

c 

a 

b 

c 



12 Author name / Transportation Research Procedia 00 (2018) 000–000 

RCID (with context)’s false alert rate was limited by occasional inaccurate predictions by RoadCast, caused by 

variations in the traffic data that was not accounted for. Some causes of variation may have been missed, and others 

may not have been suitable for incorporation, such as noise or disruption during particularly busy shopping days, 

which could be identified (and verified by Southampton City Council tweets), but not predicted beforehand. The 

detection rate was most limited by failing to detect incidents that caused minor amounts of disruption. In these cases, 

the prediction intervals were too wide because of RoadCast’s forecasting uncertainty, which stemmed from the 

unaccounted causes of variation in the data.  

 

RCID (without context) often raised false alerts when contexts caused disruption (as can be seen in figure 4). 

However, in some cases it would not raise false alerts for contexts, particularly for contexts that occurred frequently 

at a particular time or day of the week, such as football matches at 3pm on Saturdays. As can be seen in figure 6, at 

times the prediction interval was wide enough to cover the context’s disruption, because the messages in the 

predicted leaves were from both times when a match was occurring and when it wasn’t. With a 95% prediction 

interval, one could assume that if a context caused disruption at a particular time and day of the week on less than 

2.5% of occasions in the training period, RCID (without context) could be susceptible to raising false alerts on these 

occasions in the testing period. However, such wide prediction intervals made RCID more susceptible to failing to 

detect incidents at times when the particular context does not occur. In general, RCID produced more naive and 

uncertain prediction intervals when contexts weren’t incorporated, and hence was less effective at detecting 

incidents.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. RCID (without context) with a 95% prediction interval, on a day when no incident occurred. Saturday, 4th February 2017, at detector 

B. Premier League football match against West Ham F.C. kicked off at 15:00 at St Mary's Stadium.  

 

In general, RAID was found to be able to detect congestion, but performed worse than RCID (with context) due 

to an inability to differentiate contexts’ disruption from incidents. Its performance was limited in two ways, it would 

raise false alerts during context caused congestion, and it would fail to detect incidents that didn’t cause congestion. 

Also, at times, the pre-defined on and off peak thresholds did not meet their objective of capturing the time of day 

variance in ALOTPV and ATGBV (see that the on-peak ALOPTV threshold is lower than the off-peak threshold in 

figure 5 (c)). These thresholds appeared not to capture the variation in the study’s traffic data because different 

detectors had different peak times, and peak times differed for different days of the week. 

 

For all of the IDAs tested, many of the false alerts came from a few detectors which were particularly noisy or 

appeared to have a step change in values. For example, the detector which produced the most false alerts for RCID 

appeared to have visibly higher flow values (and hence false alerts) after 22
nd

 August 2016. The cause of this step 

change could not be found, but could have been caused by a change in nearby road capacity or travel demand, such 

as a new road lane or nearby shopping mall being built. This is an issue for which all IDAs that attempt to 

understand the expected traffic conditions could be expected to suffer from. However, if this issue was identified by 
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an operator in a TMC, this issue could easily be rectified by retraining the algorithm on data in the time period since 

the step change. Another limitation of each of the IDAs may have been the average time to detect. Unfortunately, 

this couldn’t be evaluated in this study because the exact time of incidents occurrence was unknown. However, 

based on the persistence test used, it could be expected to be at least 15 minutes, which is higher than the reported 

value of many IDAs presented in the literature. This issue stemmed from the IDAs using messages over long time 

periods (i.e. 5 minute messages). If 30 second messages were used instead of 5 minute messages, the IDAs could 

have used a persistence test over a shorter time period, and hence detected incidents more quickly. 

5. Conclusions 

This paper aimed to tackle the problem of state of the art IDAs creating unnecessary false alerts by failing to 

differentiate incidents from contexts. Such false alerts distract operators, and had led to many IDAs being disabled 

or simply ignored. This paper presented and evaluated RCID, a novel random forest incident detection algorithm 

which aimed to use contextual data to better differentiate incidents from contexts, and hence improve on the 

performance of state of the art IDAs. RCID was evaluated on loop detector flow data and TMC incident logs from 

Southampton, U.K. Comparisons were made with and without context, and to a state of the art IDA, RAID. 

 

RCID was found to outperform RAID in terms of detection rate and false alert rate. RCID was also found to 

reduce its false alert rate by at least 25% when incorporating contextual data (at least 25% at every prediction 

interval used). This improvement came from RCID’s ability to differentiate incidents from contexts by ‘learning’ 

how contexts could be expected to disrupt traffic conditions. This improvement suggests that if RCID were to be 

implemented in a Traffic Management Centre, operators would be distracted by far fewer false alerts from contexts 

than is currently the case with state of the art algorithms. This would enable operators to detect incidents more 

effectively, and hence respond more effectively in order to minimise the disruption caused. 

 

A benefit of the random forest algorithm used is that methods exist to interpret its forecasts (Palczewska et al. 

(2013)). Hence, with further work, it may be possible for RCID to provide information on its reasoning and decision 

making process, rather than simply raising alerts. Such information could be a message to operators of ‘no incident 

present, disruption caused by Southampton F.C. football match’, or ‘incident present, disruption also caused by 

Southampton marathon’. This information has not been supplied to operators of an IDA previously. Doing so could 

improve TMC operators’ trust and effectiveness of using IDAs, and could provide information that would be useful 

for operators’ in responding to incidents. 
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