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Abstract 

The pattern of activities by transit passengers and the factors affecting this pattern are recently addressed in the literature. Also, the 

pattern of trips and the factors affecting trips are the subject of many studies. However, little is known about the correlation between 

the activity and trip of passengers in the public transit network. This study investigates how similar are activities of passengers if 

they have similar trips (or vice versa)? And what factors impact the similarity of the activity and trip of passengers? Answering 

these questions is useful in understanding the mobilization patterns of passengers and developing group-based transit services. 

Also, smart card data have provided an opportunity, which was not available before, to analyze the activity and trip of the passengers 

in a large scale network. In this paper, the correlation between activity similarity and trip similarity of public transit passengers is 

investigated. The correlation between the activity and trip of the passengers is analyzed using histograms, Pearson correlation 

coefficient, conditional probabilities, and hexagonal binning technique. In addition, the impact of trip length and duration on the 

activity and trip similarity are examined using histograms and hexagonal binning diagrams. The proposed methodology is 

implemented for two-day smart card data in Brisbane, Australia. Results show that it is more likely to have the activity similarity 

when there is a trip similarity than having the trip similarity when there is activity similarity. Also, there is a nonlinear correlation 

between the activity and trip similarity with the trip length and duration. 
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1. Introduction 

The pattern of activities by transit passengers and the factors affecting this pattern are recently addressed in the 

literature. Also, the pattern of trips and the factors affecting trips are the subject of many studies. However, little is 

known about the correlation between the activity and trip of passengers in the public transit network. This study 

investigates how similar are activities of passengers if they have similar trips (or vice versa)? And what factors impact 

the similarity of the activity and trip of passengers? Trip and activity are two inseparable parts of passenger behavior 

in the public transit network. Individuals use the public transit network to move and perform their desired activity. In 

other words, the purpose of taking a trip is doing an activity. A trip is a two dimensional (spatial and temporal) 

movement between an origin and destination stops in the public transit network. Both spatial and temporal dimensions 

are important and should be considered in the passenger trips modelling (Faroqi et al., 2017). Also, an activity has 

three dimensions (location, time, and type) that should be considered to have a comprehensive perspective of an 

activity because, for an example, two activities might be similar in location but be different at the time or type (Shen 

and Cheng, 2016). Consequently, both trips and activities should be considered as two fundamental elements of the 

passenger behavior in the public transit network.  

Smart card data provides opportunities to study passenger behavior in the public transit network. It consists of 

boarding and/or alighting transactions of the passenger trips; and it has provided opportunities, which were not 

available before, to analyze the activity and trip of the passengers in large scale networks. In the past, before emerging 

Automated Fare Collection (AFC) systems, data for analyzing passenger trips and activities were limited to surveys 

that usually suffered from the size and ground truth problems (Morency et al., 2007). However, since two decades ago, 

AFC systems have provided valuable datasets of transactions that have enabled researchers and practitioners in 

understanding passenger behavior in the public transit network. These datasets, as by-product of fare gathering system 

in the public transit network, can reconstruct trips of the passengers. Then activities of passengers can be discovered 

as gaps between subsequent trips of the passengers (Faroqi et al., 2018b). Hence, smart card datasets generated by 

AFC systems enable researchers to reconstruct trips and activities of the passengers in the public transit network.  

Investigating the correlation between the activity and trip similarity of passengers in the public transit network can 

emerge various applications. For instance, spatial, temporal and trip purpose patterns can be discovered; the network 

can be designed or upgraded according to the demand for different activities; group-based applications such as group 

discount or Demand Responsive Transit (DRT) can be developed. Therefore, understanding the correlation between 

the activity and trip similarity of the passengers through answering the aforementioned questions are useful in 

discovering the mobilization patterns of passengers, planning TOD models and developing group-based transit 

services. 

This paper, for the first time (to the best of our knowledge), investigates the correlation between activity similarity 

and trip similarity of public transit passengers. Similarity measures for activity and trip of passengers are defined. 

Activity similarity considers time, location and type of the activity. Trip similarity considers spatial and temporal 

aspects of the trip. The correlation between the activity and trip of the passengers is analyzed using histograms, Pearson 

correlation coefficient, conditional probabilities, and hexagonal binning technique. In addition, impacts of trip length 

and duration on the activity and trip similarity are examined using histograms and hexagonal binning diagrams. The 

proposed methodology is implemented for two-day smart card data in Brisbane, Australia. 

Rest of the paper is structured as follows. First, the existing literature of the trip and activity similarity measures 

and patterns is discussed. Then, similarity measures for the trip and activity of the passengers are defined in the 

Methodology section. Next, Results section introduces the case study and examines the correlation between the trip 

and activity similarity of the passengers. Finally, Conclusion section summarizes the findings and proposes the future 

directions. 

2. Literature review 

Discovering patterns of travel behavior in the public transit network has attracted attentions from the transport 

researchers during the recent years. Hasan et al. (2013), concentrating on 626 individuals travel records in a metro 

network over a three-month period, investigated the patterns in choosing their destinations. This was accomplished 

based on the concept of POI, utilizing a hazard function and clustering, to define the probability of staying at a place. 
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They found out that most people do not select the location of their non-home and non-work destinations randomly. 

Ma et al. (2013) determined transit passenger regularity by clustering passengers based on the location of boarding 

stops and then divided clusters according to the time interval of boarding transactions. They used one week’s worth 

of AFC transactions from Beijing and compared the efficiency of three clustering algorithms (K++, C 4.5, KNN). 

They also showed that the regularity of a transit passenger would be a significant factor for transit market analysis. 

Nishiuchi et al. (2013), similar to Ma et al. (2013), studied passenger regularity based on spatial and temporal patterns 

using more than 500,000 transactions for 32,000 users during one month in Osaka. They also discovered a relation 

between the spatial and temporal patterns by drawing the frequency of use in an XY scatter plot. Finally, they found 

out that the trip patterns for different passenger types vary.  

Kusakabe and Asakura (2016) suggested fusing the (Household Travel Survey) HTS and AFC data in order to 

detect trip purpose. They utilized Naïve Bayes classifier according to the jointly available attributes between the two 

datasets. The case study was limited to the AFC transactions in one metro station in Osaka over a 20-month period. 

They successfully estimated the trip purposes in 86.2 per cent of cases. Kieu et al. (2014) studied spatial and temporal 

aspects of travel patterns. Firstly, trips were clustered regarding the location of alighting stops, then identified groups 

were divided based on the location of boarding stops, and, next, according to times of the boarding transactions. They 

used a DBSCAN algorithm for clustering the AFC data in Brisbane for over four months. They determined 72 per 

cent of the studied passengers have an irregular pattern. Cats et al. (2015) identified the urban activity centers by 

clustering the passenger travel flows according to the spatial proximity between the stops and centers. They also 

considered temporal variability as a factor to divide the identified spatial clusters into the smaller ones.  

Langlois et al. (2016) dealt with a big AFC dataset for four weeks in London. They investigated the heterogeneities 

among passengers and their longitudinal activity sequences by defining the concept of ‘user areas’. They defined this 

concept for the stops and the stations visited by users. They were also able to reduce the dimensionality of the data 

using the principal component analysis (PCA) method. They detected 11 clusters of the passengers associated with a 

distinct sequence of user areas structures. Sun and Axhausen (2016) decomposed AFC data using a probabilistic tensor 

factorization model in order to investigate the interactions between the time of day, passenger type, and origin and 

destination zones. Han and Sohn (2016) studied the probability of choosing the next activity given that the current 

activity is known. This considered the activity start time, activity duration and land use around the stops. They found 

eight clusters of passengers with different sequences of activities. They developed a continuous hidden Markov model. 

More recently, Ghaemi et al. (2017) presented a new representation of the smart card dataset. This provided a visual 

guide to better understand temporal patterns. Seventeen clusters were identified in terms of a single trip, regular users, 

late commuters, long day, midday, and active and inactive groups as the temporal behavior of users by an 

agglomerative hierarchical clustering method. Briand et al. (2017) clustered passengers based on their temporal 

activities using a Gaussian mixture generative-based model. They discovered that, in addition to common temporal 

patterns corresponding to the regular home to work/study commute patterns, some groups make their trips earlier or 

are more regular than others. They also found other passengers have more diffuse activities. Faroqi et al. (2017) 

examined the correlation between the spatial similarity and temporal similarity of trips in the public transit network, 

which revealed nonlinear relations between these dimensions of the trip similarity.  

The existing literature focused on different activity and trip similarity measures in order to discover activity and 

trip patterns in the public transit network. However, none of the studies in the literature (to the best of our knowledge) 

investigated the correlation between the activity similarity and trip similarity of the passengers. Hence, we examine 

the correlation between the activity similarity and trip similarity to move the literature of passenger behavior in the 

public transit network one step forward. 
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3. Methodology 

This paper aims to investigate the correlation between activity similarity and trip similarity of public transit 

passengers, which are extracted from the smart card dataset including boarding and alighting transactions. Figure 1 

presents steps of measuring the similarity between the activities and trips. 

Fig. 1. Methodology 

The cleaning process of the smart card datasets is adopted from Robinson et al. (2014). A trip leg happens between 

subsequent boarding and alighting transactions of a passenger. A trip consists of one or more trip legs. Usually, two 

or more trip legs are joined as a trip based on the time gap between the trip legs. Various thresholds are examined for 

the time gap. Based on the analyses of Alsger et al. (2016), the time gap is considered as 30 minutes in this study. If 

the time gap between two subsequent trip legs is less than 30 minutes, then the trip legs will link together as a trip; 

otherwise, an activity happens between the trip legs. 

3.1. Trip similarity measure 

Among different available trip similarity measures in the literature, the measure of Faroqi et al. (2017) is adopted 

because it considers both temporal and spatial dimensions; the measures are developed specifically for smart card 

datasets that include boarding and alighting transactions (not like GPS trajectories that include measurements every 

few meters). The trip similarity is measured between the trips of two passengers by two parallel steps that are presented 

in Figure 2. The spatial similarity measure considers direction as well as the distance between the start and end point 

of trips. For two trips with close enough directions, start point, and end points, the value of spatial similarity is 

calculated as the ratio of the shorter trip length to the longer one. Also, the temporal similarity measure considers both 

boarding and alighting times in a continuous linear space. The temporal similarity value between two trips is measured 

as the ratio of the overlapped trip time to the longer trip time. Finally, the trip similarity matrix is calculated as the 

pairwise product of the spatial and temporal similarity matrices (Faroqi et al., 2017). 

Fig. 2. Trip similarity 

In brief, two trips are considered as spatially similar if the distance between the origins (destinations) is less than a 

threshold (A in Equation 1) and the angle between the two trips is less than a threshold (B in Equation 1). Equation 1 

presents the spatial similarity measure between trips (T1, T2) that are between (O1, D1) and (O2, D2); where ‘O’ 

stands for origin and ‘D’ for destination; ‘T’ stands for trips; ‘d(P1,  P2)’ is the distance function that measures 

Euclidean distance between two points; ‘l(O, D)’ is the length function that measures length of the trips; ‘di(T1, T2)’ 

is the direction function that measures angle between two trips; and ‘SS(T1, T2)’ is the spatial similarity value between 

two trips (Faroqi et al., 2017). 

 

𝑆𝑆 (𝑇1, 𝑇2)  =  {
min(𝑙(𝑇1,𝑇2))

max(𝑙(𝑇1,𝑇2))
,   (𝑑(𝑂1, 𝑂2) ≤ 𝐴 | 𝑑(𝐷1, 𝐷2)  ≤ 𝐴) ^ (𝑑𝑖(𝑇1, 𝑇2)  ≤ 𝐵) 

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
            (1) 
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Equation 1 is appropriate for a pair of passengers each of which has just one trip. The final spatial similarity value 

for a pair of passengers, who have more than one trip, is assumed as the ratio of the sum of lengths of the shorter 

similar trips to the greater sum of lengths of all the trips belonging to the pair of passengers. For instance, if passenger 

A has two trips with lengths of 3 and 6 km and passenger B has one trip with a length of 4 km that closely overlaps 

with passenger A’s 3 km trip, then the spatial similarity between these two passengers will be (3/(3+6))*100 = 33%. 

Also, the spatial similarity between passenger A and passenger B is not necessarily equal to the spatial similarity 

between passenger B and passenger A since the total journey length of passengers A and B can be unequal. The spatial 

similarity value is assumed as the minimum of the similarities between the two passengers to have a symmetric 

similarity value between two passengers (Faroqi et al., 2017). 

The temporal similarity should measure the joint period that two passengers use the public transit. The proposed 

temporal metric considers time as a linear continuous element of the movement; the first boarding transaction time 

and last alighting transaction time model a trip; it is capable of considering both boarding time and alighting time in 

measuring the temporal similarity. Equation 2 presents the temporal similarity measure between two trips (T1, T2) 

that respectively are between (B1, A1) and (B2, A2); where ‘B’ stands for boarding time and ‘A’ for alighting time; 

‘TS (T1, T2)’ stands for the temporal similarity value. The temporal similarity value between two trips is assumed as 

the ratio of overlapped trip time to the longer trip time of (T1, T2) (Faroqi et al., 2017). 

 

𝑇𝑆 (𝑇1, 𝑇2)  =  {

min(𝐴1,𝐴2) −max(𝐵1,𝐵2)

max((𝐴1 −𝐵1),(𝐴2 −𝐵2))
, (𝐵1  ≥ 𝐵2  ^ 𝐴1 ≤ 𝐴2) | (𝐵2  ≥ 𝐵1  ^ 𝐴2 ≤ 𝐴1)

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                         (2) 

Passengers can have more than one trip during a day. Trips of a passenger are temporally unique; a passenger 

cannot have more than one trip at the same period. The overlapped time between two trips of two passengers cannot 

be covered with any other trips time of these two passengers. Hence, calculating the temporal similarity between two 

passengers with multiple trips is simpler than the spatial similarity. The temporal similarity between two passengers 

is assumed as the ratio of the sum of the overlapped time between the trips to the greater sum of the all trips time 

(Faroqi et al., 2017). 

3.2. Activity similarity measure 

Among different available activity similarity measures in the literature, the measure of Faroqi et al. (2018a) is 

adopted because it is a passenger-based similarity measure and simultaneously consider all three main elements 

(location, time, and type) of the activity; also, this measure is specifically designed for the smart card datasets; it 

should be noted that this activity similarity measure is validated using HTS dataset by Faroqi et al. (2018a). The 

activity similarity measure must be able to consider all three activity features of type, time, and location. Calculating 

this measure consists of two main parallel steps that are shown in Figure 3. The first step is measuring the similarity 

between location and time of the activities using the Space-Time-Prism (STP), and the second step is measuring the 

similarity of activity type. The STP determines the possible time and location span for an activity in a 3 dimensional 

space including two dimensions for locations (XY) and time (T) and measures the similarity by calculating the shared 

volume between the prisms. The activity type is based on an inferred trip purpose (Alsger et al., 2018), considering 

temporal (start time and duration of the activity) and spatial (land-use) attributes, and measures the similarity by 

calculating the time overlap of two trip identical activity types. Finally, the activity similarity matrix is calculated as 

the pairwise product of the STP and activity type similarity matrices (Faroqi et al., 2018a). 

 

 
Fig. 3. Activity similarity 
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The main factors in forming the STP are the walking speed and the maximum walking distance. These factors can 

identify all locations and times that a passenger can go after alighting from the public transit vehicle and before 

boarding it again. A passenger can also go in different directions from the direction between the two stops. The 

passenger can walk in the opposite direction of the two stops for doing an activity and then walk to the next boarding 

stop. Therefore, the maximum allowable walking distance is related to the distance between the two alighting and next 

boarding stops. The STP is formulated in Equation 3 to 7 in which a passenger alights at (Xa, Ta) and then boards at 

(Xb, Tb), X represents the location and T represents time, Aab is the maximum walking time, S is the walking pace, 

and U stands for the upper line (which is equal to twice as maximum of allowable walking distance) (Faroqi et al., 

2018a). 

𝐹𝑢𝑡𝑢𝑟𝑒 𝑑𝑖𝑠𝑐: { 𝑋| ||𝑋 − 𝑋𝑎|| ≤ (𝑇 − 𝑇𝑎) ∗ 𝑆}                        (3) 

𝑃𝑎𝑠𝑡 𝑑𝑖𝑠𝑐:  { 𝑋| ||𝑋𝑏 − 𝑋|| ≤ (𝑇𝑏 − 𝑇) ∗ 𝑆}                         (4) 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑎𝑡ℎ 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟: { 𝑋| ||𝑋 − 𝑋𝑎||  + ||𝑋𝑏 − 𝑋|| ≤ (𝑇𝑏 − 𝑇𝑎 − 𝐴𝑎𝑏) ∗ 𝑆}                                        (5) 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑎𝑡ℎ 𝑎𝑟𝑒𝑎 =  { 𝑋| ||𝑋 − 𝑋𝑎||  + ||𝑋𝑏 − 𝑋|| −  ||𝑋𝑏 − 𝑋𝑎|| ≤ 𝑈}                                        (6) 

𝑆𝑇𝑃: 𝐹𝑢𝑡𝑢𝑟𝑒 𝑑𝑖𝑠𝑐 ∩ 𝑃𝑎𝑠𝑡 𝑑𝑖𝑠𝑐 ∩ 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑎𝑡ℎ 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 ∩ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑎𝑡ℎ 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟                                  (7) 

The future disc includes all possible places that a moving object can go from the first point. The past disc consists 

of all points that can provide access to the second point. The future and past discs are similar to cones (Miller, 2005). 

The potential path cylinder inscribes all possible points at which an activity can occur at them. The potential path 

cylinder enlarges as the time gap between Tb and Ta increases; therefore, another surface should be considered to 

confine the maximum path cylinder. The maximum path cylinder indicates the border of locations, where a passenger 

can do his activity (Faroqi et al., 2018a).  

The similarity between two STPs is defined as the shared volume between the two STPs divided by union volume 

of the STPs. The Jaccard index is used to measure the similarity between the STPs; it is a statistic measure for 

comparing the similarity and diversity of sets and is the size of the intersection divided by the size of the union of the 

sets (Jiang et al., 2015; Goodall, 1966). Equation 8 presents the Jaccard index value for two STPs A and B, where V 

stands for the volume function. For instance, if the STP of passenger A is fully inscribed within the STP of passenger 

B and the STP of passenger A is 50% in size of the STP of passenger B, the final similarity will be 0.5. Also, if the 

STP of passenger C and the STP of passenger D are next to each other and have a 50% intersection in size, the 

probability is 0.33. In other words, the similarity that passengers A and B do their activity in the same space-time is 

50% and the same similarity for passengers C and D is 33% (Faroqi et al., 2018a). 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 (𝐴, 𝐵)  =  
𝑉 (𝐴 ∩𝐵)

𝑉(𝐴)+𝑉(𝐵) −𝑉(𝐴∩𝐵)
                   (8) 

Table 1 shows the probability of the trip purpose according to the start time and activity duration, as a percentage 

of the total, which are derived from HTS dataset in Brisbane over a period from 2009 through 2012. These distributions 

are used as temporal attributes (both start time and duration) to infer the probability of different trip purposes. Five 

activity types are considered: work, education, shopping, recreational, and home. The temporal attributes and trip 

purpose inference procedure are validated using HTS by Alsger et al. (2018), in which using the HTS data of South 

East Queensland, origin-destination trips are categorized based on the distribution of start time and activity duration 

for different trip purposes. The temporal attributes, namely start time and activity duration, are extracted to identify 

and also confirm each trip purpose, using the HTS data of South East Queensland (SEQ). On this basis, O-D trips are 

categorized based on the distribution of start time and activity duration for different trip purposes. Then, the percentage 

of a trip for each purpose is calculated with respect to the total number of trips. It should be noted the trip purposes 

such as social, pick up/drop off or personal business are removed from the table. 
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 Table 1. The probability of a trip purpose according to the start time and activity duration (Alsger et al., 2018) 

Start Time 
Work trips Education trips Shopping trips Recreational trips Home trips 

Before 

9 am 

9 am - 

3 pm 

After  

3 pm 

Before 

9 am 

9 am - 

3 pm 

After  

3 pm 

Before 

9 am 

9 am - 

3 pm 

After  

3 pm 

Before 

9 am 

9 am - 

3 pm 

After  

3 pm 

Before 

9 am 

9 am - 

3 pm 

After  

3 pm 

A
c
ti

v
it

y
 D

u
r
a

ti
o

n
 

(h
o

u
r
) 

1-2 2.14 4.73 1.92 0.07 0.16 0.01 1.54 8.41 3.45 0.77 0.87 1.17 1.26 3.43 3.16 

3-4 1.18 1.50 0.42 0.1 0.03 0.02 0.15 0.70 0.03 0.23 0.47 0.28 0.49 2.19 0.86 

5-6 1.17 1.02 0.23 0.12 0.05 0.04 0.04 0.08 0.00 0.11 0.13 0.02 0.47 1.37 0.11 

7-8 1.84 0.51 0.05 4.13 0.31 0.00 0.01 0.01 0.00 0.08 0.05 0.01 0.39 0.35 0.01 

9-10 5.85 0.31 0.04 0.42 0.02 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.11 0.11 0.01 

11-12 1.26 0.07 0.00 0.09 0.06 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.04 0.01 0.00 

> 12 0.25 0.02 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 

The land use around the next boarding stop, as well as the land use around the alighting stop, is considered as the 

potential land use areas (around alighting and next boarding stops) to do the activity. Spatial and temporal rules are 

applied using the decision tree to infer the probability for different activity types. The highest probability among 

activity types is then considered as the trip purpose (Lee and Hickman, 2014; Alsger et al., 2018). For an instance, 

assume an activity starts at 8 am and takes 7 hours in an area with available land use of 60% work and 40% education 

(no shopping, recreational, nor residential); the spatial attribute (land use) indicates 60% chance for work and 40% 

chance for education, however, the temporal attributes (start time and duration) indicate 31% chance for work 

(1.84/(4.13+1.84)) and 69% chance for education (4.13/(4.13+1.84)); considering both spatial and temporal attributes, 

the probability of having work activity is 41% ((60% * 31% ) / ((60% * 31%) + (40% * 69%))) and education activity 

is 59% ((40% * 69% ) / ((60% * 31%) + (40% * 69%))); hence, the inferred activity type is considered as education. 

This method is calibrated and validated in Alsger et al. (2018).   

If the activity types of two passengers are the same and the corresponding STPs do intersect, the passengers have 

some similarity in their activities. If the activity types are the same, the product of the activity type probabilities of 

two passengers is considered as their activity type similarity For instance, if passenger A has an activity type with 

probability of a, passenger B has the same activity type with probability of b, and the STPs are intersected, then the 

activity type similarity for these activities between passengers A and B is a*b. Also, if two passengers have more than 

one similar activity, then final activity type similarity is calculated as the sum of the activity type similarities divided 

by the number of intersected STPs between the two passengers. At the last step, activity similarity percentage for each 

pair of passengers is calculated as the pairwise product of the activity type similarity and the STP similarity values. 

Consequently, the activity similarity matrix is produced. This can be used to infer closeness and relations of the 

passengers or to cluster those (Faroqi et al., 2018a).  

3.3. Correlation measure 

Correlation discovers statistical relationships between usually two variables. The relationships can be linear or 

nonlinear. Pearson correlation coefficient is used to examine the linear correlation between two variables. The 

coefficient is measured on a scale with no units and can take a value from -1 through 0 to +1. The values close to the 

zero mention of no linear correlation and values close to +1 or -1 imply a perfect linear correlation (Sedgwick, 2012). 

Equation 9 presents the Pearson correlation coefficient for two vectors x and y, each of which consists of n elements; 

¯x and ̄ y stand for mean of x and y. In addition, a visualization technique called hexagonal binning is used to discover 

the nonlinear correlation between the activity similarity and trip similarity values. Conventional methods such as 

scatter plots cannot efficiently visualize large datasets because many of data are overlapped. The technique pairwise 

plot the similarity values (Lewin-Koh, 2011). 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  
Σ𝑖=1

𝑛 (𝑥𝑖− 𝑥)(𝑦𝑖− 𝑦)

√Σ𝑖=1
𝑛  (𝑥𝑖− 𝑥)2√Σ𝑖=1

𝑛 (𝑦𝑖− 𝑦)2
                 (9) 
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4. Results 

The used smart card dataset is from TransLink, the public transport authority of South East Queensland (SEQ), 

Australia. The dataset is for two weekdays at the SEQ that include bus, train, and ferry modes. Wednesday and 

Thursday (20 and 21 March 2013) are chosen as the weather on those days were normal, and there were no special 

events. 20,000 passengers randomly are selected for each day, who approximately make 45,000 trip legs per day. The 

sample size for each day is almost 20% of the whole number of transactions. Considering the analyses from Alsger et 

al. (2017), the sample size can appropriately represent the whole dataset. The dataset includes both time and location 

of boarding and alighting transactions, which is an important privilege of Translink smart card dataset, while most of 

the automated fare collection systems around the world just include boarding or alighting transactions. Figure 4 shows 

the map for Brisbane, in which the City Business District (CBD) area is highlighted with a yellow circle. Also, some 

of the major train and bus lines representing main corridors in Brisbane are presented in the map. 

 
Fig. 4. Map of Brisbane 

Activity and trip similarity matrices are calculated based on the described methodology. Similarity values are 

ranged between 0 and 1. According to the matrices, on average, 86% of passengers have similar activity with at least 

one other passenger; and 92% of passengers have similar trips with at least one other passenger. Figure 5 presents 

histograms that are depicted for the similarity matrices. Histograms show frequency distribution of activity and trip 

similarity values for Wednesday and Thursday. Generally, smaller values, close to 0, are more frequent in all 

histograms. The peak for each histogram happens at the range of (0, 0.02). The frequency of the activity similarity 

values are higher than the trip similarity. In addition, while the number of passenger pairs having the activity and trip 

similarity are higher for Wednesday than Thursday, range and proportion of similarity values are the same for both 

days. Therefore, more number of passenger pairs have the activity similarity than the trip similarity, however, the trip 

similarity values vary in a wider range than the activity similarity values. 
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Fig. 5. Histograms for activity and trip similarity matrices 

Figure 6 presents cumulative diagrams for the activity similarity at 10 different ranges. Each diagram in Figure 6 

shows how each range of the activity similarity cumulated with the trip similarity. For example, the orange graph (that 

belongs to passengers with the activity similarity between 11 and 20%) includes 60% passengers with the trip 

similarity less than 10%, and 28% passengers with the trip similarity between 10 and 20%. All in all, most (more than 

95%) of the activity similarity values have less than 40% of the trip similarity. 

 
Fig. 6. Activity similarity cumulative diagram 
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Figure 7 presents cumulative diagrams for the trip similarity at 10 different ranges. Each diagram in Figure 7 shows 

how each specific range of the trip similarity cumulated with different ranges of the activity similarity. For example, 

the orange graph (that belongs to passengers with the trip similarity between 11 and 20%) includes 92% passengers 

with the activity similarity less than 10%, and 7% passengers with the activity similarity between 10 and 20%. Most 

(more than 95%) of the trip similarity values have less than 10% of the activity similarity. Comparing Figures 6 and 

7, the trip similarity ranges for having the activity similarity are more diverse than the activity similarity ranges for 

having the trip similarity. 

 
Fig. 7. Trip similarity cumulative diagram 

Table 2 presents correlation and the conditional probability of the activity and trip similarity values. The correlation 

value is positive and close to 0.1 that means the activity and trip similarity values fluctuate positively together but 

with a weak linear relation. Also, values for the conditional probability for the activity similarity given the trip 

similarity is close to 50% that means the probability for having the activity similarity between two passengers when 

they have the trip similarity, is 50 %. In addition, the conditional probability for the trip similarity given the activity 

similarity is close to 5% that means the probability for having trip similarity between two passengers when they have 

activity similarity, is 5%. In other words, it is more likely to have the activity similarity when there is a trip similarity 

than having the trip similarity when there is an activity similarity. 

       Table 2. Correlation and conditional probability 

 Wednesday Thursday 

Correlation (AS, TS) 0.07125783 0.0676873 

P(AS|TS) 59% 48% 

P(TS|AS) 4.9% 4.5% 

Following diagrams, in Figure 8, present values of the correlation between the activity similarity and trip similarity 

at different ranges. Values of the trip similarity are presented at the left side diagram, and values of the activity 

similarity are presented at the right side diagram. According to the left diagram, the highest positive correlation 

happens at the range of (0, 0.1) of the trip similarity; range of the (0.2, 0.3) is like a boundary between positive and 

negative correlation values; the negative peak happens at the range of (0.9, 1). Also, according to the right side 

diagram, the positive peak happens at the range of (0, 0.1) of the activity similarity; range of the (0.2, 0.3) of the 

activity similarity works as a boundary between positive and negative correlation values; the negative peak is placed 

at range (0.9, 1) of the activity similarity. For Figures 8 and 9, “AS” stands for the Activity Similarity, and “TS” stands 
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for the Trip Similarity. The reason for declining correlation between AS and TS by increasing AS and TS values can 

be fewer number of passengers with high AS or TS compare to passengers with low AS or TS, which means there are 

more activity or trip diversity for fewer number of passengers.   

 
Fig. 8. Correlation between the activity similarity and trip similarity 

Following diagrams, in Figure 9, present the conditional probability between the activity similarity and trip 

similarity at different ranges. The diagram at the left side presents P (AS|TS) and on the right side presents P (TS|AS). 

According to the left side diagram, the highest conditional probability for P(AS|TS), which is 66%, happens at the 

range of (0.2, 0.3) of the trip similarity values. After the range of (0.2, 0.3), probability of having AS decreases by 

increasing TS; which was seen in declining correlation between AS and TS in Figure 8. According to the right side 

diagram, the highest conditional probability for P(TS|AS), which is 9%, happens at the range of (0.7, 0.8) of the 

activity similarity values. Probability of having AS given TS is much higher than the probability of having TS given 

AS. Also, the probability of having TS given AS is more fluctuating than the probability of having AS given TS.  

 
Fig. 9. Conditional probability between the activity similarity and trip similarity 

Figure 10 shows the hexagonal binning diagrams for the activity similarity and trip similarity values. Color and 

size of each hexagonal present the number of available passenger pairs for specific values of the activity similarity 

and trip similarity. If a horizontal (vertical) line cut the diagrams, it is clear that probability of having the activity 

similarity (trip similarity) decreases for larger values of the trip similarity (activity similarity). Also, results of the 

correlation and conditional probability (from Figures 8 and 9) can visually be seen in these diagrams. For instance, if 

the rectangular of (0.8, 1) trip similarity and (0, 0.2) activity similarity is compared with the rectangular of (0, 0.2) 

trip similarity and (0.8, 1) activity similarity, more number of activity similarity hexagonal is seen in the former 

rectangular than number of trip similarity hexagonal in the latter rectangular. In other words, there are more passengers 

with high trip similarity and low trip similarity than passengers with low trip similarity and high activity similarity. 

In addition, negative correlation between the activity similarity and trip similarity in Figure 8 can be observed in 

Figure 10 as well; one increases while the other one decreases. Figure 10 shows that for high values of the activity 

similarity (trip similarity) number of the high trip similarity (activity similarity) values are decreasing. For example, 
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two commuters travel on the same bus from a suburb to CBD in the morning peak, but it does not certainly mean they 

perform their job at the same place or time period. 

 
Fig. 10. Hexagonal binning diagrams for the activity similarity-trip similarity 

Figure 11 presents the histograms for the trip duration and trip length. The peak for the trip duration histogram 

happens at the range of (30, 40) min and for the trip, length happens at the range of (6, 8) km. The trip duration 

histograms are ascending before the peak and descending after the peak. The trip length histograms are ascending 

before the peak and locally descending after the peak. It might be expected that trip duration and trip length histograms 

have a linear relation, but the nonlinear relation between the trip duration and trip length histograms relates to the 

geometry of the network and waiting time at stops or transfer trip legs. 
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Fig. 11. Histograms for trip duration and length 

Figure 12 demonstrates hexagonal diagrams for both activity similarity-trip duration and activity similarity-trip 

length. Hexagonal diagrams present numbers of pairs of activity similarity and trip duration or length with specific 

values. In trip duration diagrams, the range of (70, 90) min plays an important role in changing the trend of the 

diagrams. Also, in trip length diagrams, the range of (18, 22) km plays an important role in changing the trend of the 

diagrams. In all diagrams, if a horizontal line cut the diagram, probability of having the activity similarity decreases 

by increasing the trip duration or length before the mentioned ranges. In other words, passengers with shorter trip 

duration or length (before the mentioned ranges) are more likely to have higher values of the activity similarity than 

passengers with longer trip duration or length (after the mentioned ranges).  

For example, passengers with 50 minute trip duration are more likely to have the activity similarity rather than 

passengers with 200 minutes of trip duration. Likewise, passengers with 10km trip length are more likely to have 

activity similarity than passengers with 40km trip length. In addition, if a vertical line cut the diagrams, at any point, 

the probability of having smaller values of the activity similarity is higher than larger values. For instance, the 

probability of having the activity similarity of 0.6 is less than the probability of having the activity similarity of 0.2 at 

the trip duration of 50 minute or trip length of 10 kilometers. 
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Fig. 12. Hexagonal binning diagrams for the activity similarity-trip duration and length 

Figure 13 demonstrates hexagonal diagrams for both trip similarity-trip duration and trip similarity-trip length. 

Similar to the activity similarity hexagonal diagrams, in trip similarity-trip duration diagrams, the range of (70, 90) 

min plays an important role in changing the trend of the diagrams. Also, in trip similarity-trip length diagrams, the 

range of (18, 22) km plays an important role in changing the trend of the diagrams. In all diagrams, if a horizontal line 

cut the diagram, probability of having the trip similarity decreases by increasing the trip duration or length before the 

mentioned ranges. In other words, passengers with shorter trip duration or length (before the mentioned ranges) are 

more likely to have higher values of trip similarity than passengers with longer trip duration or length (after the 

mentioned ranges). For example, passengers with 50 minute trip duration are more likely to have trip similarity rather 

than passengers with 200 minutes of trip duration. Likewise, passengers with 10km trip length are more likely to have 

trip similarity than passengers with 40km trip length. In addition, if a vertical line cut the diagrams, at any point, the 

probability of having smaller values of the trip similarity is higher than larger values. For instance, the probability of 

having the trip similarity of 0.6 is less than the probability of having the trip similarity of 0.2 at the trip duration of 50 

minute or trip length of 10 kilometer. 
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Fig. 13. Hexagonal binning diagrams for the trip similarity-trip duration and length 

All the above analyses address two main questions. The research questions are: how similar are activities of 

passengers if they have similar trips (or vice versa)? And how trip length and duration impact the similarity of the 

activity and trip of passengers? Effects of having the activity similarity on the trip similarity (or vice versa) are 

investigated through cumulative diagrams, Pearson correlation coefficient, conditional probability, and hexagonal 

binning diagrams. Also, relations between the trip length and duration with the activity and trip similarity are 

investigated by hexagonal binning diagrams.  

As results of the analyses, the correlation between the activity similarity and trip similarity of the passengers is not 

linear; for example, some ranges of the activity and trip similarity have a positive correlation, while there are some 

ranges with negative correlation values. Also, the probability of having the activity similarity given the trip similarity 

is much higher than the probability of having the trip similarity given the activity similarity. Moreover, the trip length 

and duration of some specific ranges have a positive correlation with the activity and trip similarity between the 

passengers. Also, there are some obvious boundaries in the trip length and duration, which change the probability of 

having the activity or trip similarity. The discovered ranges and boundaries of the activity similarity, trip similarity, 

trip length, and trip duration imply that the correlation between the activity similarity and trip similarity needs more 

investigation. Therefore, other parameters of the network such as geometry or accessibility should be considered in 

further investigation of the correlation between the activity and trip similarity of the public transit passengers. 

5. Conclusions 

The paper investigates the correlation between the activity similarity and trip similarity of public transit passengers. 

Activity similarity is measured considering time, location and type of the activity. Also, the Trip similarity is measured 

considering the spatial and temporal dimensions of passenger trips. The relation between the activity and trip of the 

passengers is examined using the histograms, Pearson correlation coefficient, conditional probabilities, and hexagonal 

binning technique. Furthermore, influences of the trip length and duration on the activity and trip similarity of 
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passengers are investigated using the histograms and hexagonal binning diagrams. The case study is two-day smart 

card data in Brisbane, Australia.  

Results show a nonlinear correlation between the activity and trip similarity with the trip length and duration. 86% 

of passengers have similar activity with at least one other passenger. 92% of passengers have similar trips with at least 

one other passenger. While the activity similarity and trip similarity has a weak linear correlation, the probability of 

having the activity similarity given the trip similarity is around 50%. Furthermore, similar trends and similarity 

correlation for Wednesday and Thursday validate the findings. Trips with shorter duration or length are more likely 

to be similar. Also, activities that happen at the end of the trips with shorter duration or length are more likely to be 

similar. More specifically, trips with duration less than 70 minute or length less than 20 kilometers are more likely to 

be similar and end up in similar activities.  

The findings of this paper can improve the travel behavior knowledge in the public transit network, which is 

necessary to design and upgrade the network. Also, group based applications such as group discount or DRT services 

can be developed more efficiently based on the found relation between the activity similarity and trip similarity. For 

example, group discounts can be designed in specific events in a way that encourage more passengers to use the public 

transit network. Also, TOD models that design and understand effects of the urban facilities around the transit network, 

can be improved by investigating the relation between trips and activities of public transit passenger. 

Future directions can be led in two directions. First, enriching the smart card dataset with other mobility datasets 

such as mobile devices or household travel surveys in order to investigate effects of demographic attributes of the 

passengers on the activity and trip similarity. Second, comparing the findings from different case studies to examine 

the effects of urban structures on the activity and trip similarity correlation. 
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