
 

Available online at www.sciencedirect.com 

ScienceDirect 

Transportation Research Procedia 00 (2018) 000–000  
www.elsevier.com/locate/procedia 

 

2352-1465 © 2018 The Authors. Published by Elsevier B.V.  
Peer-review under responsibility of WORLD CONFERENCE ON TRANSPORT RESEARCH SOCIETY  

World Conference on Transport Research - WCTR 2019 Mumbai 26-31 May 2019 

Using observed route complexity in GPS traces  
to improve bicycle route choice set generation 

Thomas Koch1,2, Niels Wardenier, Dr. ir. Luk Knapen2,3, Dr. Elenna Dugundji1,2 

1 Centrum Wiskunde en Informatica, Science Park 123, 1098XG Amsterdam.  
2 Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081HV Amsterdam. 
3 Universiteit Hasselt, Agoralaan building D, 3590 Diepenbeek, Belgium 

 

 

Abstract 

Everyday route choices made by bicyclists are known to be more difficult to explain than vehicle routes, yet prediction of these 
choices is essential for guiding infrastructural investment in safe cycling. In this paper we study how the concept of route complexity 
can help generate plausible choice sets in the demand modeling process. The complexity of a given path in a graph is the minimum 
number of shortest paths that is required to specify that path. Complexity is a path attribute which is considered to be important for 
route choice in a similar way as the number of left turns, the number of speed bumps, distance and other. The complexity was 
determined for a large set of observed routes and for routes in the generated choice sets for the corresponding origin-destination 
pairs. The respective distributions seem to significantly differ so that the choice sets do not reflect the traveler preferences. This 
paper proposes a technique to improve the choice set generation. 
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1. Introduction 

Route choice models play an important role in many transport applications and help to understand why people travel 
the way they do and to predict what they will do in the future. Route choice set generation is an essential part of route 
choice modeling in order to establish the weight of several route attributes in the decision process and to predict chosen 
routes in simulators. 

Route choice modeling for bicyclists is a topic of increasing interest as more and more people travel by bicycle for 
their daily commute, leading to problems with congestion in cycling lanes and at traffic lights as well as parking 
problems with bicycles. This in turn leads to traffic conflicts with both vehicles and pedestrians, creating unsafe 
situations. Understanding more about how and why cyclists travel and where they deviate from the shortest path, helps 
us to propose ways to improve safe cycling infrastructure and to subsequently study the effects of the modifications. 

Several attributes of a route are significant factors in the choice process: e.g. the number of left turns, the number of 
speed bumps, distance, slope, scenery etc. This study investigates the use of route complexity as an additional 
attribute. 

The complexity of given (observed) path in a graph is the minimum number of shortest paths that is required to specify 
that path in the network. It can be interpreted as the (minimum) number of intermediate destinations that are connected 
by shortest sub-paths. Note that complexity is a graph theoretical property and is not related to geometric properties 
of the route. Complexity is a path attribute which is considered to be important for route choice. 

The complexity was determined (i) for each route in a large set of routes observed by means of GPS traces and (ii) for 
routes in the choice sets for the origin-destination pairs corresponding to the observed routes generated by the 
POSDAP tool (ETH-Zurich 2012). The respective distributions seem to significantly differ. The complexity of the 
routes in the generated choice sets is higher than the observed one so that the choice sets do not reflect the traveler 
behavior. 

This study proposes a technique to improve the choice set generation. The paper is organized as follows: the 
background briefly reviews the concept of choice set generation and various choice set generators that are described 
in the literature. Next, we formally define the concept of route complexity and demonstrate an algorithm to compute 
route complexity for a given route. The case study describes the data set of chosen bicyclist routes, the distribution 
for the observed complexity and the relations between route properties. Subsequently we show that the distribution 
for route complexity in generated choice sets may significantly differ from the observed routes. Finally, two methods 
to improve the generated choice sets are proposed. 

2. Background 

Choice sets play a crucial role in route choice modelling and prediction. In choice set generation, the universal set U 
contains all possible routes from the origin to the destination. Such a universal set can be infinitely large if it is allowed 
to include cycles (hence not only graph theoretical paths but also walks). 
 
In route based choice models, finite choice sets are established. Each route in the choice set bears a collection of 
attributes (distance, number of junctions, scenery etc.). A discrete choice model is used to predict the traveller’s choice 
from the attributes. Most models are based on multinomial logistic regression (MNL) and correction factors are 
introduced to account for correlation between overlapping routes. Model parameters and correction factors are 
determined using the finite choice set. 
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Recursive logit (RL) models described by Fosgerau, Frejinger and Karlstrom (2013) and by Mai, Fosgerau en 
Frejinger (2015) do not require a choice set for model estimation. Conceptually, they are equivalent to MNL models 
for route choice from an infinite number of alternatives. The model allows computation of the ratio of the probabilities 
of two routes due to the Independence of Irrelevant Alternatives (IIA) property. RL uses link-additive attributes as 
opposed to route attributes and conceptually applies an MNL at each junction in order to predict the next link. 
 
However, in order to apply route choice models in stochastic travel simulators, candidate routes need to be generated 
and compared also after estimating an RL model. A typical choice set faced by a cyclist can include different paths 
with detours from the shortest path (i) to avoid dangerous situations such as busy highways, poor pavement conditions, 
unlighted cycle paths in the dark or unsafe neighbourhoods or (ii) because of personal preference for certain areas like 
a park, slope, signalized junctions or a familiar path. There are various choice set generators for the construction of a 
choice set.  
 
Prato and Bekhor (2006) propose a method called Branch and Bound, which looks for paths that satisfy the boundary 
conditions: directional, temporal, similarity, loop and movement (avoiding left turns). For example, with the temporal 
constraints, a route with only be included if its travel time is not higher than the shortest time by a certain factor. 
 
Rieser-Schüssler, Balmer en Axhausen (2013) introduced a shortest path method, called Breadth First Search Link 
Elimination (BFS-LE). The BFS-LE method first computes the least cost path from origin to destination. Then links 
are eliminated in a particular order and a new shortest path is found. BFS refers to the fact that a tree of networks is 
considered and in each network a shortest path is determined using the A* algorithm. The tree is constructed by 
consecutively eliminating each element from the shortest path such that each recursively generated network differs in 
exactly one edge from the parent network in the recursion. 
 
Kazagli, Bierlaire en Flötteröd (2016) introduced the concept of Mental Representation Items (MRI), to construct a 
data set they made use of a layer system. The first layer is used to determine a MRI choice set, such as 𝐶𝐶1 =
{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶, 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟ℎ𝐶𝐶𝐶𝐶} where CC stands for the city center. A layer on top of that can provide additional 
details. In order to make the choice set operational, an attribute is assigned to each MRI by calculating the expected 
maximum utility, by taking the sums of the logarithms of all utilities on the path. 
 
The Double Stochastic Generation Function method (DSGF) described by Nielsen (2000) for public transportation 
and subsequently considered by Bovy and Fiorenzo-Catalano (2007) produces heterogeneous routes because both the 
cost and parameters used in the cost function for the links are drawn from a probability function. A possible difficulty 
of this method is the high computational cost, however Hood, Sall and Charlton (2011) show DSGF to be faster than 
the BFS-LE. Halldórsdóttir, et al. (2014) show that DSGF has a high coverage level of replicating routes taken by 
bicyclists and that it performs well up to 10 kilometers. Furthermore, Bovy and Fiorenzo-Catalano (2007) state that 
the method guarantees, with high probability, that attractive routes are in the choice set, while unattractive routes are 
not. 
 
Whichever method is chosen, in order to generate realistic predictions, the distribution for each route attribute in the 
choice set needs to comply with the corresponding distribution found in observed sets. In the next section this 
requirement is investigated for the route complexity. 

3. Route Complexity 

The complexity of a given path in a graph is the minimum number of Basic Path Components (BPC) in the 
decomposition of the path where a basic path component is defined as either a least cost path or a non-least cost edge. 
A non-least cost edge is an edge e whose edges are connected by a path having a lower cost than the cost to traverse 
e. Figure 1 shows the minimum decompositions for a sample path p in a graph having complexity 𝑐𝑐(𝑝𝑝) = 3. The 
example shows that multiple decompositions do exist for path p. 
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Figure 1. The blue continuous line visiting vertices A, B, C,…, I, J, K is the path followed by the traveller. Paths BF, BLI, GLI, GLK, etc represent 
shortcuts to the chosen path. There are two sets of split vertices: {C,D,E} and {H}. Hence there are three basic path components (BPC). Sample 
decompositions are ((A,C),(C,H),(H,K)) and (A,E),(E,H),(H,K)). 

Knapen et al. (2016) formulate the hypothesis that in utilitarian trips, individuals tend to construct their routes as a 
concatenation of a small number of basic path components. Utilitarian trips have a purpose different from the fun of 
driving. They are driven with the intention to perform an activity at the destination location. They present Algorithm 
1 to determine the complexity of a path (i.e. the minimum number of basic path components). 
 

Algorithm 1: To determine the size of the minimum decomposition of a path into basic path components 
1: Input Graph G, Edge costs c, 𝑃𝑃 = (𝑎𝑎0, 𝑎𝑎1, . . , 𝑎𝑎𝑙𝑙) containing no non-least-cost edges 
2: start  0 
3: k  1    (k is the minimum decomposition size)                                      
4: while 𝑃𝑃(𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑎𝑎𝑙𝑙) is not a least cost path do 
5:                 (find the first vertex in 𝑎𝑎𝑗𝑗in 𝑃𝑃(𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑎𝑎𝑙𝑙) such that 𝑙𝑙𝑐𝑐�𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑎𝑎𝑗𝑗� < 𝑐𝑐 �𝑃𝑃�𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑎𝑎𝑗𝑗��) 
6: 𝑎𝑎𝑗𝑗  findFirstJoinVertex(P,vstart) 
7: k  k + 1 
8: vstart  vj – 1 
9:  return k 

 
In algorithm 1 we have a graph G with positive edge costs c and a path 𝑃𝑃 = (𝑎𝑎0,𝑎𝑎1, . . , 𝑎𝑎𝑙𝑙) with no non-least-cost 
edges. Variable start is the index of the first vertex in a basic path component. Variable k is the minimum 
decomposition size. In the ‘while’ loop we look for the first vertex vj for which we can find a shorter path from 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
to vertex vj; such vertices are called join vertices because in such vertex the given path and a shortcut join (see Knapen 
et al. 2016 for details). In a join vertex we increment counter k by one. The predecessor of the join vertex is used to 
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continue. After the loop completes we can split the path at the vertex right before each join vertex, the vertex preceding 
a join vertex is called the split vertex.  
 
Using this algorithm, a splitting is found at k-1 vertices, splitting our path P into k basic path components. Knapen et 
al. (2016) proved that the decomposition is minimal but not necessarily unique. For example, by running the algorithm 
in reverse direction of the path we may find a different but minimal decomposition by identifying fork vertices. 
 
Figure 2 from Knapen et al (2016) shows the distribution for the complexity found in several data sets for which the 
majority (Belgian case) or all (Italian case) trips are car trips. This supports the hypothesis that utilitarian trips are 
composed of a small number of basic path components. Note that 95% of all car trips had a complexity lower than 6  
basic path components. 

Figure 2 Relative frequency distribution for the size of the minimum decomposition of paths derived from GPS recordings. The Belgian set consists 
of person traces. It was map-matched using different networks and gap-filling thresholds. The Italian set consists of car traces only (recorded by 
on-board-unit (OBU). 

4. Case Study 

4.1. Collecting data of bicycle movements 

The Dutch 2016 FietsTelWeek (‘Bicycle Counting Week’) data set (Bikeprint 2017) available at 
http://www.bikeprint.nl/fietstelweek/ contains 282,796 unique trips (although the corresponding infographic 
http://fietstelweek.nl/data/resultaten-fiets-telweek-bekend/ mentions 416,376 trips having a total distance of 
1,786,147 kilometers). 
 

http://fietstelweek.nl/data/resultaten-fiets-telweek-bekend/
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It was collected by 29,600 cyclists who voluntarily participated in a week-long survey to track their bicycle movements 
using a smart-phone app in the week of 19th of September 2016. The application ran in the background to collect the 
bicycle movements of all participants using the phone's GPS and acceleration sensors. The cyclists involved use their 
bike, in a way as often seen in The Netherlands, using their bike as transportation from and to work, supermarket, 
school, friends, etc. For privacy reasons the resulting data was anonymized by the data provider before making it 
publicly available (i) by the removal of user information to make it impossible to trace multiple trips to a single person 
and (ii) by rounding of the trip departure time into one-hour bins to the nearest hour. 

4.2. Route complexity in real-life GPS traces 

The route complexity for the 282,796 collected by the Dutch FietsTelWeek2016 routes was computed and the 
distribution is shown in Figure 3 (blue line). For Flanders (Belgium) no detailed results for the bike counting week are 
made publicly available; hence, direct comparison is impossible. However, the distribution for the complexity of 
bicycle routes in the Netherlands significantly differs from the distribution for complexity found in person traces for 
Flanders shown in Figure 2. 

Figure 3 Cumulative distribution of the complexity of paths taken by bicyclists. Blue for unfiltered, red for only utilitarian trips with r_d≤1.08 

Car mode is the prevalent mode in Flanders according to the recurrent travel behavior survey 
(https://mobielvlaanderen.be/ovg/ovg52-0.php).Hence most person traces consist of car trips and, as a consequence, 
most trips in the sets investigated by Knapen et al (2016) are car trips. The difference may result from: 
• Behavioral difference between car drivers and bicyclists. 
• Regional behavior differences 
• Parameters chosen for the map-matching process because some map-matching algorithms fill gaps by 

connecting positions by the shortest path. 
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We had no control over the map-matching process because that was performed by the FietsTelWeek organizer. 
Access to raw GPS traces is required to exclude the latter possibility. 

4.3. Utilitarian vs fun trips 

The trip purpose determines the route choice. Hence, route prediction for utilitarian trips on one hand and for fun trips 
on the other hand may result in different weight coefficients for the predictor variables. In this section we investigate 
the case for route complexity as a predictor. 

 
Since the data set did not include any information about the purpose of each trip, the collection of trips could include 
non-utilitarian trips (i.e. fun trips) that may influence the distribution of the route complexity. To get more information 
on the non-utilitarian trips we looked at the ratio 𝑎𝑎_𝑎𝑎 = 𝑎𝑎_𝑐𝑐/𝑎𝑎_𝑚𝑚𝑎𝑎𝑎𝑎 , the ratio between observed distance and shortest 
distance, to find a threshold 𝑎𝑎�́�𝑑. We assume that a trip is utilitarian if and only if 𝑎𝑎𝑑𝑑 < 𝑎𝑎�́�𝑑, since trips for the purpose 
of fun are likely to have a longer distance than necessary.  
 
Let 𝐹𝐹−1(𝑎𝑎𝑑𝑑) denote the inverse of the distribution function of the variable 𝑎𝑎𝑑𝑑; then 𝑎𝑎�́�𝑑 = 𝐹𝐹−1(1 − 𝐹𝐹𝑁𝑁𝑁𝑁) . Pucher and 
Buehler (2012) define 𝑓𝑓𝑁𝑁𝑁𝑁, the fraction of non-utilitarian trips in the Netherlands as 0.27 and thus 1 − 𝑓𝑓𝑁𝑁𝑁𝑁is 0.73. We 
assume that the 73% fraction of the trips having the smallest 𝑎𝑎𝑑𝑑 values are utilitarian trips. This leads to 𝑎𝑎�́�𝑑 = 1.08 for 
all trips observed in the FietsTelWeek data set and 𝑎𝑎�́�𝑑 = 1.10  for the trips in Amsterdam. 
 
Since the cumulative distributions for the complexity in the sets of all observed trips on one hand and presumed 
utilitarian trips on the other hand did not show a major difference as shown in Figure 3, we decided not to exclude 
likely utilitarian trips with a high 𝑎𝑎𝑑𝑑. 

4.4. Correlating route complexity 

It is interesting to find out whether complexity is related to network properties, to travel behaviour properties or to 
both. The following network related properties were investigated: the length of a path p: 𝑙𝑙𝑙𝑙𝑎𝑎(𝑝𝑝), the number of links 
(street segments between intersections): 𝑝𝑝, the ratio between length of the observed path and the shortest length 
𝑙𝑙𝑙𝑙𝑎𝑎 (𝑝𝑝) 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙ℎ𝑎𝑎𝑎𝑎𝑡𝑡𝑙𝑙𝑜𝑜𝑡𝑡⁄ (𝑝𝑝), the ratio between length of the observed path and the euclidean (straight line distance) 
between origin and destination:𝑙𝑙𝑙𝑙𝑎𝑎 (𝑝𝑝) 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑎𝑎𝑐𝑐𝑙𝑙𝑎𝑎𝑎𝑎𝑙𝑙𝑎𝑎𝑎𝑎⁄ (𝑝𝑝).  
 
The correlation coefficient (or population Pearson coefficient) for two random variables 𝑋𝑋,𝑌𝑌 is given by: 

𝜌𝜌𝑋𝑋,𝑌𝑌 =
𝐶𝐶𝑎𝑎𝑎𝑎(𝑋𝑋,𝑌𝑌)
𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌

=
𝑙𝑙[(𝑋𝑋 − 𝑙𝑙𝑋𝑋)(𝑌𝑌 − 𝑙𝑙𝑌𝑌)]

𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌
 

By the Cauchy-Schwarz inequality this coefficient is bounded between -1 and +1, where +1 means two random 
variables are perfectly positive linearly related and -1 perfectly negative. When the coefficient approaches 0, the 
variables are more and less uncorrelated. Full sample tests were executed, using all collected observations in the region 
of Amsterdam and the results are shown in Table 1.  

Table 1. Correlation between path complexity and other path properties. 

Variable Sample correlation coefficient Confidence interval 

𝑙𝑙𝑙𝑙𝑎𝑎(𝑝𝑝) 0.646 (0.639,0.651) 

𝑝𝑝 0.833 (0.830, 0.837) 

𝑙𝑙𝑙𝑙𝑎𝑎 (𝑝𝑝) 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙ℎ𝑎𝑎𝑎𝑎𝑡𝑡𝑙𝑙𝑜𝑜𝑡𝑡⁄ (𝑝𝑝) 0.239 (0.229, 0.250) 

𝑙𝑙𝑙𝑙𝑎𝑎 (𝑝𝑝) 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑎𝑎𝑐𝑐𝑙𝑙𝑎𝑎𝑎𝑎𝑙𝑙𝑎𝑎𝑎𝑎⁄ (𝑝𝑝) 0.149 (0.138, 0.159) 
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The correlation with the size of a path seems to be the strongest, which makes sense as with fewer intersections, there 
are fewer opportunities to deviate from the shortest path. There is less correlation between the length of a path and the 
number of basic path components. There seems to be no correlation between the number of components and ratio 
actual length and (Euclidean) distance. The scatter plots in Figure 4 of the same variables against the number of 
components, support the story told by the correlation coefficient. Note: in this figure we only plotted a random sample 
of 5000 observations, this did not affect the shape of the correlation and only omitted a few outliers. 
 

 

Figure 3 Scatter plot of number of components against length, size and the ratios: 𝑙𝑙𝑙𝑙𝑎𝑎 (𝑝𝑝) 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙ℎ𝑎𝑎𝑎𝑎𝑡𝑡𝑙𝑙𝑜𝑜𝑡𝑡⁄ (𝑝𝑝)  and𝑙𝑙𝑙𝑙𝑎𝑎 (𝑝𝑝) 𝑙𝑙𝑎𝑎𝑐𝑐𝑙𝑙𝑎𝑎𝑎𝑎⁄ (𝑝𝑝) 
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5. Route Complexity in Choice Set Generation 

To analyze the conformance to reality of the routes generated by the route choice set generation method Double 
Stochastic Generation Function (DSGF) byHalldórsdóttir, et al. (2014) we proceded as follows. The distribution for 
the path complexity was determined for the observations recorded in the Netherlands by the FietsTelWeek data-
collection. For each observed trip, the origin and destination (OD-pair) were extracted. The DSGF implementation 
from POSDAP (ETH-Zurich 2012) was used to generate a route choice set for each OD-pair.  
 
Figure 5 applies to a trip in Amsterdam that was randomly chosen from the FietsTelWeek dataset. The black line 
shows the route chosen by the traveler. Eight of the sixteen routes predicted by the POSDAP software are shown in 
different colors. Only eight predictions are shown because the overlap among routes in the choice set prevents to show 
them all at once. 

 

Figure 5 Chosen (black) and predicted (colored) routes for a trip in Amsterdam that was selected at random from the FietsTelWeek dataset. 

The distribution of the path complexity was determined for the set of predicted paths (i.e. the paths in the generated 
choice sets). The first option we considered was to include the number of basic path components as extra attribute in 
the cost function used in the POSDAP DSGF algorithm, to increase the cost of predicted paths having a complexity 
that is improbable according to the observed distribution. This way more routes with a lower complexity would end 
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up in the choice set. We did not pursue this option for this paper because of the high cost to adapt the POSDAP 
algorithm, but it still would be an interesting option for future research. 
 
We decided to run DSFG in the same way Halldórsdóttir, et al. (2014) did and to post-process the generated choice 
sets. Only link length (travel distance) was used in the experiment. POSDAP allows to specify a set of link specific 
attribute values (like scenery, separate bike lanes etc.): this was not used due to lack of data. Thus we compute the 
complexity for each route in the choice set generated by POSDAP using the algorithm specified in Knapen et al 
(2016). After that we adapt the choice set, keeping in mind the idea that routes with a high number of basic path 
components are highly unlikely as observed in the recorded data. 
 
As there is no agreement on the size 𝑁𝑁0 of the route choice sets, we arbitrarily state that the DSGF method should 
produce 𝑁𝑁0 = 16 routes for each origin destination pair. The POSDAP software was slightly modified in order to 
execute at most a given number of 𝑀𝑀 = 128 iterations (instead of running for a given duration) so that it behaves 
identically on different machines. For some origin destination pairs POSDAP is not able to find as many as 𝑁𝑁0 routes 
in 𝑀𝑀 iterations, in which case we will use all found routes. The choice sets are written to CSV files for further 
processing. 

5.1. Choosing attributes 
 
To improve the set of routes generated by POSDAP, we took a look at the attributes taken into account in the generator 
decision process. For example Prato and Bekhor (2006) take into account the following variables:  
• Directional: a link is not taken into account if it brings the bicyclist further away from the destination 
• Temporal: a link is not taken into account if it takes significantly more time to travel a link in comparison with 

other links 
• Similarity: a route is not included if it is too similar to a route already included in the choice set 
• Loop constraints to avoid segments that causes too large detours 
• Left turns: turning left in a route mean more interaction with other traffic and preferably avoided. 
 
For bicycle routes, there are some specific variables that influence a cyclist’s route choice, like the number of cars on 
a link. A cyclist might prefer a route that is longer but involves less conflicts with cars. Furthermore, if a route has a 
maximum speed for cars that exceeds 50 km/h (31 mph), a cyclist might prefer a route with segregated bicycle lanes, 
this matches research by (Halldórsdóttir, et al. 2014) who uses the variable BikeLanes. An additional variable could 
be the road surface, a cyclist might prefer smooth asphalt over cobble stones, a variable call RoadType. We did not 
fill the variable LandUse, but a cyclist might prefer routes in green surroundings over a concrete jungle. 

5.2. Complexity distribution of predicted paths 
 
Before adapting the choice set generated by POSDAP, we compared the complexity in the routes in Amsterdam 
between those observed and predicted by POSDAP.  

 
Specifically, we compared the cumulative probability distribution functions of predicted routes:𝐹𝐹𝐴𝐴,𝑃𝑃

𝑃𝑃 (𝑐𝑐) with the 
function for observed data: 𝐹𝐹𝐴𝐴,𝑂𝑂(𝑐𝑐). As plotted in Figure 6 the complexity distributions show a different shape; the 
predicted paths have a higher complexity overall than what we observed for cyclists in Amsterdam.  
 
Statistically the Kolmogorov-Smirnov and 𝜒𝜒2test reject the possibility at an 𝛼𝛼 = 0.05  the null hypothesis that the two 
data sets describe the same distribution: the Kolmogorov-Smirnov rejects with a p-value of 2.2𝑙𝑙−16 and 𝜒𝜒2 rejects 
with a𝑝𝑝 < 0.00050. 
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Figure 4 Cumulative distributions of number of basic path components of observed bicycling routes in the Amsterdam (blue) and the number of 
components in paths predicted by POSDAP's Double Stochastic Generation Function implementation 

6. Choice Set Adjustment 

6.1. Using a discrete sampler 
 
We propose to sample a subset of each choice set predicted by the POSDAP software so that the probability mass 
function for the path complexity 𝑓𝑓𝐴𝐴,𝑃𝑃

𝑃𝑃 (𝑐𝑐)is closer to the observed complexity probability mass function 𝑓𝑓𝐴𝐴,𝑂𝑂(𝑐𝑐). To do 
this we define a discrete sampler function 𝑓𝑓𝑠𝑠(𝑐𝑐): 

∀𝑐𝑐 ∈ 𝑁𝑁+ :𝑓𝑓𝑠𝑠(𝑐𝑐) = 𝛽𝛽 ⋅
𝑓𝑓𝐴𝐴,𝑂𝑂(𝑐𝑐)
𝑓𝑓𝐴𝐴,𝑃𝑃
𝑃𝑃 (𝑐𝑐) 

� 𝑓𝑓𝑠𝑠
𝑐𝑐 ∈𝑁𝑁+

=  𝛽𝛽 ∙  �
𝑓𝑓𝐴𝐴,0(𝑐𝑐)
𝑓𝑓𝐴𝐴,𝑃𝑃
𝑃𝑃 (𝑐𝑐)

𝑐𝑐 ∈𝑁𝑁+
= 1 

𝛽𝛽 = ��
𝑓𝑓𝐴𝐴,𝑂𝑂(𝑐𝑐)
𝑓𝑓𝐴𝐴,𝑃𝑃
𝑃𝑃 (𝑐𝑐)

𝑐𝑐∈𝑁𝑁+

� − 1 

 
With the second expression we can compute the constant by normalization. 
 
After POSDAP generates a route r, we determine complexity𝑐𝑐(𝑎𝑎). A random number 0 < 𝑘𝑘 ≤ 1 is generated and 
route r is kept if 𝑓𝑓𝑠𝑠�𝑐𝑐(𝑎𝑎)� ≤ 𝑎𝑎(𝑘𝑘). A difficulty in this approach is that for large values of𝑐𝑐, those with many basic path 
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path components, we have very few observations. So, when we encounter such observation the method we propose 
assigns a too high amount of mass to it. 
 
We tried two methods to fix this problem. The first method was to group boxes for large values of 𝑐𝑐 so that each box 
has a mass of at least 1% attached to it. In the second method we just straight out discard all trips with a complexity 𝑐𝑐 
of 𝑐𝑐 ≥ 41. The second method proved to work better since it was easier to apply since we did not have to define the 
boxes with at least 1% of mass, it kept more routes: 21k vs 17k and finally the maximum error in comparison with 
𝑓𝑓𝐴𝐴,𝑂𝑂(𝑐𝑐)was 0.3% in this method versus 0.6% in the box method. 
 
The found sample distribution 𝑓𝑓𝑠𝑠(𝑐𝑐) was applied to the 494546 routes generated by POSDAP and kept 21425 routes, 
the used constant for 𝛽𝛽was 0.043. Initially the POSDAP software tried to fin d 16 alternatives for each origin-
destination pair and after applying the sampling function it kept the following number of alternatives (Table 2). 

     Table 2. Distribution of number of kept alternatives.. 

Number of alternatives Frequency 

0 16985 

1 9831 

2 3711 

3 1043 

4 200 

5 40 

6 6 

7 1 

 
If the sample function is applied the maximal error between 𝑓𝑓𝐴𝐴,𝑂𝑂(𝑐𝑐)and probability mass function after sampling is 
0.3%, so in that aspect the sample is working well. However in 84.2% of the cases the sampler only kept at most one 
route. And the goal was to make a choice set having a size larger than one (leaving some options to choose from). 

6.2. Using a maximum likelihood function in the sampler 
 
For each origin-destination pair we want at least 𝑁𝑁1 alternatives in our choice set. To do this, define 𝑁𝑁0(𝑎𝑎) as the initial 
number of found alternatives for origin-destination pair <𝑂𝑂𝑖𝑖 ,𝐷𝐷𝑖𝑖> and 𝑁𝑁1(𝑎𝑎) as the number of alternatives we want to 
keep for OD pair <𝑂𝑂𝑖𝑖 ,𝐷𝐷𝑖𝑖>. Finally 𝑁𝑁1(𝑎𝑎) is smaller than or equal to both 𝑁𝑁0(𝑎𝑎) and 𝑁𝑁1. 
 
For each <𝑂𝑂𝑖𝑖 ,𝐷𝐷𝑖𝑖>we collect the routes predicted by POSDAP for <𝑂𝑂𝑖𝑖 ,𝐷𝐷𝑖𝑖>: the set 𝑃𝑃𝐴𝐴,𝑃𝑃(𝑂𝑂𝑖𝑖 ,𝐷𝐷𝑖𝑖). We are interested in 
the set 𝑃𝑃𝑁𝑁1(𝑂𝑂𝑖𝑖 ,𝐷𝐷𝑖𝑖)of all the subsets of 𝑃𝑃𝐴𝐴,𝑃𝑃(𝑂𝑂𝑖𝑖 ,𝐷𝐷𝑖𝑖)with cardinality 𝑁𝑁1(𝑎𝑎). The likelihood for a set 𝑙𝑙𝑖𝑖𝑘𝑘 ∈ 𝑃𝑃𝑁𝑁1(𝑂𝑂𝑖𝑖 ,𝐷𝐷𝑖𝑖) to 
have been drawn from a set with the complexity distribution 𝑓𝑓𝐴𝐴,𝑂𝑂(𝑐𝑐) is given by:  

 

𝐿𝐿�𝑙𝑙𝑖𝑖𝑘𝑘� = �𝑓𝑓𝐴𝐴,𝑂𝑂

𝑠𝑠∈𝑆𝑆𝑖𝑖
𝑘𝑘

�𝑐𝑐(𝑎𝑎)� 

 
The subset with the maximal value is kept as the choice set and denoted by 𝑙𝑙𝑖𝑖: 

 
𝑙𝑙𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑟𝑟𝑚𝑚𝑎𝑎𝑎𝑎

𝑠𝑠∈𝑃𝑃𝑁𝑁1(𝑂𝑂𝑖𝑖,𝐷𝐷𝑖𝑖)
𝐿𝐿(𝑜𝑜) 
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The required number of subset evaluations 𝑎𝑎𝐸𝐸 is  

�𝑁𝑁0
(𝑎𝑎)

𝑁𝑁1(𝑎𝑎)� . 

Note that 𝐿𝐿�𝑙𝑙𝑖𝑖𝑘𝑘� = 0 as soon as it contains at least one route 𝑎𝑎 having a non-observed complexity i.e. such that 
𝑓𝑓𝐴𝐴,𝑂𝑂�𝑐𝑐(𝑎𝑎)� = 0. This leads to a problem if ∀𝑜𝑜 ∈ 𝑃𝑃𝑁𝑁1(𝑂𝑂𝑖𝑖 ,𝐷𝐷𝑖𝑖): 𝐿𝐿(𝑜𝑜) = 0, then a random subset 𝑙𝑙𝑖𝑖has to be selected. To 
fix this we define 𝑓𝑓′𝐴𝐴,𝑂𝑂�𝑐𝑐(𝑎𝑎)� as: 

 

𝑓𝑓′𝐴𝐴,𝑂𝑂�𝑐𝑐(𝑎𝑎)� = �
𝑓𝑓𝐴𝐴,𝑂𝑂�𝑐𝑐(𝑎𝑎)�    if    𝑓𝑓𝐴𝐴,𝑂𝑂�𝑐𝑐(𝑎𝑎)� > 0

1
𝑐𝑐(𝑎𝑎). �𝑃𝑃𝐴𝐴,𝑂𝑂�

          𝑎𝑎𝑡𝑡ℎ𝑙𝑙𝑎𝑎𝑒𝑒𝑎𝑎𝑜𝑜𝑙𝑙  

and we replace 𝐿𝐿�𝑙𝑙𝑖𝑖𝑘𝑘� by ∏ 𝑓𝑓′𝐴𝐴,𝑂𝑂�𝑐𝑐(𝑎𝑎)�𝑠𝑠∈𝑆𝑆𝑖𝑖
𝑘𝑘 . 

 
We performed the sampling process outlined above on the POSDAP output with predicted paths for 𝑁𝑁1 =
3,4,5,6,7,8,9 to see what the effects of choosing 𝑁𝑁1 is. We encountered a strange effect occurring on routes that only 
had a single basic path component for all values of 𝑁𝑁1. In the data we observed in Amsterdam 8.7% of the routes was 
the shortest route between origin and destination and thus having a complexity of one basic path component. Using 
this sampling method, we only found a percentage of 0.4% of routes with only a single component for all possible 
values of 𝑁𝑁1. It is likely that this effect occurs because 𝑓𝑓𝐴𝐴,𝑂𝑂(2) > 𝑓𝑓𝐴𝐴,𝑂𝑂(1), if there are routes consisting of a few basic 
path components it is more likely to include only the routes consisting of two components. 
 
In general we observe that the amount of mass given to routes with an higher complexity increases, if the 𝑁𝑁1 increases. 
We determined which number 𝑁𝑁1performed best by looking at the maximal error in relative frequency for the routes 
with a route complexity higher than a single basic path component and exclude those where errors occurred. For 𝑁𝑁1 =
{6,7,8} this resulted in a maximal error around 2%. For all values of 𝑁𝑁1 we saw an overestimation for the tails, but for 
𝑁𝑁1 = 6there was an additional overestimation when the complexity was 2. 
 
We concluded that the best results were achieved with a 𝑁𝑁1of 7 or 8, the results were not perfect but a worthwhile 
compromise to generate sufficiently large choice-sets. 

7. Conclusion 

There are various methods to generate route choice sets. In this paper we used the Double Stochastic Generation 
Function, because it generates heterogeneous routes, performs well for trips up to a length of 10 kilometers and puts 
the more attractive routes in the choice set. The problem with route choice generation is that, the generated route can 
be overcomplicated and unrealistic. 
 
This study formally defines the concept of route complexity and computes complexity distributions for both a set of 
observed routes and for routes generated by the POSDAP software. The distributions are shown to significantly differ 
and a technique is proposed to enhance the generated choice set w.r.t. complexity. 
 
Trips for which the length d is much larger than the shortest distance 𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚 between their origin and destination may 
be considered as non-utilitarian (fun) trips. Different complexity may be expected for utilitarian and fun trips. 
However, because the complexity distributions for the set 𝑙𝑙𝑂𝑂of all observed trips and the set 𝑙𝑙𝐹𝐹of trips that may be 
classified as fun trips based on the ratio 𝑑𝑑

𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚
 are similar, it was decided to consider all observed trips in the study. 

 
In order to generate route choice sets we slightly adapted the code of POSDAP and compared the cumulative density 
function of both observed and the predicted data output from POSDAP. From this comparison we concluded that the 
DSGF method indeed produces too many complex routes. This is what we expected from earlier results. 
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In a first attempt to fix this, a sampler was built to filter routes with a high complexity out of the predicted data. By 
doing this the idea was to get a choice set with a complexity distribution more similar to the complexity distribution 
found in observed data in Amsterdam. This is something we were able to achieve but in 84.2% of the cases we ended 
up with choice set left that no longer had a choice between two or more options. 
 
In a second approach, the preferred size of the final choice set was stated in advance. Subsets of the choice set produced 
by POSDAP and having the preferred size are considered. The one showing the largest likelihood w.r.t. complexity 
to have been drawn from the observed distribution is retained. This technique causes a bias towards lower complexity 
when predicted routes having an unobserved complexity are retained (due to lack of better ones); this is caused by the 
𝑐𝑐(𝑎𝑎) in the denominator of equation of the approximate frequency. Using this method we observed that keeping 7 or 
8 of the 16 predicted routes provided us with a choice set for which the complexity distribution is most similar to the 
one for the observed data. 
 
From our results it might be useful for further research to filter out unlikely routes when constructing a choice set. 
This can be done by applying the method of basic path components. 

8. Future Research 

For further research it might be interesting to look at other areas and cities than just Amsterdam. Distributions for the 
route complexity have been determined for 16 cities and for 3 large regions (north, south, center). Ongoing research 
shows that the distributions differ. Figure 7 shows distributions for the bike routes complexity in the regions of 
Amsterdam and Gouda and Nijmegen. If there are spatial correlations that affect the distributions of the route 
complexity, then the effects of it may require modifications to the sampler to fit the right distribution for the 
surrounding region. 
 

 

Figure 5 showing distributions for the bike routes complexity in the regions of Amsterdam and Gouda and Nijmegen 

The POSDAP software also implements other prediction algorithms such as Breadth First Search Link Elimination 
(BFS-LE). Future research may look at how route complexity distributions on predicted choice sets from other 
algorithms differ from the routes we generated using the Double Stochastic Generation  Function.  
 
A final point of search could be the occurrence frequency of the split vertices in observed routes as determined in 
Knapen, Hartman and Bellemans (2017). What makes it that some vertices occur more frequently as a split vertex 
than others? The idea is to focus on spatial patterns in split vertex occurrence frequency by relating it to land-use 
properties and to road network structure. 
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