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Abstract 

This research investigates the influence of decision-maker behaviour on policies that are likely to be adopted for the protection of 

highway infrastructure against inundations resulting from sea level rise. We analyse two different types of games to represent 

decision-maker behaviour, and use the San Francisco Bay Area shoreline with a scenario of a 0.5m sea level rise as a case study.  

In our model, the objective of the decision-makers (the counties bordering the SF Bay Area) is to minimize the traffic delay caused 

by inundations in the transportation network that lies in the geographical boundaries of their counties. Our model considers 

hydrodynamic interactions, traffic flow patterns changes as a result of inundations, and budget constraints on the protection costs. 

The hydrodynamics in the Bay Area are affected by the shoreline protection strategy: protection of the shoreline of a county may 

lead to increased inundations in another, unprotected, county. Furthermore, closure of a highway link in one county affects traffic 

delays in other counties due to traffic re-routing. Thus, protection decisions made by a county have potential impacts on several 

other counties, and therefore counties must take into account other counties’ actions. Both competitive (Nash) and cooperative 

games are analysed. It is shown, through several examples, that cooperation among counties increases benefits (reduction of 
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Vehicle Hours Travelled) for all participants in most cases.  In some cases, cooperation also reduces protection costs. 
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1. Introduction 

According to forecasts (Rahmstorf, 2007), sea-level in 2100 will possibly rise by 0.5-1.4 meters compared to 1990 

levels. The resulting shoreline inundations will affect the coastal highway infrastructure and disrupt transportation 

systems causing delays, trip cancellations and accessibility reduction. Due to network effects, inundation of a link may 

lead to increased delays throughout the transportation system (Nicholls et al., 2007; Koetse and Rietveld, 2009; Chang 

et al., 2010). Thus, identifying policies to minimize these consequences and increase resilience against Sea-Level Rise 

(SLR) is vital for the protection of transportation networks.  

The literature contains a large body of research focused on evaluating the risk of exposure and vulnerability of 

infrastructure and quantifying the levels of impact of future sea level rise. Some of the research is related to land use 

and properties or business: Geisler and Currens (2017) describe barriers to prevent water from entering inland areas 

and suggest proactive and adaptive policies. Song et al. (2016) develop a framework to evaluate the impacts of SLR 

on business, including infrastructure and apply it in Bay County, Florida.  

For the case of transportation infrastructure, Dawson et al. (2016) assess the costs related to the railway disruption 

from SLR on a part of the London – Penzance railway. Habel et al. (2017) suggest that SLR will impact $5 billion of 

taxable real estate and 48 km of road network in Hawaii. Some works are specifically related to the performance of 

transportation network under inundations. Suarez et al. (2005) evaluate the impacts of coastal flooding on the road 

network on the Boston Metropolitan area, considering changes in land use and population, and find that delays and 

lost trips will be doubled. Demirel et al. (2015) examine how the EU road network will possibly react to transportation 

infrastructure disruptions due to sea level rise. The authors develop a general framework for policymakers, which can 

be used to assess the results of inundations of transportation infrastructure. Asadabadi and Miller-Hooks (2017) 

quantify the effect of accounting for stochasticity in climate impact predictions on infrastructure protection planning.  

They perform experiments under different predictions and conclude that there are significant cost savings when there 

is improved accuracy in predictions. 

Some papers in the literature specifically focus on levee installation for protection against SLR. Haddad et al. (2015) 

calculate the optimal levee location and size that optimizes the net benefit of flood control. Peng and Song (2018) 

evaluate the policy of levee installation to protect Miami, Florida against flooding, using cost-benefit analysis.  Lee et 

al. (2018) present a framework for levee budget allocation among counties around the San Francisco Bay Area to 

minimize the total traffic delay resulting from SLR inundations.  

The literature does not consider the interaction among different decision-makers in the context of infrastructure 

protection in the face of SLR. Coastal flooding occurs in areas that do not necessarily fall under the jurisdiction of a 

single decision-maker. The protection strategy selected by a decision-making agency can increase flooding in areas 

outside its jurisdiction. In this paper, we adopt game theory approaches to simulate the interactions between the 

decision-makers and identify policies that may reduce such negative externalities. 

Game theory concepts have been used widely in the field of transportation. Possible applications of Nash and 

Stackelberg games in different transportation problems were discussed by Fisk (1984). Bell (1999) considers a game 

theory approach with user pessimism about the expected network performance and later, in Bell (2004) the vehicle 

routing problem is analyzed with game theory. Kita (1999) considers a non-cooperative game among pairs of merging 

and through cars on a highway. In the area of connected vehicles, Talebpour et al. (2015) adopt a game theory approach 

for the flow of information. Adler and Blue (2002) suggest a game among drivers that follow a guidance system, 

information service providers, and network managers.  
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In the above cases, the games are between the network users and the authorities, or only between network users. 

There is an additional part of literature where the games occur between authorities, which is relevant to our problem. 

In the rail industry, Hsu et al. (2010) discuss the game between high speed and conventional rail and solve for the 

prices of the two services based on Nash equilibrium.  In Medda (2007), the author considers the transportation public 

and private sectors as players, to solve for the risk allocation among them. Fragnelli (2000) discusses the cost allocation 

between the agents that should pay for the maintenance of infrastructure. Bergantino and Coppejans (2000) use a 

similar approach, considering the ship-owners as players to allocate maritime infrastructure costs. In Özener and Ergun 

(2008), the authors allocate shipping costs to shippers when they collaborate in logistics network. Matsubayashi et al. 

(2005) also use cooperation games for cost allocation among agents aiming to build hub-spoke networks, accounting 

for congestion. In the context of cost allocation, Littlechild and Owen (1973) have published related work where they 

consider cooperation among airlines for the building cost component of the fees paid when using airports.  

In this paper, we model the problem of transportation network protection in inundation-susceptible regions which 

fall under the jurisdiction of multiple agencies as games among the decision makers. The present paper extends our 

previous work (Lee et al 2018), which approached the problem from the perspective of a centralized decision-maker, 

allocating limited protection resources to achieve a system-optimal solution in the San Francisco Bay Area. In reality, 

the lack of coordination and conflicts of interest among the decision-makers makes the problem more suitable to a 

game-theoretic approach. 

In this paper, the objective of the decision-makers is to minimize the total delay occurring in the transportation 

network from inundation events. The decision-makers’ actions affect inundation in the counties of other decision-

makers, and the traffic delays, resulting from inundation and motorists’ rerouting in the network, vary according to 

these actions.  

The paper is organized as follows. First, we present the geographical area under consideration and its characteristics. 

Then we discuss two different game theoretical approaches that we examine for the decision-making interactions. We 

then highlight some practical insights obtained from the implementation of the different approaches. We conclude 

with observations regarding the relative merits of the two types of decision-making strategies.  

 

2. Methodology 

We consider players who represent coastal communities vulnerable to inundations due to SLR; each can decide 

whether to build a levee at each levee candidate site along its shoreline or to invest funds to build levees along other 

counties’ shorelines. Levee installation along the shoreline of a county affects the inundation levels on other counties. 

Drivers react to the existence of cut links by rerouting, which depends on the links that are inundated and can affect 

areas that are beyond the inundated counties. Thus the decision of each county directly affects the traffic congestion 

levels in other counties. We quantify the benefits as reduced Vehicle Hours Traveled (VHTs) compared to the default 

scenario where there is no new levee installation.  

The players may decide to act either competitively or cooperatively with each other. In the first case, their actions 

lead to a Nash equilibrium, that is the steady state where no player has an incentive to change their action (Nash 1951). 

For each possible levee installation strategy, the expected benefit (in VHTs) for every player is compared to the 

strategies that correspond to changing this player’s decision, when all the other players’ actions, remain constant.   

In the second case, some players form a team or teams and collaboratively invest in protecting the shorelines that 

yield the best benefit for their coalition. The non-cooperating players act competitively, so the problem can be defined 

as a mixed-competitive-and-cooperative game. Cooperation is only possible if none of the participants in the coalition 

suffers a reduction in benefit, relative to that of the corresponding Nash equilibrium, and the summation of the coalition 

members’ benefits is higher than the pure Nash scenarios. Players are allowed to build levees on the shoreline of 

another county if the latter does not have a sufficient budget to install the levee. Players whose shoreline will be 

protected, independently of whether they contribute funding or not, have the right to approve or refuse the levee 

installation. Players that do not have a budget or do not receive funding for a levee do not participate in the cooperation, 

and thus their benefit could be lower than that under Nash equilibrium. When a cooperation strategy is suggested, the 

total levee installation cost should be distributed among the participants not according to their shoreline length, but 
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according to the benefit they gain from their participation. For this, we use the Shapley value that divides the total 

surplus created by cooperation among the players (Shapley, 1953).  

 

3. Findings 

This paper uses the San Francisco Bay Area, shown in Figure 1, as a case study. This area is interesting because of 

its long shoreline that is exposed to inundations (Knowles, 2010; Ellen and Wieczorek, 1988), its high population of 

around 7 million (US Bureau of the Census, 2010), and the existence of several decision-makers (counties), who 

according to their policies may create different dynamics and influence the future of the Bay. The expected SLR has 

led to different levels of action among the local communities, with some at advanced levels of planning (Stacey et al., 

2017).   

 
Fig. 1. Map of the San Francisco Bay Area Counties, generated on QGIS (www.census.gov). 

 

We consider the counties around the Bay as decision-makers and investigate the dynamics among their decisions. 

Each county can decide whether or not to build a levee along its shoreline, and also has the option to invest funds to 

build levees along other counties’ shorelines. The levee combinations produced by these decisions yield different 

hydrodynamics in the Bay.  A hydrodynamic prediction, using the DeltaRes simulator (DeltaRes, 2015) with CoSMoS 

((Barnard et al., 2014) is performed to identify the areas that will be inundated under a certain protection scenario. We 

consider a sea level rise of 0.5m, which is projected to occur in 2054. In fact, sea level rise cannot be accurately 

predicted, as ice sheets may be inherently unstable (Bamber, 2009). An estimation of the range of the possible sea 

level rise is 0-3.3m (Bamber, 2009) and considering 0.5m can be a safe assumption within this range according to the 

Intergovernmental Panel on Climate Change’s A2 scenario (Stocker, 2014). For the inundated areas, we assume that 

http://www.census.gov/
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the corresponding highway links are cut permanently, and we obtain the resulting traffic flow pattern, using User 

Equilibrium. The analysis is done with the expected highway traffic demand in 2054 (California Statewide Travel 

Demand Model, 2014). The network used includes only freeways and major arterials. 

The counties along the Bay shoreline that are considered as players are Marin, Sonoma, Napa, Solano, Contra 

Costa, Alameda, Santa Clara, and San Mateo. San Francisco county is not considered as a player, because its shoreline 

is always protected due to its importance, as explained in Lee et al. (2018). Thus, the total number of players is eight. 

For every combination of counties’ levee protections, we identify the links that are inundated and the resulting traffic 

flow pattern. This allows us to compute the difference in Vehicle Hours Traveled (VHTs) between that combination 

and the case of zero protection (i.e., where no county is protected). Each protection scenario has an associated levee 

installation cost. This cost is expressed in shoreline length because it is reasonable to assume that it is linearly related 

to the length of the levee.  

As explained earlier, the decisions of participants affect the resulting congestion in the counties of other participants 

because the existence of levees on the shoreline of a county may lead to increased inundations in other counties.  The 

resulting highway link inundations have effects on traffic delays beyond the affected counties, as motorists change 

their routes, leading to increased congestion in counties further away from the inundation. 

For every combination of counties’ levee protections, we identify the links that are inundated and the resulting 

traffic flow pattern by User Equilibrium, using the expected highway traffic demand in 2054 (California Statewide 

Travel Demand Model, 2014). Each protection scenario has an associated levee installation cost, expressed in shoreline 

length. We consider that counties either have no budget or have a limited budget, equal to that needed to build a levee 

on their own shoreline. This case is interesting, because in some scenarios, even though counties are economically 

capable of protecting themselves, they choose to leave their shoreline unprotected and instead invest their budget in 

protecting other counties, which yields higher benefit for them. This reveals how important cooperation can be.  

First, we identify a case with the highest difference in total benefit between Nash and cooperation strategies. In 

Figure 2 the budget scenario 𝑄 is {Napa, Alameda}, meaning that counties Napa and Alameda are the ones that invest 

funds. In this case, the Nash equilibrium is {Napa, Alameda}: when all counties act competitively, the result would 

be to protect Napa’s and Alameda’s shoreline.  

There are several possible cooperation strategies where the levee scenario {Marin, Solano, Santa Clara} is the one 

that yields the highest benefits. In Figure 2, it is obvious that for the funding counties (Napa and Alameda) as well as 

for all the counties that will receive protection (Marin, Solano, Santa Clara) the benefits of this cooperation scenario 

are higher or equal to those of the Nash equilibrium, and this is why the cooperation is possible. This result is not 

obvious: policymakers would probably not think that if Napa and Alameda had a budget to invest, protecting Marin, 

Solano and Santa Clara would be the best solution in terms of traffic delay minimization. This represents a very high 

improvement compared to the Nash equilibrium (178,834VHT/hr).  



 Papakonstantinou, Lee, Madanat / Transportation Research Procedia 00 (2018) 000–000 

Fig. 2. VHT benefit for Nash and Cooperation strategies, when Napa and Alameda are funding with a limited budget. 

Additionally, in this case is that not only does cooperation yield higher benefits for both funding counties and 

overall, but it also involves lower costs in comparison to the Nash case for both counties, as represented in Figure 3.  

 

 

Fig. 3. Cost distribution when Napa and Alameda are funding, with a limited budget  
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For each funding scenario, there can be several possible cooperation scenarios. There is a subset of the possible 

cooperation scenarios for which the benefit of the funding counties is maximum and another subset where the benefit 

of all counties is maximum. For example, for the scenario where Napa and Alameda are the funding counties under 

budget constraint, which was analytically described in Figures 2 and 3, the case that yields the highest benefits for the 

funding counties (64,386VHT/hr) is coalition 1, to protect Marin and Solano, where the total benefit for all counties 

is 154,800VHT/hr, as seen in Table 1. However, for coalition 2, to protect Marin, Solano and Santa Clara, the total 

benefit increases to 191,996VHT/hr, but in that case the benefits for the funding counties are lower (53,288VHT/hr). 

Thus, the funding counties will choose to implement coalition 1, even though coalition 2 would be better for all 

counties in the Bay Area.   

 

TABLE 1 VHT benefits when Napa and Alameda are funding, under a limited budget. Coalition 1 yields the highest benefits for the funding 

counties and Coalition 2 yields the highest benefits for all counties. 

 

Levee 

Scenario 
VHT Benefits compared to do nothing  

Cost Marin Sonoma Napa Solano Contra 
Costa 

Alameda Santa 
Clara 

San 
Mateo 

Total for 
funding counties 

Total for all 
counties 

Nash {3,6} -182 -482 2767 705 -2038 6664 -5775 11504 9431 13161 414 

Cooperation1 

{1,4} 
34129 10255 15292 13769 -3537 49093 36606 -809 64386 154800 241 

Cooperation2 

{1,4,7} 
34562 9314 15042 13319 -6363 38245 72396 15480 53288 191996 320 

 

Naturally, there may also be a subset that includes cooperation scenarios that yield the optimal benefit both for the 

funding counties and for the total of counties. For the cases where this occurs, choosing a strategy from this subset is 

optimal for both the funding counties and the system optimal. However, as this is not always the case, there should be 

incentives for the funding counties to move from the strategy that maximizes their own benefits to the one that 

maximizes the overall benefit.  

 Another interesting result is the case where Marin, Santa Clara, and San Mateo are the funding counties. The 

shorelines of these three counties are the ones whose protection is the most critical according to the Pareto frontier in 

Lee et al. (2018), and they are responsible for the highest percentage of VHT reduction. In this case, the Nash 

equilibrium is to protect Marin, Santa Clara, and San Mateo. The optimal cooperation scenario, under budget 

constraint, is the same: to protect only their own shorelines. This is a rational decision as these are the most critical 

counties and do not benefit from leaving their shorelines unprotected and protect other counties’ shorelines. If however 

the budget constraint is removed, the optimal cooperation strategy is to protect additionally Solano, Contra Costa and 

Alameda. 

 There is also chance that for a specific funding scenario, no cooperation strategy is possible, because no 

combination is better than the Nash equilibrium. For example, when Marin and Alameda are the only funding counties, 

as represented in Figure 4, the Nash equilibrium is to build a levee along Marin and Alameda shorelines. Even if the 

two counties have no budget constraint, they only choose to implement this Nash strategy and not a cooperation 

combination. This insight is compatible with the fact that this is a Pareto optimal strategy. In Figure 4 we compare it 

with the system optimal protection strategy found in Lee et al. (2018) and we see that for Marin the benefit is lower, 

and Contra Costa’s benefit is reduced, which is why full protection cannot be a suggested cooperation. In this case, 

decision-makers can be sure that this strategy is the best solution.  
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Fig. 4. VHT benefit for Nash and Cooperation, when Marin and Alameda are funding with unlimited budget.  

 

4. Conclusions and Future Work  

There are four conclusions: 

1. Cooperation is beneficial for counties in most cases. It is shown that, for counties whose shoreline is not 

critical, cooperation can multiply their VHT benefits relative to Nash equilibrium, because instead of 

investing their budget to protect their shoreline, they can contribute to the protection of other more critical 

shorelines that lead to a reduction of their own traffic delays.  

2. The extent to which cooperation is more beneficial than a Nash equilibrium varies, depending on the coalition 

of funding counties, the available budget and the impact of each levee on other counties.  

3. Cooperation can be cost saving compared to Nash equilibrium. 

4. The cooperation strategies that maximize the VHT benefit of funding counties do not necessarily maximize 

the overall VHT benefit in the Bay. Thus, it is suggested that incentives are given to funding counties to 

move to strategies that maximize the total benefit for the entire SF Bay Area.   

  

This research has several possible extensions. Realistically, each county can take action at a different point in time. 

This creates different levels of actions, where counties that act ahead of others can be considered as leaders and 

counties that act later can be seen as followers, since at the time they act, there is a specific levee installation policy 

already in place. Additionally, counties can be categorized into different hierarchical levels according to their societal 
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engagement in the Bay Area and influence on other counties. These formations of county levels either depending on 

time of action or on engagement, allow us to consider this situation as a multi-level Stackelberg game. This is the 

subject of ongoing work by the research team. 
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