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Abstract 

In this paper, we analyse the evolution of air transport connectivity in Europe for the period 2009-2016 and make a comparison 

between central and remote regions. We collect data regarding the intra-European air routes to create a dataset containing 

connections between pair of regions. Then we compute a connectivity measure for each region in the dataset. Finally, we study 

how connectivity has evolved in the period analysed, trying to identify, through an econometric approach considering time and 

spatial effects, factors affecting its evolution and controlling whether these factors have different influences in core regions 

compared to remote ones. The results show significant differences between remote and core regions. More specifically, we find 

evidence that higher GDP and population’s density leads to a better connectivity. We find evidence that LCCs activity is a negative 

determinant of connectivity, especially in remote regions. 
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1. Introduction 

The air transportation sector is growing sharply during the last years, as a sign of the worldwide population’s 

increasing demand for mobility. The International Civil Aviation Organization (henceforth ICAO) reports that a new 

record of 4.1 billion passengers were carried by the aviation industry in 2017, a +7.6% over 2016.1 

Forecasts by Airbus and Boeing show that this rapid growth tend to occur also in the future. Airbus estimates a 

+2.9% compounded annual growth rate (CAGR) for the period 2019-2036, while Boeing for the same period estimates 

a +3.2% CAGR.2 Several contributions (Alderighi & Gaggero, 2017; Allroggen & Malina, 2014; Bilotkach, 2015; 

 

 
1 See ICAO at the webpage www.icao.int/Newsroom/Pages/Continued-passenger-traffic-growth-and-robust-air-cargo-demand-in-2017.aspx 
2 See at Airbus website the Airbus Global Market Forecast 2017-2036, and at Boeing website the Current Market Outlook 2017 

http://www.sciencedirect.com/science/journal/22107843
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Blonigen & Cristea, 2015; Brueckner, 2003; Brugnoli et al., 2018; Percoco, 2010) have also shown that the aviation 

industry is an essential input for local economic growth.3 

 

This growing importance of air transportation for both the population life standard and for local economic growth 

points out the issue of granting equitable connectivity to air services to all people and territories within a country or a 

community of countries (e.g., the European Union – EU). When considering how people and firms are served by air 

transportation, an important issue to evaluate is the different access levels provided to core and remote regions. As 

stated by Fageda et al. (2016), there is a growing awareness that air transportation is a crucial factor in supporting 

mobility in peripheral or remote locations. Remoteness might be caused by being an island, a landlocked region or a 

region that has a low stock of infrastructure, areas which are characterised by connectivity problems that may be an 

obstacle for mobility and therefore their growth. On the contrary, core regions’ success is due among other factors to 

their agglomerative capability and thus they act as an attractor for the aviation network.  

 

In remote regions, on top of aviation being the only mode of transportation granting connection to mainland and to 

the worldwide network in a reasonable amount of time, there is very frequently the problem of low demand, so that 

airlines do not find convenient to offer regular flight services (Bitzan & Junkwood, 2006). Fageda et al. (2016) 

highlight that, by regarding mobility as a public good - so that everybody should have equal access, similarly to 

education or health care - in many countries populations from remote regions enjoy subsidies for using aviation from 

the national or local government. These subsidies, such as discounts and public service obligation (PSO), are 

particularly relevant on islands where surface transportation to mainland is not available, and maritime transportation 

is an option only for short trips. For instance, Calzada & Fageda (2017) argue that the EU allows member states to 

impose PSO for scheduled air service on thin routes connecting with an important airport, to stimulate local economic 

and social development.  

 

While previous contributions have mainly focused on the competitive effects of subsidies and PSO (see Fageda et 

al., 2018 for a comprehensive review), there are no attempts available, to the best of our knowledge, regarding 

measures of different connectivity to the air services between remote and core regions, and, above all, on the factors 

that may explain different access levels and different variations of access levels over time. This is the goal of this 

paper, that studies the determinants of connectivity to aviation in Europe, with a focus on remote and core regions, 

and on the possible different contribution to equal access provided by full service carriers (FSC) and low cost carriers 

(LCC). 

 

The different airline typical network organizations may be an argument for considering the different impact of 

FSCs and of LCCs on connectivity, especially in remote regions. FSCs have routes mainly organized as a hub-and-

spoke (H&S) network, while LCCs operate point-to-point (PTP) connections. In many remote regions demand is low, 

making the possible route a “thin” connection. In this case, it is unlikely that a LCC may provide a PTP flight, given 

the low demand. It is possible to think a PTP flight on a thin route between a remote region and the mainland only 

with very low frequency, which makes the access to aviation very low. However, as pointed out by Fageda et al. 

(2016), the H&S network of FSCs may help in providing good access to remote regions: even if the route is thin, FSCs 

may operate small size aircraft connecting the remote region to their hub. In this case the demand coming from the 

remote region can feed the long-haul or medium-haul flights departing from the hub. If this argument is proved 

empirically, FSCs should be a positive determinant of equal connectivity to aviation between remote and core regions. 

 

 
3 Alderighi & Gaggero (2017) show that air transport is a positive determinant of Italian export of manufacturing goods; Allroggen & Malina 

(2014) find that airports with good air services for business travellers are a determinant for local economic growth in Germany, while Bilotkach 
(2015) provides evidence that aviation contributes to employment and number of business establishments in US. Blonigen & Cristea (2015) 

exploit a natural experiment related to the air service liberalization in the US to show that aviation has a positive impact on local US GDP. A 

positive effect of aviation on local US employment is found also by Brueckner (2003), while Brugnoli et al. (2018) exploits a natural experiment 

in Italy (the de-hubbing of Alitalia from Milan Malpensa International airport) to identify that aviation has a positive impact on trade, particularly 

in high-tech industries. Percoco (2008) finds that air services have a positive effects on Italian local employment with spillover effects in regions 
close to that where the airport is located.   
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However, LCCs may have an incentive to connect remote regions if they are touristic destinations: by taking into 

account for possible seasonality effects, LCCs may provide good PTP connections to remote regions. After controlling 

for possible tourist flows, it is therefore interesting to evaluate empirically whether LCCs are a positive determinant 

of access to aviation in remote regions, and if they contribute to reducing over time the difference between remote 

and core regions.  

 

We analyse these issues by building a new data set that combines aviation activity and socio-economic variables 

at the NUTS 2 level in Europe, for the period 2008-2015. We investigate this data set by designing a panel data 

econometric model that identifies the determinants of the NUTS 2 level EU regions connectivity to the aviation 

network and of the time variations of the NUTS 2 level connectivity.  

 

2. Related Work 

Most of the previous contributions have investigated the impact of civil aviation on economic activity, not on 

connectivity with focus on remote and core regions. The link between air transportation and regional economic growth 

is well established in the literature. Many papers have studied the impact of civil aviation on local employment (Benell 

& Prentice, 1993; Button et al., 1999; Button & Taylor, 2000; Brueckner, 2003; Green, 2007; Percoco, 2010; Neal, 

2012; Mukkala & Tervo, 2013), on income (Button et al., 2009; Sellner & Nagl, 2010; Mukkala & Tervo; Button & 

Yuan, 2013; Allroggen & Malina, 2014; Baker et al., 2015; Baltaci et al., 2015; Blonigen & Cristea, 2015; Fernandes 

& Pacheco, 2015; Hu et al., 2015), population growth (Green, 2007; Blonigen & Cristea, 2015) and on wages 

(Bilotkach, 2015). Brugnoli et al. (2017) use a dataset for Italy between 2004-2014 to find that civil aviation had a 

positive impact on international trade, with elasticity ranging from +0.003% to 0.13% in the different econometric 

specifications, and that this effect is stronger in high-tech and medium-tech manufacturing sectors. 

In the early 1990s, the OECD developed a three-way classification of the regions’ typology (predominantly urban; 

intermediate; predominantly rural) based on the population density of districts (LAU2). In 2009, the OECD extended 

its classification to include the remoteness dimension, along the lines proposed in Dijkstra and Poelman (2008). 

However, remote areas might be also represented by those regions that under strict market criteria would not be 

transport supplied due to lack of commercial profitability. This has led to the development of different public policies 

to support connectivity in remote regions. According to Fageda et al. (2018) these policies are 1) route-based policies; 

2) passenger-based policies; 3) airline-based policies; and 4) airport-based policies. 

The paper is organized as follows. Section 2 offers a literature review. Section 3 discusses our methodological 

approach and presents the econometric model. Section 4 describes the available data sets, the data mining process, 

and descriptive statistics in the econometric model variables. Section 5 presents our empirical results, while Section 

6 concludes the paper and highlights some possible policy implications. 

 

3. Methodological Approach 

As mentioned in the Introduction, our main goal is to estimate the signs and the magnitude for the regional factors 

influencing air transport connectivity inside Europe differentiating between core and remote regions. 

As a first step in defining our methodological approach to achieve such goals, we establish our research questions. 

First, we consider some determinants related to regions’ characteristics – such as GDP– that may influence the demand 

of connectivity, then we focus on some network’s specific variables – such as the LCCs share– since LCCs rely more 

on point-to-point rather than on hub-and-spoke service.  

Higher GDP levels may incentive carriers to invest in new routes, hence our first research hypothesis is as follows.  

RH1: GDP may be a positive determinant for airline connectivity. 

 

Similarly, higher levels of population’s density, may incentive carriers to invest in new routes. This argument is the 

basis of our second research hypothesis.  

RH2: Populations’ density may be a positive determinant for airline connectivity. 
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We also want to measure remote regions’ connectivity. Often, in remote regions, aviation is the only mode of 

transportation granting connection to mainland and to the worldwide network in a reasonable amount of time.  

RH3: Airline connectivity might be higher for remote regions. 

 

Aviation sector has been dominated by two business models, PTP and H&S, and connectivity may be related to the 

business model. Remote regions in order to increase their air connectivity must rely especially on H&S and in Europe 

H&S is mainly adopted by non LCCs, furthermore FSCs are seen also as a mean to reduce connectivity in remote 

regions . 

The different airline typical network organizations may be an argument for considering the different impact of FSCs 

and of LCCs on connectivity, especially in remote regions.  

FSCs have routes mainly organized as a hub-and-spoke (H&S) network, while LCCs operate point-to-point (PTP) 

connections. In many remote regions demand is low, making the possible route a “thin” connection. In this case, it is 

unlikely that a LCC may provide a PTP flight, given the low demand. In this case the demand coming from the remote 

region can feed the long-haul or medium-haul flights departing from the hub. If this argument is proved empirically, 

FSCs should be a positive determinant of equal connectivity to aviation between remote and core regions. 

RH4: LCCs’ activity may be a negative determinant for airline connectivity in remote regions.   

 

3.1. Measurement of Aviation Connectivity 

We considered flights departing and arriving in Europe from 2008 to 2016, aggregated them for the departure and 

arrival airport’s NUTS 2 region, and computed the minimum number of paths to reach each other region.4 Then we 

determined the value of Connectivity for each region by calculating the average number of paths required to reach all 

the other regions. Hence high connectivity levels are expressed with a value close to 1, whereas lower connectivity 

levels are expressed with a higher value of the variable Connectivity. In order to exclude regional routes, we dropped 

those connection with less than 208 flights per year (4 flights per week). For a clarifying example see Figure 1. 

 

Figure 1: Example of region’s connectivity 

 

 
4The NUTS 2 classification (Nomenclature of territorial units for statistics) is a hierarchical system for dividing up the economic territory of the 

EU for the purpose of controlling basic regions for the application of regional policies. We used the current NUTS 2016 classification, which is 
valid from 1 January 2018 and lists 104 regions at NUTS 1, 281 regions at NUTS 2 and 1348 regions at NUTS 3 level.  
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Figure 2: Map of Europe’s connectivity in the year 2016 

 

3.2. Identification of remote and core regions 

Regional dummy variables were created as control variables in order to identify remote and core regions. As for 

core regions, we chose the 10 European regions with higher GDP in 2015, listed in Table 1. 

 

Region Code Nation Region Name 

DE11 Germany Stuttgart 

DE21 Germany Oberbayern 

DE71 Germany Darmstadt 

DEA1 Germany Düsseldorf 

ES30 Spain Comunidad de Madrid 

ES51 Spain Cataluña 

FR10 France Île de France 

FR71 France Rhône-Alpes 

ITC4 Italy Lombardia 

ITI4 Italy Lazio 

Table 1: List of identified core regions 

 

Remote regions were chosen according to the 2009 OECD classification of remoteness. This classification refers 

to NUTS 3 regions, therefore we had to convert it for the NUTS 2 by computing the average value weighted by 

population. We followed two steps at NUTS 3 level. First, we include those regions that are defined as predominantly 

rural and remote by the OECD. More specifically: i) more than 50% of population live in rural areas; ii) less then 25% 
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of the population live in urban centres with more than 200.000 inhabitants and iii) driving time needed for at least 50% 

of the population of the region to reach a populated centre (at least 50.000 inhabitants) higher than 60 minutes. 

Secondly we analysed each island with an area smaller than 25.000km: if the driving/ferry time to the closest European 

inland city is more than 4 hours, the NUTS 3region is remote. This second step has been necessary because often 

remote islands were considered non-remote due to the presence of large cities in remote island (e.g. Canary Islands, 

Crete Cyprus, and Malta). The resulting remoteness has been extended to NUTS 2 level. We consider a NUTS2 remote 

if more than 50% of the population lives in a remote NUTS3 that belongs to that NUTS2.  

 

Region Code Nation Region Name 

BG33 Bulgaria Severoiztochen  

CY00 Cipro Cipro 

DK02 Denmark Sjælland 

EL41 Greece Βόρειο Αιγαίο (Voreio Aigaio) 

EL42 Greece Νότιο Αιγαίο (Notio Aigaio) 

EL43 Greece Creta 

EL62 Greece Ionian Islands 

ES42 Spain Castilla-La Mancha 

ES43 Spain Extremadura 

ES53 Spain Illes Balears 

ES63 Spain Ciudad Autónoma de Ceuta 

ES64 Spain Ciudad Autónoma de Melilla 

ES70 Spain Canarias 

FI1D Finland Pohjois- ja Itä-Suomi 

FI20 Finland Åland 

FR83 France Corse 

HR03 Croatia Jadranska Hrvatska 

HU22 Hungary Nyugat-Dunántúl (nord ovest)  

IE01 Ireland Border, Midland and Western 

ITC2 Italia Valle d'Aosta/Vallée d'Aoste 

ITG2 Italia Sardegna 

MK00 Macedonia Macedonia 

MT00 MT Malta 

NO02 Norway Hedmark og Oppland 

NO03 Norway Sør-Østlandet 

NO05 Norway Vestlandet 

NO07 Norway Nord-Norge 

PL32 Poland Podkarpackie 

PT20 Portugal Região Autónoma dos Açores 

PT30 Portugal Região Autónoma da Madeira 

RO11 Romania Nord-Ovest 

SE21 Sweden Småland med öarna 

SE31 Sweden Norra Mellansverige 

SE32 Sweden Mellersta Norrland 

SE33 Sweden Estremo nord 

UKK3 UK Cornwall and Isles of Scilly 

UKM5 UK North Eastern Scotland 

UKM6 UK Highlands and Islands 

UKN0 UK Northern Ireland 

Table 2: List of identified remote regions 
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3.3. Econometric Model 

Our aim is to identify the determinants of airline connectivity across NUTS 2 regions. Hence, we developed an 

econometric model to estimate the variation of possible determinants of airline connectivity and to provide empirical 

evidence of the possible effects of decisions that may indirectly affect connectivity. The model relies on a log-linear 

formulation in which some determinants are expressed in logarithms and others as dummy variables.  

 

The econometric model that we have estimated assuming panel data random effects is as follows: 

 

log(𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑗𝑦) = 𝛼 + 𝛽1 × log  (𝐺𝐷𝑃𝑗𝑦) + 𝛽2 × 𝑙𝑜𝑔(𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑗𝑦) + 𝛿1 × 𝑅𝑒𝑚𝑜𝑡𝑒𝑗 + 𝛿2 ×  𝐶𝑜𝑟𝑒𝑗 +

+1 × log (𝑡𝑜𝑢𝑟𝑖𝑠𝑚𝑗𝑦) + 2 × 𝐿𝐶𝐶𝑠ℎ𝑎𝑟𝑒𝑗𝑦 × 𝑅𝑒𝑚𝑜𝑡𝑒𝑗 + 𝜖𝑗𝑦,  (1) 

 

where j is the region, y is the year.  

 

We perform a second panel regression instrumenting the GDP with the share of tertiary educated population in 

order to overcome an eventual heterogeneous relation between a region’s GDP and connectivity.  

We also perform a third panel regression that takes into account the spatial effects, to see if the observed variables 

affect also nearby regions.  

 

The names and description of the variables included in the model are given in Table 1.  

 
TIME DESCRIPTION 

Connectivity jy Average number of paths to reach all the other regions  

GDP PPS per inhabitant 

Population Number of inhabitants 

Broadband % Households with broadband access 

Euro Euro area dummy (1 if yes) 

Density Population density  

Degree % of population holding a tertiary degree 

Hubj Hub airport dummy (1 if yes) 

Base Low cost base dummy (1 if yes) 

Seats Number of seats offered 

LCCseats Number of seats offered by LCCs 

Distance Average length of all routes starting in the region 

Frequency Number of flights starting in the region  

Remoteness The average weighted on the population of the NUTS3  

Remote Dummy indicating a remote region  

Core Dummy indicating a core 

HUB1jy Number of seats to hub regions 

BASE1jy Number of seats to low cost base regions 

HUB2jy Number of seats from hub regions divided by the region’s population 

BASE2jy Number of seats from base regions divided by the region’s population 

LCCsharejy modal share of LCCs 

Table 3: Description of Variables 

 

3.4. Spatial Effects 

In order to perform the analysis, we have to take into account also the fact that the connectivity of a region is 

influenced by the nearby regions. Therefore we need to implement spatial regression (spatial autoregressive models – 

SAR) 

SAR models extend linear regression by allowing outcomes in one area to be affected by: 

• outcomes in nearby areas,  
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• covariates from nearby areas, and  

• errors from nearby areas.  

 

These terms are borrowed from the time-series literature. In time series, an autoregressive AR(1) process is  

 

 

where 𝑦_(𝑡−1) is called the lag of 𝑦. In vector notation, L. is the lag operator, and the above equation could be 

written as  

 

 

 

Sometimes, AR(1) models also include autoregressive errors:  

 

 

where                            In that case, the equation becomes  

 

 

The parameter 𝜌 measures the correlation in the errors and is a parameter to be estimated along with 𝜑0 and 𝜑1.  

The time-series notation and jargon can be translated to the spatial domain. The lag operator becomes an N x N 

matrix W. What was L.y becomes Wy, which means matrix W multiplied by vector y. The SAR model corresponding 

to the above time-series equation is: 

 

 

The SAR model corresponding to the time-series equation with autoregressive errors is  

 

 

W is called a spatial matrix where it is a measure of proximity, therefore we include 𝜆𝑊𝑦 to allow nearby outcomes 

to affect outcomes. 

 

4. Data Set 

We built a panel data set included all scheduled flights intra Europe from 2008 to 2016. We aggregate this data for 

each European NUTS 2 region as to compute each region’s connectivity level. The source of these data is the Official 

Airline Guide (OAG) database. The flights have different destination (NUTS 2), distances, carriers (aggregated in full 

service carriers and LCCs), frequencies, and available seats. Regional connectivity level is then estimated as the 

average number of paths to reach all the other regions in the given year. We collected also Eurostat regional data for 

the 284 NUTS 2 regions, out of a total of 1,710 where there has been at least one schedule flight in the analysed 

timeframe. We also dropped those regions with not available GDP (Switzerland, Turkey, Montenegro, Iceland). Our 

observations correspond to  panel data set of 284 NUTS 2 regions (j = 1, 2, …., 284) and 9 years (y = 2008, 2009, …, 

2016). However, not all airports in those regions operated every year.  

We collected 2,556 observations and some descriptive statistics for the observed regions and their connectivity are 

shown in Table 2. The average number of steps to reach every European NUTS 2 region is 2.5. 

  

𝑦𝑡 = 𝜑0 + 𝜑1𝑦𝑡−1 + 𝜖𝑡                   (2) 

𝑦 = 𝜑0 + 𝜑1𝐿. 𝑦 + 𝜖                                 (3) 

𝑦 = 𝜑0 + 𝜑1𝐿. 𝑦 + 𝑢                                 (4) 

𝑢 = 𝜌𝐿. 𝑢 + 𝜖 

𝑦 = 𝜑0 + 𝜑1𝐿. 𝑦 + (𝐼 − 𝜌𝐿. )−1𝜖                  (5) 

𝑦 = 𝛽0 + 𝛽1𝑊𝑦 + 𝜖                  (6) 

𝑦 = 𝛽0 + 𝛽1𝑊𝑦 + (𝐼 − 𝜌𝑊)−1𝜖      (7) 
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VARIABLE OBS. MEAN ST. DEV. MIN MAX 

Connectivity 2,556 2.515 0.86 1.629167 6.97166 

GDP 2,556 25,983 12,245 6,700 178,200 

Population 2,556 1,804,622 1,509,814 27,153 12,100,000 
Density 2,556 449 1,188 2.8 11,290 

Degree 2,556 27.5 9.53 6.8 75 

Euro 2,556 0.61 0.49 0 1 

Tourism 2,556 1,158,482 1,999,757 11,895 17,200,000 

Hub 2,556 0.02 0.14 0 1 
Base 2,556 0.03 0.17 0 1 

Seats 2,556 2,470,148 5,002,502 0.1 36,400,000 

LCCseats 2,556 1,609,156 3,791,821 0.1 30,500,000 

Distance 2,556 843 626 0.1 3,142 

Frequency 2,556 18,594 35,471 0.1 257,289 
Remote 2,556 0.12 0.32 0 1 

Core 2,556 0.04 0.19 0 1 

SeatsHUB 2,556 445,982 961,947 0.1 6,316,443 

SeatsBASE 2,556 320,985 688,185 0.1 5,194,133 

Table 4: Descriptive Statistics of Observed Regions 

 

Connectivity measurement has been discussed in section 3.1, Gross Domestic Product is expressed in purchasing 

power standard (PPS) per inhabitant, density id the population over the region’s surface in squared kilometres. The 

variable Degree represents the percentage of population that graduated in a tertiary degree. The dummy Euro indicates 

whether the country is in the Euro area in a given year, if the country has adopted the European currency we picked 0 

if the adoption was within the first 6 months of the year, 1 otherwise. LCCshare represents the percentage of seats 

offered from a LCC over the total amount of seats. 

 

5. Results 

In this section, we present empirical evidence regarding the three previous research hypotheses . We show the 

estimated coefficients regarding the model for the variation of connectivity in remote and core regions (Eq. 1). The 

first variable captures the impact on connectivity of the region’s GDP. The second captures the impact of population’s 

density and the latter captures the impact on connectivity of LCCs in Europe which have; given that this type of carriers 

rely more on a point to point model, rather than hub and spoke.  

The regressions outcome is shown in Table 5, 6, 7, 8. The dependent variable is region’s connectivity. The three 

columns represent the three different regression performed. The GDP affects negatively our connectivity index, hence 

affects positively the connectivity.5 As mentioned in the Hypothesis #3, not only core regions are better connected, 

but also remote regions. This confirms that remote regions rely more on airline activity because of their inaccessibility 

that is mainly driven by geographical reasons. We controlled also for PSOs to see if they play a role, but in the analyses 

that we run we saw no significance.  

The share of LCCs is not significant, but when the variable interacts with remote regions the result is significant 

and shows how LCCs activities worsen connectivity in remote regions. In figure 3 we show the levels of connectivity 

for each share of LCCs in remote and non-remote regions. We controlled this result also for touristic inflows and the 

results don’t change.  

 

 

 
5 Higher connectivity index indicates lower level of connectivity. 
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Figure 3: Levels of connectivity for each share of LCCs in remote and non-remote regions. 

 

 
 Dependent variable: lconn208 

 non IV IV 

Variables Estimated 
coefficient 

S.E. P-value Estimated 
coefficient 

S.E. P-value 

lgdp 0.0272 (0.0299) 0.363 -0.289*** (0.0625) 0.000 

ldensity 0.00986 (0.00854) 0.249 0.0340*** (0.00965) 0.000 

remote -0.376*** (0.100) 0.000 -0.447*** (0.103) 0.000 

core10 -0.113** (0.0546) 0.039 -0.0419 (0.0570) 0.462 
ltour -0.188*** (0.00870) 0.000 -0.152*** (0.0108) 0.000 

lccrem 0.396*** (0.122) 0.001 0.487*** (0.125) 0.000 

Constant 3.315*** (0.268) 0.000 5.905*** (0.523) 0.000 

Observations 2,556 2,556 

R2                          0.219             0.184 
Robust standard errors in parentheses 

Legend: *** P-value < 0.01, ** P-value < 0.05, * P-value < 0.10 

Table 5: OLS regression results not considering spatial effects 

 

 Dependent variable: lconn208 

 GDP non IV GDP IV 

Variables Estimated 

coefficient 

S.E. P-value Estimated 

coefficient 

S.E. P-value 

lgdp -0.186** (0.0893) 0.037 -0.144 (0.127) 0.257 

ldensity -0.0654** (0.0272) 0.016 -0.0676** (0.0274) 0.014 

remote -0.443 (0.342) 0.195 -0.441 (0.342) 0.197 
core10 -0.0303 (0.158) 0.848 -0.0399 (0.160) 0.803 

ltour -0.156*** (0.0259) 0.000 -0.162*** (0.0281) 0.000 

lccrem 0.821** (0.389) 0.035 0.811** (0.390) 0.038 

Spatial Effect on Dep 0.590*** (0.0973) 0.000 0.582*** (0.102) 0.000 
Constant 4.799*** (0.774) 0.000 4.467*** (1.056) 0.000 

Observations 284 284 

Robust standard errors in parentheses 

Legend: *** P-value < 0.01, ** P-value < 0.05, * P-value < 0.10 

Table 6: OLS Regression results considering spatial effects 
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 Dependent variable: lconn208 

 GDP non IV GDP IV 

Variables Estimated 

coefficient 

S.E. P-value Estimated 

coefficient 

S.E. P-value 

lgdp -0.0391 (0.0581) 0.501 -0.289*** (0.0626) 0.000 

ldensity 0.00614 (0.0234) 0.793 0.0340*** (0.00968) 0.000 

remote -0.487*** (0.127) 0.000 -0.447*** (0.103) 0.000 

core10 -0.161 (0.152) 0.291 -0.0419 (0.0571) 0.463 

ltour -0.148*** (0.0198) 0.000 -0.152*** (0.0109) 0.000 
lccrem 0.531*** (0.114) 0.000 0.487*** (0.125) 0.000 

Constant 3.481*** (0.560) 0.000 5.905*** (0.525) 0.000 

Observations 2,556 2,556 

Number of _ID 284 284 

Robust standard errors in parentheses 
Legend: *** P-value < 0.01, ** P-value < 0.05, * P-value < 0.10 

Table 7: Panel regression results not considering spatial effects 

 

 Dependent variable: lconn208 

Variables Estimated 

coefficient 

S.E. P-value Estimated 

coefficient 

S.E. P-value 

lgdp -0.107* (0.0575) 0.063    

ldegree    -0.103** (0.0467) 0.027 

ldensity -0.0477** (0.0238) 0.045 -0.0473** (0.0237) 0.046 

remote -0.341*** (0.125) 0.006 -0.324*** (0.125) 0.009 

core10 -0.104 (0.144) 0.469 -0.129 (0.143) 0.365 
ltour -0.148*** (0.0191) 0.000 -0.154*** (0.0185) 0 

lccrem 0.535*** (0.113) 0.000 0.497*** (0.112) 0 

Spatial Effect on Dep 0.428*** (0.0687) 0.000 0.409*** (0.0677) 0 

Constant 3.990*** (0.547) 0.000 3.330*** (0.273) 0 

sigma_u 0.434*** (0.0187)  0.433*** (0.0187)  
sigma_e 0.189*** (0.00281)  0.189*** (0.00281)  

Observations 2,556 2,556 

Number of _ID 284 284 

Robust standard errors in parentheses 
Legend: *** P-value < 0.01, ** P-value < 0.05, * P-value < 0.10 

Table 8: Panel regression results considering spatial effects 

 

6. Conclusion  

This preliminary study is an attempt to fill a gap in the existing literature regarding the possible determinants of 

connectivity in the commercial air transportation sector for remote and core regions. Previous contribution (e.g. 

Dijkstra and Poelman, 2008) define a region as remote if at least half of its population lives at more than 45 minutes 

by road from any city of at least 50,000 inhabitants. Fageda et al. (2018), analyzing the policies to support policies in 

remote regions, related remoteness to the consequent market failure to establish a new route.  

In order to identify the determinants of connectivity we designed an econometric model for panel data and applied 

it to a data set concerning all the flights departing and landing in NUTS 2 regions in Europe over the period 2008-

2016. The connectivity of each NUTS 2 was calculated based on the average number of paths required to reach all 

other regions. 

Our main results are as follows. As we expected, connectivity is higher not only for core regions, but also for remote 

regions. Annual results that show also that connectivity has decreased in the year 2008. GDP and population’s density 

are both a positive determinant of connectivity. Second, LCCs activity doesn’t play a role in regions’ connectivity, but  

if we consider it only for remote regions it plays a role and worsen regions’ connectivity. LCCs are therefore a factor 

that reduces the connectivity differential between core and remote regions, which might provide an argument against 

subsidising LCCs service to remote regions. On the other hand this could be an argument against subsidising FSCs. 

Indeed, although the demand is low, it can feed the long-haul or medium-haul flights departing from the hub. FSCs 
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are a positive determinant of equal connectivity to aviation between remote and core regions. This confirms one of the 

public policies to support connectivity in remote regions in Fageda et al. (2018), airline-based public policies to support 

connectivity in remote regions. 

This is a preliminary draft, we acknowledge that so far it presents some limitations, for instance connectivity is 

measured using the average number of paths to reach other regions. In research we should consider other connectivity 

measures (e.g. betweeness centrality, eigenvector centrality, average number of paths to reach all the other destinations 

in the network, ...).  
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