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Abstract 

The paper presents a set of freight demand elasticities for road, inland waterways and rail transport with respect to a change of 

total cost of transport, transit time and speed. The calculations are based on origin-destination matrixes and networks made available 

by ETISPlus, a European transport policy information system. The transportation costs and transit times are computed, for each 

origin-destination relation, each group of commodities and each transportation mode of interest using a transportation network 

model. A Box-Cox approach transform the explanatory variables for an aggregated conditional logit analysis. If the estimation and 

validation steps of the models receive a special attention, the most important added value of this paper is probably the in-depth 

analysis and interpretation of the estimated parameters, and more specifically the optimal  values used for the Box-Cox 

transformations. 

Own and cross elasticities are calculated for costs and transit time changes. All these values are computed at the trans-European 

level, but also for a large region around the Benelux countries, where there is more competition between the three modes. For this 

region, the impact of the geographical aggregation level of the O-D matrix (NUTS-2 vs NUTS-3) is also examined.  

Beside these classical analytical computations, the network model makes it also possible to compute arc elasticities. The obtained 

values are quasi-identical to the former, but this method allows the computation of ‘composite’ elasticities, which estimate the 

impact of a variation of a component present in more than one explanatory variables, such as travel speed, that influences both 

costs and transit times. 

This paper is a follow-up to a general review paper published by Beuthe, Jourquin and Urbain (2014a) in Transport Reviews. 

In the meantime, a preliminary paper testing the use of the ETIS database and a Box-Cox transformation applied to an univariate 

utility function (total transport cost) has been published by Jourquin (2019).  
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1. Introduction 

Elasticities are often used in the context of transport policy decisions for estimating the impacts of changes in the 

price or cost of transport, but also the impacts of new infrastructure on traffic or on the modal split. The problem is 

that the studies in the literature present many different values, which result not only from heterogeneous 

methodologies but also from different databases including specific networks and production localization. This 

fundamental and widespread problem led, in Europe, to the development of common transport policy databases useful 

for policy makers, analysts and modelers. The ETIS European framework project (2005) proposed a first 

implementation of such a database. The following ETISPlus (2012) program further developed this approach to obtain 

an information system useful for assessing European transport policies: it combines data, analytical modeling with 

maps and an online interface for accessing the data. 

Among other figures, these data provide origin-destination (OD) matrixes for the 10 NST/R “chapters” (groups) of 

commodities, both at the NUTS-2 and NUTS-3 regional levels1. It also provides digitized road, inland waterways 

(IWW) and railway networks. The files containing these networks must, however, be reshaped as they cannot directly 

be used for transport assignment.  

In order to compute the total cost (C) and transit times (T) of transport for each mode, OD pair and group of 

commodities, the Nodus transportation modeling software is used (Jourquin and Beuthe, 1996; Jourquin, 2005). After 

a Box-Cox transformation (Box and Cox, 1964), these variables serve as input for an aggregated McFadden 

conditional logit (McFadden, 1973) modal choice analysis. 

Once estimated, the validation of the models proceeds at two different levels, similarly to the approaches discussed 

by Zhang (2013) and Jourquin (2016):  

• From a “node” point of view, for which a comparison of the calculated modal split for each origin-

destination pair with the ones found in the ETIS matrixes is performed;  

• From a “link” perspective, comparing the calculated flows on the different links of the networks to the 

flows obtained from the assignment of the each ETIS modal demand matrix on their respective networks.  

Actually, the paper separately analyzes two data subsets: the first one covers continental Europe, using NUTS-2 

OD matrixes, the second covers a limited region around the Benelux2 countries (“Benelux+”) with more disaggregated 

NUTS-3 data. On each dataset the conditional logit model is separately estimated for each group of commodities and 

the corresponding own and cross transport demand elasticities are calculated. As the two data bases differ by their 

level of aggregation, a comparison of the derived elasticities provides some insight on the impact of the two different 

geographical granularities.  

Next to these values, the transportation modeling permits the calculation of some arc-elasticities. Section 5.4 

explains how this alternative method can provide “composite” elasticities, characterized by a simultaneous variation 

of the two explanatory variables. 

This study used only open-access data and cross-platform open-source software. The whole model, including the 

data preparation steps, runs on Mac OS, Linux and Windows computers. 

2. Input data 

2.1. Transportation demand and digitized networks 

 

ETISPlus gives public access to several deliverables and many data, among which origin-destination matrices and 

digitized networks. In the framework of this paper, the OD matrices for the year 2010 are used, both for the NUTS-2 

 

 
1 The Classification of Territorial Units for Statistics (NUTS = ‘Nomenclature des unités territoriales statistiques’ in French) is a European 

geocode standard for referencing the subdivisions of countries for statistical purposes. 

2 “Benelux” stands for Belgium, the Netherlands and Luxembourg. 
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and NUTS-3 regional levels. This dataset is available in CSV format and easy to handle. An OD matrix is available 

for each of the three transport modes of interest with data for 10 categories of commodities (NST/R chapters 0 to 9). 

Information about intermodal transport and terminals is not included in these modal matrixes. Therefore, intermodal 

transport chains cannot be identified, and this type of transport is thus not included in our analysis. The three modal 

matrixes are merged in order to obtain the total demand, expressed in tons for the year 2010, regardless of the used 

mode. Henceforth, a modal choice model applied to this merged matrix can provide estimations of each mode demand 

function and their modal split, which can be assessed by comparison with the original modal matrixes.  

The networks are available via a bulk download of ETIS-Netter, in the ESRI shape-file format. Even if the 

downloaded files can be visualized directly in a GIS software, the networks cannot be directly used for assignments. 

Some important manipulations are needed to make them “assignment compatible”. Among the main transformation 

steps, connectors are generated from each centroid to the modal networks whenever some demand or supply exists for 

a mode in the region the centroid belongs to for at least one group of commodities. A connector links a centroid to the 

nearest point on the network of the same mode within the NUTS region, or, if no such point exists, to the closed point 

on the network outside the region. The connectors are of the same mode as the network they connect. As intermodal 

transport is not explicitly modeled, they are not used to simulate a pre- or post-haulage by truck. 

The resulting networks, illustrated by Figure 1, contain 1,177 centroids for the NUTS-2 regions, 2,321 centroids 

for the NUTS-3 level, 58,687 road links, 1,641 inland waterways (IWW) links and 10,282 railroad links. These 

networks (and the OD matrixes) actually cover more regions than those analyzed and modelled in this paper: 

• The European model (Figure 2) covers the countries belonging to the European Union (EU) or to the European 

Economic Association (EEA), with the exception of some island countries, like Cyprus, Eire, Malta and United 

Kingdom, plus some other islands or very peripheral zones within countries.  

• The “Benelux+” model (Figure 3) covers the area of Belgium, the Netherlands and G.D. of Luxembourg, plus 

some NUTS-2 regions in the North of France and Western Germany3.  

These maps also show that the sizes of the NUTS-2 regions are almost homogenous across countries. This is not 

true for NUTS-3 regions, which are for instance noticeably smaller in Germany than in France. This may introduce 

some bias in the Benelux+ model. 

Figure 1: ETISPlus networks imported in Nodus 

 

 
3 The exhaustive list of the regions included in both models can be obtained from the authors.   
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Figure 2: Coverage of the European model (NUTS-2) 

Figure 3: Coverage of the Benelux+ model (NUTS-3) 
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Table 1 shows that, even if the European model covers a larger region, the demand matrixes for the Benelux+ 

model contain many more cells, as it contains more disaggregated data.  

Table 1: Sizes of the retained demand matrixes 

  OD cells with non-zero demand Market shares (tons) 

Model Granularity Road IWW Rail Merged Road IWW Rail 

Europe NUTS-2 339,621 9,406 47,255 346.333 79% 7% 14% 

Benelux+ NUTS-3 1,485,290 58,040 178,696 1.582.142 75% 17% 8% 

 

2.2. Total cost functions and transit times 

 

The models developed in this paper use the total cost C and the transit time T of transport4 for each mode on each 

OD relation and for each group of commodities. The cost data is the same as the one used in Beuthe et al. (2014a and 

2014b).   

The most recent release (7.0, http://nodus.uclouvain.be/) of Nodus (Jourquin and Beuthe, 1996) allows retrieving, 

for each OD pair, each mode and each group of commodities, the loading, unloading, transit and transshipment costs. 

These costs include those of labor and capital, fuel, maintenance, insurance, etc… as explained in Beuthe et al. 

(2014a). Beside these costs, the total transit times (travel time + loading and unloading durations) are available. 

Actually, the C and T values are computed from the results of an assignment of each observed modal OD matrix on 

its corresponding digitized network. Thus, for each OD relation and each group of commodities, a total cost and a 

total transit time are obtained for each available mode along with the transported tonnage. When several types of 

barges can navigate on an OD relation, the one with the cheapest total cost is applied in the modal choice model. In 

the context of this paper, costs are defined for one type of truck and train, but six types of barges (CEMT classes 2, 3, 

4, 5a, 5b and 6). All these barges cannot be used everywhere on the inland waterways network, as their usage is limited 

by the gage of the rivers. 

The loading and unloading costs ld_cost and ul_cost are fixed costs, though they vary with the mode and the 

transported goods. Transshipment costs are not defined as intermodal transport is not explicitly modeled (see also the 

definition used for the connectors in section 2.1). The loading factors are taken from the ECCONET research project 

presented in Beuthe et al. (2014b). They are exogenous but specific for each group of commodities and type of vehicle 

(truck, train or one of the 6 types of barges).  The traveling unit cost, or moving cost, mv_cost depends on the length 

and average commercial speed per mode, as well as on the transported commodity g. For a given link l belonging to 

a network of mode m, or possibly a type of barge in the case of waterways, it is computed as:  
 

𝑚𝑣_𝑐𝑜𝑠𝑡𝑙,𝑚
𝑔

=  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑𝑚

𝑆𝑝𝑒𝑒𝑑𝑙,𝑚

∗ 𝑙𝑒𝑛𝑔𝑡ℎ𝑙 ∗ 𝑢𝑛𝑖𝑡 𝑚𝑣_𝑐𝑜𝑠𝑡𝑚
𝑔

 (1) 

 

As the unit mv_cost, expressed in t.km, also contains time-related costs, the Average speed / Speed ratio allows for 

taking into account higher/lower than average costs on slow/fast segments of the network. Indeed, Average Speedm 

represents the average speed for mode m on the total network and Speedl,m is the average speed on link l.  

The total cost 𝐶𝑚
𝑔

 of a route between an origin and a destination for a vehicle of type m transporting commodities 

of type g is thus equal to: 

 

𝐶𝑚
𝑔

= 𝑙𝑑_𝑐𝑜𝑠𝑡𝑚
𝑔

+ 𝑢𝑙_𝑐𝑜𝑠𝑡𝑚
𝑔

+ ∑ 𝑚𝑣_𝑐𝑜𝑠𝑡𝑙,𝑚
𝑔𝐿

𝑙  , (2) 

 

where L is the set of successive links representing the route. 

 

 
4 Only transportation related costs and durations are taken into consideration, ignoring other costs and times that can be encountered along the 

supply chain, such as warehouse costs for instance.  

http://nodus.uclouvain.be/
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Similarly, the total transit time has fixed elements (the loading and unloading durations (ld_duration and 

ul_duration) and a variable part (the travel duration that depends on the length and allowed speed on the successive 

links along the route, including the connectors). Thus: 

 

𝑇𝑚
𝑔

= 𝑙𝑑_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑚
𝑔

+ 𝑢𝑙_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑚
𝑔

+ ∑ 𝑚𝑣_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑙,𝑚
𝐿
𝑙  , (3) 

 

with  𝑚𝑣_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑙,𝑚 = 𝑙𝑒𝑛𝑔𝑡ℎ𝑙/𝑠𝑝𝑒𝑒𝑑𝑙,𝑚. (4) 

 

The presence of the length and speed variables in the definitions of C and T obviously implies that both variables 

are correlated. This correlation and its level will be discussed below. 

3. Modal choice model specification and estimation 

    Logistic modeling is currently the more common approach for predicting modal choices in transportation 

economics. Various models of that type are present in the literature, all purporting to handle adequately the available 

data and problem circumstances. Thus, we should start by considering several important features of the present 

analysis. 

Firstly, the two independent variables, generalized cost and transit time, as well as transport services demand and 

supply are different for each group of commodities. Hence, it is appropriate to estimate a separate model for each 

group of commodities. Also, the two variables being specific to each mode, but not to shippers, our analysis applies 

the McFadden’s conditional logit model:  

 

𝑃𝑟𝑚
𝑔

=
exp (𝛼𝑔𝐶𝑚

𝑔
+ 𝛽𝑔𝑇𝑚

𝑔
+ 𝛿𝑚

𝑔
)

∑ exp (𝛼𝑔𝐶𝑗
𝑔

+ 𝛽𝑔𝑇𝑗
𝑔

+ 𝛿𝑗
𝑔

)𝑛
𝑗=1

 , (5) 

 

where 𝑃𝑟𝑚
𝑔

 is the probability to choose mode m when transporting commodity g, and n represents the number of modes 

in the choice set. The conditional logit differs from the multinomial logit as g and g are not mode specific. However, 

since the model is solved separately for each group of commodities, these coefficients can vary from group to group. 

Obviously, we expect that these two coefficients have negative values. Finally, 𝛿𝑚
𝑔

 are the calculated intercepts for 

each mode and group of commodities.  

However, the OD matrixes specific to each group of commodities still contain aggregated data: besides cost and 

time, they contain the average modal choices and the corresponding total annual transport tonnage. Hence, we adopted 

a weighted logit methodology whereby the transported tonnages weight the mode choice observations in the log-

likelihood functions. This procedure does not entirely obviate some possible aggregation biases, but the fact that 

tonnages are not directly correlated with the two explanatory variables should substantially reduce the problem (Rich 

et al., 2009). 

Table 2: Available infrastructure and usage per mode 

  Networks access Observed usage 

 OD pairs Road IWW Rail Road IWW Rail 

Europe NUTS-2 346.333 100% 22% 98% 98% 2% 14% 

Benelux+ NUTS-3 1.582.142 100% 51% 98% 94% 3% 11% 

 

Another source of aggregation bias could result from an imperfect or incomplete specification of the transport 

networks that would not allow a correct assignment of the OD flows. A later section 5.3 comparing results obtained 

from NUTS 2 and NUTS 3 network specifications will illustrate this problem. On the other hand, the topology of the 

real networks is such that not all the transportation networks are available everywhere. Indeed, whereas road transport 

is always an option, railways and inland waterways are not present everywhere. Moreover, even if a mode is available 
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between an origin and a destination, it may not be used. Table 2 illustrates this problem. If access to road and railway 

networks from/to the centroids (as defined in section 2.1) is almost always possible, this is not the case for the IWW 

network that only connects 22% of the OD cells at the European level and 51% inside the Benelux+ NUTS-3 regions. 

The last three columns show that IWW and railway transport are only used in a very limited subset of the demand 

matrix. In order to resolve this technical problem of a non-existent demand for a mode at some OD, we made the 

following changes in the dataset: 

• The non-existent costs and transit times corresponding to the absence of a modal route between an origin and 

a destination are replaced by a very high value. 

• The null quantities corresponding to the non-usage of a given mode are replaced by a very small value. 

 

Finally, biases can result from an improper specification of the utility function in the logit model. For attenuating 

this problem, we chose to introduce the usual Box-Cox transformation of the two independent variables, the 

parameters of which affect the shape of the utility functions from a linear specification to convex or concave forms. 

Such a transformation appears in equation (6): 

 

𝑋𝑚
𝑔 (𝜆𝑚  

𝑔
)

=  {
𝑋𝑚

𝑔 𝜆𝑋
𝑔

− 1

𝜆
, 𝑖𝑓𝜆𝑋

𝑔
≠ 0

log(𝑋𝑚
𝑔

) , 𝑖𝑓 𝜆𝑋
𝑔

= 0

 (6) 

 

The optimal values of the two Box-Cox parameters will then improve the model’s maximum likelihood. To some 

extent, it may also contribute to resolving the problem of collinearity between the two independent variables which 

may induce biased estimates with, possibly, some unacceptable positive signs. Recently, Gaudry (2016) provided a 

thorough discussion of the proper methodology to follow for applying this complex approach, explaining that three 

factors at least should be taken into account when Box-Cox transformations are applied: the maximum likelihood 

value, the sign and size of the coefficients and their level of significance. 

Thus, in the present case, for each group of commodities, for each group of commodities g, a series of 𝐶
𝑔

 and 

𝑇
𝑔

combinations in the range [-2.4, +2.4] with a step of 0.1 are tested. Combinations are retained that maximize the 

likelihood of the model while proposing significant estimates with expected signs for the two estimators. 

 

Figure 4 illustrates the importance of looking at the signs of the estimated coefficients in the case of agricultural 

goods transports (NST/R 0) in the European model. Each curve represents the evolution of the max likelihood for a 

given value of 𝑇
0

 when 𝐶
0
varies from - 2 to 2, and the curve is visible only where the combination of lambda’s gives 

the expected negative signs for both estimators. Only three curves and one isolated point are drawn in order not to 

clutter the diagram.  

• The black square (located on an “invisible” curve) corresponds to the combination of lambda’s that maximizes 

the likelihood. However, as the sign of one of the estimators is wrong, this solution cannot be retained. 

• The optimal combination of lambda’s is represented by the dot on the plain curve (𝑇
0

 = -1) with 𝐶
0
= 0.4.  

• The curve corresponding to 𝑇
0

= 1 is only visible when 𝐶
0
is in the range [-0.8, -0.2] indicating that, for other 

values, the sign of one of the estimators is wrong. 

• The broken curve corresponding to 𝑇
0

= -0.2 is even more amazing, as expected signs are observed only for 

values of 𝐶
0
 in the ranges [-1.2, 0] or ≥ 0.8. 

 

For the case illustrated in Figure 4, C and T are almost perfectly correlated in the road and rail data, while the 

coefficient of correlation for IWW is equal to 0.87. After transformation of the two variables, the correlations are 

reduced to 0.79 for road, 0.78 for IWW, while it remains perfectly correlated for rail data. This shows how Box-Cox 

transformation can help to reduce correlation between the independent variables. 

Applying this methodology to our two models, we estimate the  𝛼𝑔, 𝛽𝑔and 𝑚
𝑔

 coefficients and the value of 𝐶
𝑔

 

and 𝑇
𝑔

  using the “mnLogit” R package (Hasan et al., 2016), a faster and parallelized version of the well-known 

mLogit R package (Croissant, 2013). With 10 groups of commodities and 2 models, 100 coefficients are estimated, 
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along with 20 combinations of lambda values. We present the results in terms of parameters significance levels in 

Table 3 and the rate of occurrence of lambda values in Table 4. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Max likelihood evolution for some lambda’s combinations (Europe, NST/R 0) 

          

As shown in Table 3, the t-values of the estimated variables’ coefficients5 are all highly significant except for two 

cases6: 𝛽2 and  𝛽7  for the European model and 𝛽2 for the Benelux+ model. Note that these coefficients appear to be 

very close to zero, indicating that transit time seems to have little importance in these specific cases. All other 98 

coefficients are significant despite the fact that two of the three modes are most often not used (Table 2). 

          Table 3: Significance of the estimators (t-values) 

 Europe NUTS-2 Benelux+ NUTS-3 

Estimator *** ** * .  *** ** * .  

𝛼𝑔 10 - - - - 10 - - - - 

𝛽𝑔 8 1 - 1 - 10 - - - 1 

𝑖𝑤𝑤
𝑔

 10 - - - - 10 - - - - 

𝑟𝑎𝑖𝑙
𝑔

 9 1 - - - 10 - - - - 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

 
5 As road is used as reference mode when solving the conditional logit, 𝑟𝑜𝑎𝑑

𝑔
is always set to 1. 

6 NST/R 7 corresponds to fertilizers and NST/R 2 to solid mineral fuels. 
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Finally, Table 4 summarizes the values of the optimal 𝜆𝑔 obtained for the 10 groups of commodities for C and T. 

Most values are in the range [-1, 1]. Note that a λ=1 defines a positive linear relation between the variables X and X(λ). 

In contrast, λ < 1 indicates an increasing relation with downward concavity in many cases, meaning that the marginal 

weight given to the variable is decreasing. Whereas λ >1 indicates an increasing relation with convexity and an 

increasing marginal weight, which appears to mainly affect the time variable.       

Table 4: Occurrences of 𝝀𝒈 values per range 

 Europe NUTS-2 Benelux+ NUTS-3 

𝜆𝑔 C T C T 

[-2.4, -2[ - - - - 

[-2, -1[ - 1 - 2 

[-1, 0[ 2 1 3 3 

[0, +1] 8 3 5 2 

]+1, +2] - 5 1 - 

]+2, +2.4] - - 1 3 

 

4. Validation of the models 

As outlined in the introduction, we performed a two-level validation. Firstly, an analysis of the correlation 

coefficients r between the calculated tonnages and those obtained from the ETIS data for each OD pair, each group of 

commodities and each mode. Secondly, an analysis of the r’s between the model assigned flows on the networks and 

those derived from the ETIS data for each mode.  

 

4.1. Validation at the OD cells level 

 

The modal choice model provides the tonnage transported by mode m between each origin O and destination D 

and for each group of commodities g. This dataset permits the computation of correlation coefficients between the 

calculated quantities and those given by the ETIS modal matrixes. The resulting r’s appear in Table 5. 

Table 5: r correlation computed at the OD level 

 Europe NUTS-2 Benelux+ NUTS-3 

Road 0.947 0.857 

IWW 0.688 0.690 

Rail 0.854 0.901 

 

Despite the fact that the total cost and transit time are the only explanatory variables, the model seems to perform 

reasonably well. Its lesser performance for inland waterways transports obviously results from the lack of availability 

of this mode in many regions, as shown in Table 2.   

 

4.2. Validation at the links level 

 

The validation presented in the previous subsection neglects the role that the network topology can play. As no 

observed count data is available along the segments of the networks, we used the data of separate assignments for 

each mode (the observed OD matrix of a mode assigned to its own network) as an approximation of the actual transport 

operations on each link. These reference flows are then compared to those obtained by a multimodal assignment 

procedure (Jourquin, 2005), which result is illustrated by Figure 5: the cheapest route is chosen for road and rail 

transport, whereas, for IWW transport, the route of the cheapest type of barge is chosen, taking into account that this 
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choice depends on the gage of the rivers along the itinerary. The modal shares are computed by a specific modal 

choice module developed for Nodus, which uses the 𝛼𝐶
𝑔

, 𝛼𝑇
𝑔

, 𝑚
𝑔

 coefficients and optimal 𝐶
𝑔

 and 𝑇
𝑔

 combinations 

computed by the econometric model. 

Table 6 gives the resulting correlation coefficients between the two sets of flows7 assigned to the same links. It 

shows that the results of the modal-split model and of assignments on each mode network are rather similar.  

 

Figure 5: Estimated multimodal assignment of the Benelux+ NUTS-3 model 

Table 6 : r coefficients computed at the link level 

 Europe NUTS-2 Benelux+ NUTS-3 

Road 0.974 0.959 

IWW 0.886 0.958 

Rail 0.880 0.877 

5. Calculating elasticities 

5.1. Methodology 

 

The values of the standard own and cross elasticities are derived directly from the estimated conditional logit with 

Box-Cox transformed C and T as independent variables:  

 

 
7 In order not to bias r, some links are removed from that calculus: the links connected to only two other links of the same mode, and from 

which it is not possible to change direction. Indeed, the flow on these links is always equal to the flow on their preceding and following links. 
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The direct cost elasticity of mode m choice probability for group g is  
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𝑔 .
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𝑔
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𝑔 =   𝛼𝑔𝐶𝑚

𝑔 𝜆𝐶
𝑔

  (1 − 𝑃𝑟𝑚
𝑔

) (8) 

 

whereas its cross elasticity with respect to the jth mode is: 

 

𝜕𝑃𝑟𝑚
𝑔

𝜕𝐶𝑗
𝑔 .

𝐶𝑗
𝑔

𝑃𝑟𝑚
𝑔 = −𝛼𝑔𝐶𝑗

𝑔 𝜆𝐶
𝑔 

 𝑃𝑟𝑗
𝑔

 (9) 

 

Obviously, similar formulae are found for the own and cross elasticities with respect to transit time. These formulae 

define the standard share elasticities. In the context of a discussion of logit modeling, Gaudry (2016) recently strongly 

recommended the use of a percentage point measure as proposed by Bolduc et al. (1989), which expresses the variation 

of the market share due to a 1% change in the independent variable. This little-known measure can be obtained by 

multiplying the above equations (8) and (9) by 𝑃𝑟𝑚
𝑔

, so that this probability reference level would not affect the value 

of the computed elasticity. Considering that the notion of share, or probability, corresponds to a percentage, it can be 

argued that this measure is a more reasonable estimate of share elasticity in the present modelling context. Indeed, it 

is the ratio of the percentage variation of the share to the percentage variation of an explanatory variable. In this paper, 

we will mostly stick to the conventional definition, as it will facilitate comparisons with other results in the literature. 

Nevertheless, the ‘percentage point-elasticity’ may reveal itself useful, in some instances, for a better understanding 

of different elasticity levels between modes or between different studies. In any case, when comparing different values 

of standard elasticity, one should always keep in mind that a small reference probability, or for that matter a small 

reference quantity, tends to increase the absolute value of elasticities8.  

 

5.2. Elasticity estimates 

 

Table 7 summarizes the elasticities for the two independent variables and for each commodity group; they are 

calculated from the logit models estimated separately over the European NUTS-2 and Benelux+ NUTS-3 databases. 

The table gives the extreme values (range) and the aggregated figures resulting from a weighted average of the group-

specific values. These elasticities relate to the complete set of origins and destinations, including those where choice 

is restricted to one or two modes.  

 

 
8 For help on this issue, let us remind that the elasticity of a theoretical decreasing linear demand function increases (in absolute value) with 

decreasing demand. 
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Table 7: Own and cross elasticities on total cost and transit time 

 Europe NUTS-2 

Share  Total cost elasticities  Transit time elasticities 

  Road IWW Rail  Road IWW Rail 

79% Road -0.09 to -2.56 0.04 to 0.27 0.03 to 1.91  -0.32 to 0.00 0.00 to 0.21 0.00 to 0.31 

  -0.29 0.07 0.20  -0.12 -0.08 0.17 

7% IWW 0.59 to 1.86 -0.52 to -2.68 0.03 to 1.53  0.00 to 1.75 -0.01 to -1.94 0.00 to 0.24 

  1.07 -1.05 0.24  0.45 -1.07 0.12 

14% Rail 0.63 to 2.05 0.03 to 0.25 -0.83 to -2.25  0.00 to 1.75 0.00 to 0.17 0.01 to -2.15 

  1.13 0.12 -1.26  0.44 0.07 -1.05 

         

 Benelux+ NUTS-3 

Share  Total cost elasticities  Transit time elasticities 

  Road IWW Rail  Road IWW Rail 

75% Road -0.03 to -1.18 0.00 to 0.26 0.01 to 1.07  0.00 to -0.83 0.00 to 0.45 0.00 to 0.13 

  -0.29 0.12 0.12  -0.18 0.14 0.07 

17% IWW 0.14 to 3.65 -0.02 to -3.60 0.02 to 1.30  0.00 to 1.63 0.00 to -1.60 0.00 to 0.14 

  1.09 -0.89 0.17  0.82 -0.91 0.08 

8% Rail 0.24 to 3.71 0.01 to 1.32 -0.18 to -4.82  0.00 to 1.92 0.00 to 0.45 0.00 to -2.53 

  1.00 0.24 -1.45  0.46 0.13 -0.80 

 

Some high (absolute) values appear in Table 7, like in the case of the – 2.56 own cost elasticity for trucking solid 

mineral fuels (NST/R 2) in the European model. This high value may partly result from a low share (20%) of road 

transport for this category of commodities. As explained above, the comparison and interpretation of standard 

elasticities require some precaution in the context of probabilistic models since these elasticities are not, technically, 

ratios of proportional variations. Thus, as an example, we can use the actual market shares (Table 2) for transforming 

the European NUTS 2 average standard cost elasticities for the three modes, respectively -0.29 (road), -1.05 (IWW) 

and -1.26 (rail), into the percentage point-elasticities –0.22, -0.08, and -0.18. Similarly, the average Benelux+ 

elasticities, -0.29, -0.89 and -1.45, are transformed into –0.27, -0.03 and -0.16. These lower values look more sensible. 

Obviously, it would be interesting to compare the cost elasticities presented in Table 7 with other values found in 

the literature, since published multimode analyses of freight transport elasticities cover a wide range of values. This 

diversity of results occurs because of differences in methodologies and available data, and differences between 

transport markets. We should keep such factors in mind for a fair understanding of calculated elasticities, their 

appropriate use in further modeling, as well as benchmark references in further studies. The reader will find in Beuthe 

et al. (2014a) a general overview and analysis of many studies striving to estimate transport elasticities in various 

contexts. Let us only mention here that our present estimates tend to be higher in absolute values than those we 

obtained in our previous paper and that their value range appears rather broad. The data may partly explain these 

differences, but the higher level of elasticities is certainly influenced by the different logit modeling: the present model 

with two Box-Cox transformed independent variables versus a simpler proportional logarithmic model (2014a) with 

only one variable (total cost), leading to values bound into the [0 - 1] range in absolute value9. 

Table 8 provides detailed information on elasticities for each group of commodities. It also contains the specific 

estimated lambdas as well as observed modal shares, which allow the reader to transform the standard elasticities into 

percentage ones. As already indicated in Table 3 almost all coefficients are highly significant. It clearly appears that 

time-elasticities are substantially weaker than cost-elasticities in both data sets. It is particularly the case for solid fuels 

 

 
9 For the corresponding econometric model, the direct elasticity formula would be  

𝜕𝑃𝑟𝑚
𝑔

𝜕𝐶𝑚
𝑔 .

𝐶𝑚
𝑔

𝑃𝑟𝑚
𝑔 =  −(1 − 𝑃𝑟𝑚

𝑔
). 
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since their time coefficient is less or not significant at all. The other striking case is the fertilizers in the European data 

set, which also exhibits a very weak significance. We see that some elasticities are even equal to zero, but that is 

because we used only two decimals in the tables. In the Benelux+ set, solid fuels obtain zero values for all the direct 

and cross-elasticities. Actually, this case combines two difficulties: the non-significant time-coefficient, and a not 

optimal λT = 2.4 because this value came up in computation against the 2.4 upper limit.  

Again, the percentage point-elasticities may provide a clearer perception of the effects induced by variations of 

independent variables. For instance, considering the case of solid fuels in the European model, we can use the actual 

market shares given in Table 8 for transforming the standard direct cost elasticities for the three modes -2.56, -1.59, 

and -0.83 into the percentage point-elasticities -0.51, -0.22, and -0.55. Similarly, for the case of iron ore and scraps, 

the direct cost elasticities -0.32, -2.68 and -2.10 are transformed into -0.27, -0.12 and -0.23. We see that the percentage 

point-elasticities exhibit a more regular pattern of price effects on demand. Indeed, it appears that the three effects on 

the solid fuels market are roughly twice as strong as the similar effects on the iron ore and scraps market. More 

generally, we observe differences between elasticities computed on the European NUTS 2 and Benelux+ NUTS 3 

datasets. 

Furthermore, we notice, in the first part of Table 8 on the European model, that all lambdas bearing on cost are 

< 1 and rather small in absolute value, which means that the negative effect is slightly marginally decreasing with 

cost. This is also the case in the second part of the table on the Benelux+ model, but with two exceptions for agriculture 

products and minerals & co. In these two cases, the negative effect of cost is progressively increasing, which indicates 

that many of these goods cannot bear a high transport cost. On the other hand, half of the lambdas bearing upon 

transport time are > 1 in the European model, meaning that the negative effect of time is marginally increasing with 

distance. The five concerned groups are metal products, machinery and packed containers, chemicals, fertilizers and 

solid fuels. Many of these goods are of higher values that require faster delivery to production and distribution chains. 

In the Benelux+ dataset, only chemicals, machinery and containers, and solid fuels transports show similar effects of 

transport time within the smaller Benelux+ area.  

These differentiated outcomes partly result from different mixes of goods10 within each group of commodities 

according to the travelled distance and destination; the higher density of the Benelux+ transport networks also must 

play a role. Whatever may be the case, these differences send us a warning that elasticities coming out of ‘simple’ 

econometric models need a careful evaluation considering the many factors that bear upon their estimates. Hence, it 

is appropriate to underline that, beyond the direct effects of cost and time via their coefficients, the lambda values 

reflect to some extent the weight that some other logistic factors bear on transport decisions. We could also interpret 

intercepts’ values in a similar way: indeed, they are not just ad hoc adjustment variables, but, actually, express the 

average relative effects of other missing logistic factors. Since, as it is usual, this model is normalized with a zero 

value assigned to the road-intercept coefficient, we observe that, in most cases, the estimated rail intercept is smaller 

than the road-intercept but larger than the IWW-intercept, what corresponds to the dominant position of road in most 

transport markets with rail coming in second place. There are also a few cases with positive IWW-intercepts, 

particularly when inland waterway takes a larger share like for petroleum and minerals transports in the Benelux+ 

area, where the IWW network is widely accessible. Thus, from all these points of view, our results look very coherent. 

Their diversity according to groups of commodities, like in our previous papers, indicate that one should worry about 

estimating models and elasticities on the basis of (too) aggregated data.  

Beyond these comments on our own work, the present paper limits its scope to themes explored by Rich et al. in 

their two papers (2009 and 2011). They developed an interesting analysis of the data spatial scope and zoning effects 

on elasticity measures. Indeed, Table 7, interestingly, suggests that these factors could affect our own results since the 

calculated elasticities are not similar in NUTS-2 and NUTS-3 models. Partial explanations are that the covered areas, 

the OD matrixes and their geographical dispersion are not identical. Likewise, the transport networks configurations 

and their accessibility show many differences. Besides these obvious reasons, the aggregation level of the data 

matrixes may also play a role, a problem to which Rich et al. give much attention.

 

 
10 See Wagner and Lemaitre (2002) for the list of commodities within each group. 
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Table 8 : Detailed Box-Cox  values and elasticities per group of commodities  

 Europe, NUTS-2  Benelux+, NUTS-3 
    Cost-elasticities Time-elasticities     Cost-elasticities Time elasticities 

  Mode Shares Road IWW Rail Road IWW Rail   Mode Shares Road IWW Rail Road IWW Rail 

Agriculture 

products 

λC = 0.4 Road 87.7 -0.18 0.04 0.13 -0.02 0 0  λC = 1.4 Road 90.5 -0.03 0.004 0.11 -0.18 0.04 0.02 

λT = -1.1 IWW 4.5 1.11 -0.76 0.13 0.17 -0.01 0  λT = -0.4 IWW 7.0 0.24 -0.05 0.03 1.63 -0.56 0.04 

 Rail 7.8 1.32 0.03 -1.46 0.17 0 -0.01   Rail 2.5 0.30 0.01 -0.48 1.92 0.05 -0.67 
                    

Foodstuffs 

and fodder 

λC = 0 Road 93.8 -0.09 0.06 0.03 -0.06 0.02 0.01  λC = -0.1 Road 91.7 -0.14 0.13 0.02 -0.13 0.05 0.01 

λT = -0.2 IWW 4.5 1.31 -1.34 0.03 0.87 -0.51 0.01  λT = -0.3 IWW 7.1 1.49 -1.74 0.05 1.39 -0.61 0.02 

 Rail 1.7 1.47 0.05 -1.53 0.92 0.02 -0.57   Rail 1.2 1.75 0.16 -2.02 1.58 0.05 -0.71 
                    

Solid fuels λC = 0.2 Road 20.0 -2.56 0.27 1.91 0 0.01 0.05  λC = 0.1 Road 17.9 -0.97 0.22 0.68 0 0 0 

λT = 1.3 IWW 13.7 0.59 -1.59 1.29 0 -0.04 0.03  λT = 2.4 IWW 23.4 0.15 -0.68 0.59 0 0 0 

 Rail 66.3 0.63 0.25 -0.83 0 0.01 -0.02   Rail 58.6 0.24 0.19 -0.43 0 0 0 
                    

Petroleum 
products 

λC = 0.6 Road 67.7 -0.63 0.17 0.23 -0.21 0.21 0.14  λC = 0.8 Road 59.8 -0.37 0.14 0.03 -0.76 0.45 0.03 

λT = 0.2 IWW 22.9 1.01 -0.59 0.10 0.38 -0.68 0.07  λT = -0.2 IWW 38.4 0.52 -0.22 0.02 1.10 -0.70 0.02 

 Rail 9.4 2.05 0.16 -1.91 0.62 0.17 -1.17   Rail 4.01.8 1.33 0.15 -1.33 1.71 0.28 -1.23 
                    

Iron and 

scraps 

λC = -0.2 Road 84.6 -0.32 0.13 0.26 -0.32 0.09 0.23  λC = 0.1 Road 88.1 -0.49 0.26 0.18 -0.09 0.05 0.03 

λT = 0 IWW 4.6 1.86 -2.68 0.21 1.75 -1.94 0.19  λT = 0 IWW 7.9 3.65 -3.60 0.43 0.65 -0.73 0.08 

 Rail 10.9 1.70 0.12 -2.10 1.75 0.09 -1.84   Rail 4.0 3.71 1.32 -4.82 0.64 0.26 -0.89 
                    

Metal. 

products 

λC = 0.4 Road 78.3 -0.35 0.04 0.35 -0.01 0.02 0.11  λC = -0.4 Road 78.4 -0.31 0.18 0.15 -0.21 0 0 

λT = 1.2 IWW 4.4 1.13 -0.91 0.31 0.02 -0.61 0.09  λT = -1.4 IWW 7.8 1.15 -2.26 0.25 0.86 -0.02 0 

 Rail 17.3 1.27 0.06 -1.61 0.03 0.05 -0.49   Rail 13.8 1.12 0.26 -0.98 0.70 0 -0.01 
                    

Minerals and 

build. 

materials 

λC = 0.5 Road 79.1 -0.25 0.04 0.14 -0.21 0.15 0.31  λC = 2.1 Road 78.2 -0.05 0.002 0.01 -0.40 0.29 0.11 

λT = 0.3 IWW 7.5 0.79 -0.52 0.11 0.68 -1.85 0.24  λT = 0 IWW 15.9 0.14 -0.02 0.02 1.46 -1.60 0.14 

 Rail 13.4 1.02 0.04 -0.89 0.82 0.14 -1.83   Rail 5.9 0.31 0.01 -0.18 1.38 0.45 -1.83 
                    

Fertilizers λC = -0.1 Road 34.2 -1.55 0.07 1.60 0 0 0.02  λC = -0.1 Road 27.6 -1.18 0.20 1.07 -0.83 0 0.01 

λT = 2.0 IWW 4.3 0.88 -2.61 1.53 0 -0.05 0.02  λT = -1.5 IWW 9.1 0.47 -1.90 1.30 0.40 -0.01 0.01 

 Rail 61.6 0.80 0.14 -1.00 0 0 -0.02   Rail 63.2 0.45 0.19 -0.66 0.31 0 0 
                    

Chemical 

products 

λC = 0.2 Road 80.2 -0.46 0.15 0.27 0 0.03 0.07  λC = 0.4 Road 79.3 -0.61 0.26 0.21 0 0.05 0.07 

λT = 1.8 IWW 9.5 1.70 -1.51 0.19 0 -0.34 0.05  λT = 2.2 IWW 15.4 2.15 -1.49 0.24 0 -0.30 0.07 

 Rail 10.3 1.99 0.19 -2.25 0.01 0.08 -0.58   Rail 5.3 2.87 0.34 -3.82 0 0.11 -1.16 
                    

Machinery 

and 
containers 

λC = 0.1 Road 86.5 -0.18 0.05 0.13 -0.01 0.08 0.20  λC = 0.6 Road 85.2 -0.37 0.13 0.23 0 0.12 0.13 

λT = 1.3 IWW 5.5 1.01 -0.89 0.09 0.04 -1.43 0.13  λT = 2.3 IWW 10.0 2.05 -1.20 0.22 0 -1.14 0.13 

 Rail 8.0 1.23 0.06 -1.43 0.10 0.10 -2.15   Rail 4.8 2.31 0.17 -4.32 0 0.18 -2.53 
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Many similarities exist between Rich et al. work and this paper: both models use a weighted logit with 

disaggregated demand matrixes per group of commodities and rely on a transport assignment model. Many of their 

comments on groups’ elasticities are similar to ours. Nevertheless, four main differences can be pointed out: 

• The geographical scope is very different since Rich et al. are mainly concerned by the Oresund region 

(Denmark and Sweden) problems; 

• They pay a special attention to the crossings (by ferry or bridge), using a nested structure for the mode-crossing 

choice model; 

• The transportation modes of interest are different: beside road and railway transport, they introduce maritime 

shipping, combi-road and combi-rail, but barge transport on IWW is not included; 

• No Box-Cox transformation is applied. 

 

Rich et al. acknowledge that their elasticities are rather low (in absolute value) and, actually, lower than those 

found in the literature as shown in Table 9 for the price/cost elasticities11. They are also lower than elasticities we 

previously obtained; and lower than elasticities now obtained with different data and a different modeling (Table 10).  

Table 9 : Multi-modes direct price/cost elasticities (cross section) 

 Road IWW Rail 

Levin (1978) - - -0.25 to -0.35 

Oum (1979) -0.41 to -1.07 - -0.46 to -1.20 

Friedlander and Spady (1980) -0.14 to -1.72 - -1.45 to -4.01 

Friedlander and Spady (1981) -0.83 to -1.81 - -0.37 to -1.16 

Kim (1987) -0.10 to -1.24 - -0.12 to -1.73 

Oum (1989) -0.69 - -0.60 

de Jong (2003) -0.40 to -1.01 - -1.40 to -3.87 

Rich et al. (2011) -0.01 to -0.13 - -0.10 to -0.40 

Beuthe et al. (2014a) -0.01 to -0.83 -0.39 to -0.99 -0.54 to -1.00 

Table 10: Comparison with elasticities from Rich et al. (2009) 

 Rich et al. (2009) Own computation (NUTS-3) 

 Cost Time      Cost             Time 

Road 0.00 to -0.13 0.00 to -0.14 -0.03 to -1.18 0.00 to -0.83 

Rail -0.10 to -0.40 -0.08 to -0.42 -0.18 to -4.82 0.00 to -1.83 

 

Their main explanation is that the choice between modes is much restricted in their study as trucking is the only 

mode available in many zones, so that a change in price or transport quality cannot have a strong impact of the 

transported volumes, a phenomenon they convincingly identify as a case of structural inelasticity. In our case, the 

previous Table 2 shows that this problem is somewhat attenuated, as there is practically always competition between 

two modes in the NUTS-2 as well as in NUTS-3 data (road and rail). Our aggregated direct cost elasticities for the 

European model, respectively -0.29 (road), -1.05 (IWW) and -1.26 (rail), appear more consistent with what can be 

found in other references. It is also noticeable that Rich et al.’s travel cost and travel time own elasticities are very 

similar, while our present model produces transit time elasticities that are lower (in absolute value) than cost 

elasticities. 

In their second paper (2011), they also show how they obtain different elasticity levels for different levels of 

competition between modes throughout Scandinavia. Hence, they warn that aggregation of data may induce bias in 

 

 
11 Elasticities given in Table 9 are taken from papers that consider cross-section data and a range of commodities. For more details, see Beuthe 

et al. (2014a). 
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estimation if it affects the representation of the network and the actual competitive situation between modes. In order 

to illustrate this problem, we model the same geographical market with two different sets of data. The first one covers 

the Benelux+ area at the NUTS-2 level, and the second covers the same area at the NUTS-3 level, but without the 

inner traffic inside each NUTS-2 region. In this way, the geographic area and the total demand are identical for both 

models. The difference is that the flows between two NUTS-2 regions are distributed among more centroids in the 

NUTS-3 model, and that the NUTS 3 transport network is denser with more availability of IWW transport solutions. 

Table 11: Impact of the geographical aggregation level 

 Total cost elasticities 

  NUTS-2  NUTS-3 

Share  Road IWW Rail  Road IWW Rail 

74% Road -0.28 0.08 0.12  -0.31 0.21 0.12 

18% IWW 0.80 -0.44 0.15  0.82 -1.01 0.15 

8% Rail 0.87 0.14 -1.33  1.00 0.26 -1.33 

 

Table 11 gives the corresponding elasticities calculated with the same methodology we use in this paper. In the 

case of road and rail transport, the geographical aggregation level seems to have no real impact on direct and cross 

cost elasticities. This is an expected result from reading Table 2 (network access), which suggests that the availability 

rate of these two modes does not play much of a role. In contrast, the availability of waterways is much better at the 

NUTS-3 level, which explains the higher absolute value of elasticity computed from the NUTS-3 data. This 

demonstrates the bias that an aggregation of data may produce. In this simulation, the lower cost elasticity results from 

the reduced density of the IWW network that the aggregation at the NUTS 2 level generated. 

 

5.3. Arc-elasticity calculations 

 

It is also possible compute arc-elasticities with Nodus. Indeed, after estimating a model, the value of an 

independent variable can be modified (reducing the total costs for a mode by 5% for instance) before running a new 

modal choice/assignment procedure with the estimated parameters of the corresponding conditional Box-Cox logit 

model. This two-steps procedure provides the data necessary for computing arc- elasticities using formula (10)12, in 

which the Q variable corresponds to transported volumes. Applied to the Benelux+ NUTS-3 dataset, its results appear 

in Table 12, along with the values published in Table 7 for the same scenario. 

 

휀𝑚,𝑗
𝑔

=
(𝑄𝑚1

𝑔
− 𝑄𝑚2

𝑔
) 𝑄𝑚1

𝑔
⁄

(𝐶𝑚1
𝑔

− 𝐶𝑚2
𝑔

) 𝐶𝑚1
𝑔

⁄
 (10) 

Table 12: Standard vs arc elasticities  

Total cost elasticities for Benelux+ NUTS-3 

 Standard elast. (Table 7)  Arc elasticities (-5%) 

 Road IWW Rail  Road IWW Rail 

Road -0.28 0.13 0.12  -0.27 0.13 0.12 

IWW 1.08 -0.91 0.17  1.07 -0.93 0.18 

Rail 0.99 0.24 -1.38  1.01 0.22 -1.40 

 

 

 
12 On the use of various elasticity formulae see for instance T. Litman (2017). 
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It appears that the values obtained with this method are very comparable to those presented earlier, what validates 

the method. This opens the way to more flexible elasticity calculations, where several independent variables vary 

together or where a same component, present in the definition of several independent variables, changes. In the present 

case, travel speed influences the total cost (Eq. 3) as well as the total transit time (Eq. 4). Indeed, travel speed has an 

impact on the cost incurred during the displacement of a vehicle (but not the loading and unloading costs) and on the 

travel time (but not the time needed to load and unload the vehicles). Such ‘composite’ arc elasticities appear in Table 

13, assessing the total effect of a speed increased by 5%. 

These “composite” elasticities appear slightly lower than the cost elasticities published in Table 7, which is an 

expected result. Moreover, the difference is smaller in the European model that in the Benelux+ model, because travel 

speed does not affect the loading and unloading costs. Indeed, the relative weight of these costs in the total cost 

diminishes with distance.  

Table 13: “Composite” arc elasticities on travel speed (+5%) 

 Europe NUTS-2  Benelux+ NUTS-3 

 Road IWW Rail  Road IWW Rail 

Road -0.28 0.08 0.10  -0.29 0.11 0.04 

IWW 1.02 -1.01 0.12  1.21 -0.76 0.07 

Rail 1.18 0.09 -0.65  1.03 0.16 -0.50 

 

6. Conclusions 

The contribution of this paper starts with the implementation of the ETISPlus database into the Nodus multimodal 

transport network model for freight analysis. This combination provides a good basis for developing comprehensive 

analyses of freight transport policies and handling comparative work on different econometric methodologies in the 

field. 

The paper then further develops a line of research started with our review paper (Beuthe et al., 2014) on transport 

elasticity studies, reporting some new results from the application of an aggregated conditional logit model with Box-

Cox transforms of two explanatory variables, i.e. total transport cost and total transit time. Two separate sub-networks 

are defined with different data aggregation levels: the European continental network at the NUTS-2 level and the 

Benelux+ area with a denser network and OD matrix at the NUTS-3 level. The comparison of these two different sets’ 

results make it possible to investigate to some extent the problems of bias in aggregation and of structural inelasticity 

put forward by Rich et al. (2009 and 2011).  

The main results are:   

• A comprehensive discussion about the choice of the lambda to use for Box-Cox transformation. It comes out 

that these “optimal” lambda’s, and their influence on the shape of the transformed variables, can further be 

interpreted relatively to the nature of the transported goods.   

• A satisfactory estimation of the model applied to the two subsets for 10 different groups of commodities, with 

validations at the levels of OD cells and traffic on the links. 

• Direct and cross standard point-elasticities are computed for each group of commodities. Their values are 

globally comparable to those published in the literature. However, they are stronger than the figures published 

in our 2014a paper because of obvious differences in modeling. They are also much stronger than Rich et al.’s 

elasticities, which, they convincingly argue, illustrates a problem of structural inelasticity over the Oresund 

area.  

• Our transit time elasticities are lower than our calculated cost elasticities, whereas they are of equivalent 

magnitude in Rich et al.’s case.  

• Beside the values of the lambda’s, the intercepts can also be interpreted. Both reveal, to some extent, the role 

of ‘qualitative’ factors, i.e. other logistic factors beyond direct cost and time variable.  

• Percentage point-elasticities are referred to in some cases for comparing elasticities obtained for different 

goods or from the two data sets. Even if less used in the literature, these are more appropriate in a context of 
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probability modelling, and they usefully cancel the influence of the reference probabilities’ level. Hence, next 

to the usual standard elasticity values, we give the modal shares for each category of goods, which allow the 

reader to calculate the percentage point-elasticities in sectors of interest.  

• For examining the influence of the geographic aggregation, the Benelux+ network was also set up at the 

NUTS-2 level. No influence of that different level of aggregation affected the cost elasticities of trucking and 

rail, since it is not likely that the availability of these two modes is changed. However, the IWW cost elasticity 

is stronger at the NUTS-3 level, showing the effect of a reduced transport network generated by the data 

aggregation at the NUTS 2 level. This means that, as far as IWW transport is concerned, the meaning or the 

use of IWW elasticities computed on the NUTS 2 data may be problematic, at least in some parts of the 

European space.  

• Some arc-elasticities are computed using the results obtained from two network assignments with a small 

variation on speed, which bear upon both the total cost and time variables. This shows how it is possible to 

compute “composite” elasticities resulting from simultaneous variations of different variables. 

 

The presented methods, however, suffer from a limitation common to most modal choice models. Indeed, they analyze 

static data of modal shares so that induced demand is not taken into account. From a more dynamic perspective, this 

means that our elasticities are probably slightly underestimated. As already pointed out in section 2 (input data), 

another weakness of the presented models is that they neglect intermodal transport or, more generally, the complexity 

of transportation chains, that cannot be identified in the used OD matrixes. Finally, the interpretation of the Box-Cox 

lambda’s relatively to the commodities that are transported is limited by the one-digit NST-R level of aggregation. 

Indeed, some NST-R “chapter” contains goods of very different nature. Using data organized using a two-digits NST-

R classification or any other more disaggregated classification could be helpful. This opens the way to new avenues 

for future research... 
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