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Abstract 

Modeling individual’s mode choice is a challenging task. In this paper, vehicle choice of lessees is discussed. Prediction of vehicle 
choice occurs by fitting three different logit models: standard, nested and cross-nested multinomial logistic regression. Both nested 
and cross-nested logit relax error term distribution assumptions and therefore allow for correlations across alternative vehicle 
choices. It is shown that allowing for correlation across alternatives is the proper way of modeling lessees’ vehicle choice: cross-
nested logit achieves best prediction results, both on training and test data.  
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1. Introduction 

Modeling individual’s choices in selecting transportation modes has been a large area of research. However, 
predicting and analyzing individuals’ evaluation of mode alternatives, and their corresponding decision of mode 
among a set of interrelated choices, remains complex. Discrete choice models are the typical family of models used to 
analyze and predict an individual’s choice of one alternative from a set of mutually exclusive and collectively 
exhaustive alternatives (Koppelman and Bhat, 2006). These types of models are widely discussed in literature, and 
rose to fame when Daniel McFadden won the Nobel Prize in economics for his development of theory and methods 
for analyzing discrete choice (McFadden, 2001). Discrete choice models have had considerable influence on the 
growth of the mode choice modeling field, by trying to accommodate for both observed and unobserved effects on an 
individual’s choice. In such models, it is assumed that an individual’s preference for an alternative is captured by a 
value, called utility, and selects the alternative with highest utility. Concurrently, the assumption is made that the 
analyst does not have complete information, and therefore a factor of uncertainty is considered (Ben-Akiva and 
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Bierlaire, 2003). Discrete choice models are widely used due to the extent of literature available, and the relative ease 
of interpretation of such models.  

In this paper several models, all part of the discrete choice family, are applied to a specific use case related to mode 
choice. Multiple types of discrete choice models have focused on mode choice analysis (Vovsha, 1997; Bhat and 
Sardesai, 2006; Chu, 2009). This paper revolves around logit models, a branch of the discrete choice family. Logit 
models are well-represented in literature and most used for modeling mode choice (De Jong et al., 2003; Hess et al., 
2012; Ding et al., 2014). Even though logit choice models have historically been most prominent in the field of mode 
choice modeling, such models preserve certain correlation assumptions. These assumptions might not prove accurate. 
The second and third model discussed in this paper build on the previous model each relaxing correlation assumptions. 

 Research in this paper is conducted for a leasing company with establishments throughout the world. This company 
is considered to be one of the leaders in the field of fleet management. The leasing company approached PwC to gain 
better understanding of its fleet data. The obtained insights should lead to improved alignment of separate entities 
within the company. For instance, buying, selling, and leasing of vehicles are all related, and should therefore be 
aligned to maximize profit. To understand customer behavior, and to provide tailored offers to these customers, it 
could prove greatly advantageous to model switch behavior of the company’s lessees. A switch can be thought of as 
the choice of vehicle, given the customer has had a leasing contract with the company. That is to say, upon termination 
of the customer’s current contract, the leasing company would like to know, what make of vehicle the customer will 
most likely lease next. Each constructed model should predict what make of vehicle a lessee is most likely to lease 
post termination of his contract. It is expected that the more assumptions on relations across alternatives are relaxed, 
the better a model performs in predicting these switches. 

The remainder of this paper is structured as follows. In section 2, the data provided by the leasing company are 
examined in detail. Section 3 discusses the three types of discrete choice models used in this research. Multinomial 
logistic regression is the main variant of discrete choice model used for prediction. Two direct extensions of this model, 
nested and cross-nested multinomial logistic regression are addressed. Both these models relax the assumptions made 
by the multinomial logistic regression model, and should in principle allow for improved prediction accuracy. In 
section 4, the results of fitting all models on the provided data are discussed. Lastly, the paper is concluded in section 
5, with a discussion of the obtained results and the performance of all used methods. 

2. Data 

This section discusses the data used to compare the performance all constructed models. As discussed in section 1, 
the data are provided by a vehicle leasing company with establishments throughout the world. By approaching PwC, 
the lease company would like to better understand customer behavior, and align entities within the company. Predicting 
customer switch behavior is part of this improved understanding, and the topic of this paper. To predict these switches, 
a thorough understanding of the provided data is essential and is provided in this section. 

The provided data consists of 69,952 matched contracts or switches occurring between January 2014 and March 
2018. One data point depicts two contracts, one regarding the driver’s previous vehicle, whilst the second contract 
depicts the current vehicle. In addition, both contracts contain vehicle and contract characteristics which are used as 
modeling variables. The provided contracts originate from ten different branches of the company, with each branch 
depicting a different country. The company considers each client to belong to a particular client segment: Corporate, 
International, Private or SME. By definition, it is not possible to switch client segments. In addition, each vehicle of 
the company’s fleet is placed within different segments. To be more precise, all vehicles are associated with the 
following segments: brand classification, vehicle segment, OEM group, make and model. For instance, an Italian driver 
working for a corporate association, driving a Volkswagen Passat is classified as is portrayed in Table 1. All these 
labels are predefined by the leasing company and are stated within each provided contract. Note that most segments 
depend on the higher-level segment. That is, if the variable model is known, one knows the variables make, OEM 
group, vehicle segment and brand classification by definition. Recall that it is possible that a vehicle is present in 
multiple client segments and countries. Additionally, if only the variable make is known, one does know the variable 
OEM group by definition. Knowing the make does not necessarily imply the vehicle segment to be known. Since 
vehicles are classified to be part of different vehicle segments based on the model of vehicle, it is possible for makes 
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to belong to multiple vehicle segments. This property proves extremely convenient when subdividing makes into nests, 
described in section 3.3, and will be touched upon in this section.  

Table 1. Example segmentation of a lessee. 

Country Client Segment Brand Classification Vehicle Segment OEM Group Make Model 
Italy Corporate Mainstream D VAG Volkswagen Passat 

 
Aside from variables segmenting the vehicles of the fleet, each contract provides the following information: 

customer ID, vehicle ID, fuel type, vehicle type, body style, lease type, catalogue price, commercial discount amount, 
standard discount percentage, total accessories amount, total options amount, ufwt amount, start mileage, end 
mileage, contract mileage, intro date model, end date model, sale date, sale amount, termination info, start date 
contract ,end date contract and contract duration. The variables mileage per month and switch quarter are extracted 
by the analyst. Not all variables are used for prediction purposes. Some variables are either too highly correlated, or 
variables are omitted due to a lack of descriptive quality.  

To use variables provided alongside the matched contracts, these need be processed prior modeling. Processing of 
data can be separated in two parts: processing of numerical variables, and processing of categorical variables. First, 
processing of numerical variables is discussed. All missing values of numerical variables contained in contracts are 
replaced with the mean value of the concerned variable after grouping by the variables country, client segment and 
make. To illustrate the matter, if the variable catalogue price is missing for a Volkswagen Golf of a driver stemming 
from the SME segment of the Spanish branch, it is replaced with the mean value of the catalogue price for that 
particular vehicle in those segments. In addition, outliers are set to either the determined lower or upper boundary of 
the concerned variable. Some statistics on the numerical variables used for prediction can be found in Table 2.  

Table 2. Summary of all (processed) numerical variables used for modelling purposes. The rows indicate the variable. The columns portray the 
mean, standard deviation, median value, minimum value and the maximum value of the concerned variable respectively. 

 𝝁𝝁 𝝈𝝈 Median Min. Value Max. Value 
Catalogue price 45,051.68 83,363.76 23,829.43 5,575.00 1,440,000.00 
commercial discount percentage 6,765.62 7,835.73 4,956.86 0.00 125,760.00 
standard discount percentage 10.68 7.96 10.00 0.00 35.00 
total accessories amount 270.93 712.85 0.00 0.00 9,877.00 
Total options amount 3299.08 6,525.14 1,000.86 0.00 49,984.00 
ufwt amount 613.26 1,115.05 250.00 0.00 10,000.00 
mileage per month 2639.57 1,248.30 2500.00 500.00 10,000.00 
contract duration 42.10 10.70 42.00 6.00 96.00 

  
To use numerical variables for prediction, these need be scaled. Prior to this procedure, all variables depicting a 

monetary value are transformed using the natural logarithmic function. The variables catalogue price, commercial 
discount amount, total accessories amount, total options amount, and ufwt amount are transformed by taking the 
natural log of the original value. In addition, all zero values for which the natural log is not defined, are replaced with 
the minimum value for which the natural log is defined. The idea of using the natural logarithmic function for variable 
transformation, is to push the variable towards being normally distributed. Post logarithmic transform, the monetary 
variables are treated as any other numerical variable. Next, all numerical variables are standardized to have zero mean, 
and standard deviation of 1. This transformation refrains functions present in discrete choice models from saturating. 

Processing of categorical variables occurs in slight different fashion. No missing values occur in the data. The 
provided data does contain values such as unknown, or country did not supply a value. These values rarely occur and 
therefore do not form a significant problem. States of categorical variables that rarely occur, are either set to the state 
other, or are merged with an already-existing state. For instance, the variable client segment is reduced to contain three 
states, since Private is merged with SME. A brief summary of the categorical variables can be found in Table 3.  
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Lastly, the provided vehicle leasing data are split into training and test data. These data are identical for all models 
used in this thesis. The most recent 10% of data are considered to be test data. Data are classified as most recent based 
on the date a switch occurred. Providing test data allows for models to predict on data that are seen as most presentable 
of the current situation. Prior to splitting data into train and test data, all data are shuffled to avoid dis-balanced data.  

Table 1. Summary of all categorical variables used for modelling purposes. The rows indicate the categorical variable. The first column portrays 
the number of unique states per variable, with the number in parenthesis stating the number of unique variables prior processing. The remaining 
columns depict the most occurring state per variable, the least occurring state per variable, and the least occurring state per variable prior to 
processing.  

 #States Max State Min State Min State (orig) 
country 8 (10) France Other Austria 
client segment 3 (4) Corporate SME Private 
fuel type 2 (6) Diesel Petrol Unknown 
vehicle type 2 (2) Vehicle Van Van 
vehicle segment 8 (12) D Other F 
body style 8 (17) Stationwagon Vehicle/Van Unknown 
lease type 2 (2) Operational Lease Financial Lease Financial Lease 
switch quarter 4 (4) 1 2 2 
make 13 (41) Volkswagen Nissan Chrysler 

 

3. Discrete Choice Models 

This chapter discusses the family of models used to model the vehicle leasing data, discrete choice models. More 
precisely, this section discusses logit models, a branch of the discrete choice model family. These types of models are 
widely used to model mode choice. Section 3.1 describes the properties common to all discrete choice models. The 
general framework of such models is introduced and elaborated on. The subsequent sections dive into the three types 
of logit models used in this thesis. The models addressed in sections 3.3 and 3.4 relax the assumptions made for 
standard multinomial logistic regression models (section 3.2). The chapter is concluded with a section describing the 
applicability of these models on the provided vehicle leasing data. Note that almost all mathematical derivations and 
formulae are derived from Train (2009). Text, derivations and formulae not originating from this source are cited 
accordingly.  

3.1 General Properties 

Discrete choice models analyze and predict individuals’ choices among a set of alternatives. This set of alternatives, 
the choice set, needs to contain three characteristics. The alternatives of the choice set need be mutually exclusive, 
and the choice set must be exhaustive and finite. The first two properties are not restrictive, since data can be modeled 
in such ways that these properties are met. However, finity of the choice set is a restrictive property and the defining 
characteristic of discrete choice models. Typically, these models are derived under the assumption of utility 
maximization. Models derived under this assumption are referred to as random utility models. In random utility 
models, it is assumed that the decision maker assigns a preference value, called utility, to each alternative in the choice 
set. The decision maker is assumed to have perfect discrimination capability and therefore chooses the alternative 
possessing the highest utility value. In addition, the analyst is assumed to have incomplete information, hence a factor 
of uncertainty needs to be considered. Such models can be defined as follows. If decision maker n chooses an 
alternative from a choice set C of size J elements, each element is assigned a utility value U. Then alternative i is 
chosen if and only if Uni > Unj ∀j ≠ i. Each utility value is composed of a deterministic and random part: Uni = Vni 
+ εni. The deterministic part Vni, or the representative utility, portrays the attributes of both the decision maker and 
the alternative, and is often specified to be linear in parameters. The random part, or error term of utility, εni, captures 
the factors that affect utility but are not included in Vni. The value of εni ∀i is not known a priori, hence these terms 
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are treated as random. Assuming a joint density function f(εn) of the vector containing all random terms, the probability 
of individual n choosing alternative i is defined as  

 
  

  

  

  

 (1) 

Note that I(·) denotes the indicator function, equaling one when true, and zero otherwise. Observe from equation 1 
that different types of discrete choice models arise from different distributions of f(εn). The models used in this paper 
cause the integral of equation 1 to be of closed form due to the specification of f(εn); hence these models do not need 
to be evaluated numerically. The choice of distribution of the random terms, and the motivation for these different 
assumptions will be discussed in the following sections. 

In addition, from equation 1 note that only the signs of the differences of utilities matter in choosing an alternative, 
rather than their absolute values. Consequently, this means that the only parameters able to be estimated are those 
capturing differences across alternatives. Due to this fact, the deterministic part of utility is often specified to be linear 
in parameters with a constant added. This constant captures the average effect of all factors not included in the model, 
on utility, and is referred to as the alternative specific constant. Including these constants produces the convenient 
property that the mean of the error terms can be assumed to equal any constant, typically zero. The deterministic part 
of utility is then defined as Vni = xniβ + ki, where vector xni depicts the attributes of alternative i and individual n, β 
is the vector of coefficients of these variables to be estimated, and ki denotes the alternative specific constant. Including 
alternative specific constants results in the random part of utility having zero mean by construction. If εni has a nonzero 
mean, adding the alternative specific constants result in the remaining error term having zero mean. Therefore, without 
loss of generality, it can be assumed that the mean of the error terms is equal to zero by including alternative specific 
constants in the deterministic part of utility.  

Another consequence of the fact that only the signs of differences between utilities matter, is that this property also 
holds for the alternative specific constants. A direct result is that it is impossible to estimate all alternative specific 
constants, since there are infinitely many possibilities for a and b when a − b is equal to some constant. Hence one of 
the constants is typically normalized to zero. It does not matter which alternative specific constants is normalized, 
since all other constants are interpreted as being relative to whichever constant is normalized. 

 In addition to normalizing one of the alternative specific constants, the scale of utility must be normalized too. The 
necessity of this normalization can be observed from the fact that the alternative with highest utility does not change 
regardless of the scale of utility: the models Uni = Vni + εni ∀i, and Uni = λVni + λεni ∀i are equivalent. Generally, 
normalizing the scale of utility corresponds to normalizing the variance of the error terms. Observe that the scale of 
utility and the variance of the error terms are related by definition, since Var(aX) = a2Var(X). Therefore, multiplying 
utility by λ corresponds to the variance of each εni changing by a factor λ2. The models explained in the subsequent 
sections assume that the error terms are independently, identically distributed (i.i.d). When the i.i.d assumption is 
imposed, normalization is quite simple; the error variance is normalized to some convenient value. Since the i.i.d 
assumption causes all error terms to have equal variance, normalizing the variance of any of the error terms sets the 
variance for all error terms. In addition, note that the i.i.d. assumption causes the integral of equation 1 to be of closed 
form.  

3.2 Multinomial Logistic Regression 

Multinomial logistic regression is the most straightforward and widely used discrete choice model since modeling 
is quite straightforward, and results of the model are easily interpretable. The derivation of the model is based on the 
framework specified in section 3.1, and the choice of distribution of unobserved utility f(εn). The multinomial logistic 



6 Feilzer et al./ Transportation Research Procedia 00 (2018) 000–000 

regression model assumes that the random parts of utility are independently, identically extreme value distributed. 
This distribution is generally referred to as Gumbel. The density function and cumulative distribution of the Gumbel 
distribution are stated in equations 2 and 3 respectively.  

 
 (2) 

 
 (3) 

 
The variance of this distribution is equal to 𝜋𝜋2/6. Recall from section 3.1 that assuming a variance value implies 

normalizing the scale of utility. The mean of the Gumbel distribution is not equal to zero. However, since only the 
differences in utility values matter, this is irrelevant. Note that the mean of the difference of two random terms with 
equal mean is equal to zero by definition, hence all prerequisites are met. To derive the choice probabilities of the 
multinomial logistic regression model, the assumption of independent error terms becomes significant. Using the 
property that the cumulative distribution becomes the product of individual cumulative distributions for independent 
error terms, equation 1 can be written as: 

 

 (4) 

 
Some algebraic alterations of equation 4, result in the final specification of the choice probabilities of the 

multinomial logistic regression model, stated in equation 5. For the derivation of this equation, the reader is referred 
to Train (2009).  

 

 
 

(5) 

 
Two important properties arise from these choice probabilities. Firstly, McFadden et al. (1973) showed that the 

log-likelihood function of these probabilities has a global maximum, guaranteeing convergence of the maximization 
procedures. This property becomes extremely convenient when estimating the models discussed in sections 3.3 and 
3.4, and will be touched upon in these sections. Secondly, the assumption of independence of error terms creates the 
notion of independence from irrelevant alternatives (IIA). This property states that for any two alternatives i and k, 
the ratio of probabilities remains equal when alternatives are added to the choice set.  

 

 

 

 

 

(6) 
 
Note from equation 6 that the ratio of probabilities only depends on the alternatives i and k, and is therefore 

independent of any other alternatives present in the choice set. This property can impose severe limitations to the 
multinomial logistic regression model. These limitations are best illustrated with the famous red bus, blue bus paradox. 
Imagine that the decision maker has two alternatives to choose from when commuting to work: go by car, or take a 
blue bus. Assuming Pcar = Pblue bus = 1 2⁄ , equation 6 becomes equal to one. Adding a red bus to the choice set 
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should intuitively not matter to the decision maker. That is, taking a red bus or blue bus is most likely irrelevant, and 
therefore the assumption that Pblue bus = Pred bus = 1 4⁄ , and Pcar = 1 2⁄ , is reasonable. However, the IIA property 
states that the ratio of probabilities of the alternatives car and blue bus remains the same. This implies that Pblue bus 
= Pred bus = Pcar = 1 3⁄ . In other words, in such a model correlation across alternatives is not possible. The data used 
in this thesis could potentially inhabit such correlations. To overcome the limitation of standard multinomial logistic 
regression, nested multinomial logistic regression models are introduced next.  

3.3 Nested Multinomial Regression 

As discussed in section 3.2, using the multinomial logistic regression model implies that correlations across 
alternatives cannot be modeled. This section introduces a methodology that partly overcomes this limitation: nested 
multinomial logistic regression. These types of models can be placed in a more general framework of models: 
generalized extreme value models (GEV). The main property defining these models is that the error terms of utility 
for all alternatives are jointly distributed as generalized extreme value. This property allows for correlation across 
alternatives. It will be shown that the multinomial logistic regression model provided in section 3.2 is an instance of 
this family of models as well. When all correlations across alternatives are equal to zero, the GEV distribution becomes 
the product of independent extreme value distributions, as is the case for multinomial logistic regression.        Nested 
multinomial logistic regression is deemed an appropriate modeling structure when the choice set can be divided into 
subsets of alternatives: nests. Two properties hold when dividing the choice set into nests. Firstly, the IIA assumption 
holds for alternatives within the same nest. That is, for two alternatives in the same nest, the ratio of probabilities is 
independent of the remaining alternatives within that nest. Secondly, the IIA assumption does not hold for alternatives 
across nests, allowing for correlations across alternatives of different nests. In general, nests are visualized using a 
tree structure, in which each branch denotes a nest of alternatives. Within those nests, the IIA assumption holds. The 
leaves of the tree depict the alternatives of the choice set.  

Concerning the derivation of the probabilities for the nested logistic regression model, McFadden (1978) showed 
that the model is consistent with the utility maximization theory provided in section 3.1. To derive these probabilities, 
suppose the choice set C consisting of J alternatives is to be divided into K nests Bk such that  and 

. Then, the nested model is obtained by assuming that error vector εn has a type of GEV 
cumulative distribution stated below.  

 

  
 

(7) 
 
It can immediately be observed that equation 7 collapses to the product of independent extreme value distributions 

provided in equation 3 when λk = 1 ∀k; hence the model is reduced to the standard multinomial logistic regression 
model. This parameter measures the degree of independence of the error terms in utility among the alternatives in nest 
k. The higher the value of λk the less the correlation across alternatives in nest k. In equation 7, the marginal 
distribution of each εnj is still univariate extreme value, however the εnj’s are correlated within nests. For any two 
variables in different nests, the error terms are still uncorrelated.  

McFadden (1978) showed that the probability of individual n choosing alternative i ∈ Bk is defined as  
 

 

 

 

(8) 
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From equation 8 it can be shown that the IIA assumption still holds for alternatives sharing a nest. The fraction of 
probabilities of two alternatives i ∈ Bk and m ∈ Bl is solely defined by the numerator of the equation, since the 
denominator remains equal for all alternatives:  

 

 

(9) 

 
Observe that the terms in parentheses in equation 9 cancel out when k = l, resulting in the fraction of probabilities 

only depending on the attributes of i and m. Hence, the IIA assumption holds for alternatives sharing the same nest. 
Interestingly, note that some form of IIA still holds if k ≠ l. In this case, the probability ratio only depends on all 
alternatives of nests k and l: independence from irrelevant nests. 

To better grasp the notion of nested logistic regression models, it is possible to decompose equation 8 into two 
separate logistic regression models. To be precise, the probability of individual n choosing alternative i in nest Bk can 
be expressed as the product of two probabilities. Specifically, the probability of alternative i ∈ Bk being chosen times 
the probability of nest Bk being chosen: Pni = Pni|Bk · PnBk. This notation allows for splitting utility into a part 
depending on attributes of the nest, and a part depending on attributes describing the alternative. The attributes 
describing the nest only vary over nests; they do not vary over alternatives within the nests. The attributes describing 
the alternatives vary over the alternatives within a nest. Setting Uni = Wnk + Yni + εni, in which Wnk only depends 
on attributes describing nest k, and Yni depends on attributes describing alternative j, allows to write the conditional 
and marginal probabilities to be expressed as 10 and 11 respectively. 

 

 
 

(10) 

 
 

(11) 

 
in which . For the derivation of equations 10 and 11 the interested reader is referred to Train (2009). 

Observe from equation 11 that the attributes varying over nests but not over alternatives within each nest are included. 
The quantity λInk is considered to be the expected utility individual n receives from the choice among alternatives 
within nest Bk. Quantity Ink is referred to as the inclusive utility of nest Bk and links the upper and lower model. The 
upper model refers to the choice of nest; the lower model to the choice of alternative within the nest.  

Nested logistic regression models maintain the property that the interval of equation 3.1 is of closed form. This 
convenient property allows for estimation of the model’s parameters by standard maximum likelihood techniques. 
However, maximization could still be a demanding task due to the rugged landscape of the log-likelihood function; 
convergence to a global optimum is not guaranteed. To point estimation in the right direction, the analyst could 
commence with estimating a standard multinomial logistic regression model. The obtained parameters could then be 
used as starting values for the estimation of nested models. This procedure ensures appropriate starting values of the 
nested model and potentially eases the convergence to a global minimum. Note however, that convergences cannot 
be guaranteed; optimization techniques are only pointed to a possible appropriate direction.  

Nested models still impose some restrictions. Note that the assumption and 
constrain each alternative to only be part of one nest, which could potentially be an inappropriate modeling 
assumption. Alternatives sharing a nest are put together since it is assumed that they have similar unobserved 
characteristics. Of course, the possibility of an alternative sharing these characteristics with multiple nests exist; it 
would be convenient if alternatives could belong to multiple nests. Cross-nested logistic regression models allow for 
this relaxation and are discussed in the subsequent section.  
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3.4 Cross-Nested Multinomial Logistic Regression 

Cross-nested models are roughly similar to nested models with one important difference. The assumption of 
alternatives belonging to one nest is relaxed; alternatives can belong to multiple nests. To allow for this property, 
allocation parameters αik ≥ 0 are added to the model, indicating the degree to which alternative i belongs to nest k. 
Intuitively, αik = 0 states that alternative i does not belong to nest k. For interpretability reasons the allocation 
parameters are usually scaled to . This is not a restrictive assumption however. In the remainder of this 
section it is assumed that this normalization has occurred. The parameter λk still serves the same function as in nested 
models and portrays the degree of independence across alternatives within nest k. Then, the probability that individual 
n chooses alternative i in a cross-nested structure is then defined as  

 

 

 

 

(12) 
 
Observe that the probability specification of a cross-nested model shares many characteristics with the probability 

specification of a nested structure given in equation 8. The difference lies in the numerator of equation 12 including a 
summation over all nests containing alternative i. The attentive reader could have observed that a cross-nested model 
collapses to a nested model if all alternatives are only present in one nest: αik = 1 for i ∈ Bk.  

Just as for nested models, the probability of individual n choosing alternative i can be decomposed to a marginal 
probability depicting the probability of choosing nest k (equation 13), and a conditional probability depicting the 
probability of choosing alternative i given  

 

 

 

 

(13) 

 
 

(14) 

 
Note that the inclusive utility has dropped out of the equations due to the relaxation that alternatives can belong to 

multiple nests. For the mathematical derivation of these equations, the reader is referred to Train (2009). Concerning 
optimization of the model’s parameter, convergence cannot be guaranteed. Just as for the nested model, the rugged 
landscape of the log-likelihood function could produce several local optima. Again, parameters of the cross-nested 
model could be initialized by first estimating either a standard or nested model and using these estimates as initial 
parameter values.  

3.5 Application to Vehicle Leasing Data 

This section addresses how the models discussed in this chapter can be applied to the vehicle leasing data. The 
section is mainly concerned with defining appropriate nests for the nested and cross-nested models. No nests are 
required for a standard multinomial logistic regression model; fitting such a model on the vehicle leasing data is 
straightforward. However, as discussed in previous sections, the outcome of the standard model is very useful. The 
estimates of the parameters are used as starting values for both the nested and cross-nested models. Besides pointing 
the maximization procedure in the right direction, this procedure significantly reduces computation time. 
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 All three models use the same explanatory variables, which can be classified as numerical and categorical 
variables. Recall from section 2 that the numerical variables consist of the variables catalogue price, commercial 
discount amount, standard discount percentage, total accessories amount, ufwt amount, mileage per month and 
contract duration. The remaining variables consist of the categorical variables country, client segment, fuel type, 
vehicle type, vehicle segment, body style, lease type, switch quarter and make. Regarding categorical variables, rather 
than estimating one β per state of the variable, one β per state of the variable per alternative is estimated. Namely, for 
state Diesel of the variable fuel type, one β per alternative is estimated (βDiesel-Audi, βDiesel-BMW, etc.). Of course, 
as discussed in section 3.1, one of the βs per categorical variable is held fixed; all other βs are estimated with respect 
to the fixed β. In addition, a categorical variable with n unique states, produces n − 1 (times the number of unique 
alternatives) different βs to be estimated, since the nth state is a perfect linear combination of the previous n − 1 states. 
Additionally, one β per alternative for each numerical variable is estimated (βcatalogue price-Audi, βcatalogue price-
BMW, etc.). 

The multinomial logistic regression uses all these explanatory variables to analyze and predict. As discussed in 
section 3.2, the IIA assumption does not allow for correlation across alternatives. One can imagine however, that for 
instance adding a Fiat 500 to the choice set should not change the decision maker’s choice when he is looking for an 
SUV type of vehicle. To allow for correlations across alternatives, the alternatives are divided into nests. This division 
proves relatively straightforward due to the vehicle segmentation provided by the leasing company. Section 2 states 
that the leasing company assigns each model of vehicle to one particular vehicle segment. Note however, that the 
make of vehicle can belong to multiple vehicle segments, since a make of vehicle consists of multiple models. The 
exact distribution of the target variable new make over the variable new vehicle segment is shown in Table 4. Note 
that the variable new vehicle segment is not used for prediction. It is solely used to divide new make into nests.  

Table 2. Overview of the distribution of the target variable new make over the variable new vehicle segment. This segmentation is provided by the 
leasing company. The vehicle segment to which an alternative is assigned to most often is stated in bold. The rows indicate the alternatives, 
whilst the columns indicate the states of the variable vehicle segment. 

 A B C D E F LCV MPV Pickup S SUV 
Audi 0 167 1413 2923 1196 3 0 0 0 42 1308 
BMW 0 0 789 2202 1194 10 0 525 0 2 1835 
Citroen 40 316 520 73 0 0 1333 916 0 0 10 
Ford 3 747 1646 926 0 0 1290 886 66 6 390 
Mercedes-Benz 0 0 574 2706 1046 3 427 204 0 5 1158 
Nissan 0 71 108 0 0 0 56 12 22 0 1173 
Opel 2 359 1714 1121 0 0 322 251 0 0 224 
Other 192 1139 1564 595 88 54 422 420 111 4 2490 
Peugeot 37 616 1839 693 0 0 1190 499 0 1 1142 
Renault 7 2287 1166 425 0 0 2298 864 0 0 448 
Skoda 1 72 1294 752 0 0 0 1 0 0 134 
Volkswagen 28 312 2345 3360 24 0 1221 1476 35 0 942 
Volvo 0 0 287 496 340 0 0 0 0 0 906 
Total 310 6086 15259 16272 3888 70 8559 6054 234 60 12160 

 
From Table 4, it becomes clear that all makes belong to multiple vehicle segments. For the nested multinomial 

logistic regression model, alternatives are restricted to be part on only one nest. To determine the nesting structure of 
this model, and to determine which nest each alternative belongs to, each alternative is assigned to the vehicle segment 
in which the alternative occurs most. This assignment is shown in Table 5. Observe from this table that only four 
unique vehicle segments are assigned to be a nest: C, D, LCV and SUV. Each nest has at least two alternatives that 
belong to it. A schematic representation of the nesting structure of the model is visualized in Figure 1. 
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Table 3 Assignment of nests to each alternative of the choice set. Each nest corresponds to the nest in which the alternative occurs most. 

Alternative Nest  Alternative Nest 
Audi D  Other SUV 
BMW D  Peugeot C 
Citroen LCV  Renault LCV 
Ford C  Skoda C 
Mercedes-Benz D  Volkswagen D 
Nissan SUV  Volvo SUV 
Opel C    

 

 

Figure 1. Schematic overview of the nesting structure used for the nested multinomial logistic regression model. Each nest is associated with its 
own colour. In addition, each alternative is only part of one nest. 

Regarding cross-nested multinomial logistic regression, the restriction of each alternative belonging to one nest is 
dropped. Each alternative is allowed to be contained in multiple nests. The model estimates the allocation parameters 
α, indicating the degree to which an alternative belongs to a particular nest. To determine the nests each alternative 
belongs to, and the allocation parameters α corresponding to these nests, Table 4 is used. First, each number of this 
table is divided by the total occurrences of the alternative in the data. This procedure results in a table denoting the 
fraction of the number of times an alternative is assigned to a particular vehicle segment over the total number of 
occurrences of the alternative in the data. The idea is that these fractions function as starting values for the allocation 
parameters α in the cross-nested multinomial logistic regression model. All fractions less than 0.10 are considered to 
equal zero. For interpretability reasons, the allocation parameters are usually scaled to , with i denoting 
the alternative and k the nest. Therefore, all fractions less than 0.10, but greater than zero are added to different α. 
Since these α solely function as starting values for the cross-nested model, this should not impose a problem. Table 6 
depicts the starting values of the allocation parameters α stemming from the above-mentioned procedures. Figure 2 
depicts a schematic overview of the cross-nested structure. Note that for interpretability reasons, only three nests are 
depicted.  
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Table 4. Distribution of the alternatives over the different nests. Each value depicts the starting value of the allocation parameter α associated 
with the alternative and the nest. Note that the sum of each row is equal to 1, satisfying the normalization requirement. The rows indicate the 
alternative, whilst the columns indicate the nests.  

 B C D E LCV MPV SUV 
Audi  0.23 0.41 0.17   0.19 
BMW  0.20 0.34 0.18   0.28 
Citroen  0.29   0.42 0.29  
Ford 0.19 0.28 0.16  0.22 0.15  
Mercedes-Benz   0.64 0.17   0.19 
Nissan       1.00 
Opel  0.72 0.28     
Other 0.41 0.22     0.37 
Peugeot  0.49 0.12  0.20  0.19 
Renault 0.41 0.16   0.31 0.12  
Skoda  0.67 0.33     
Volkswagen  0.38 0.34  0.13 0.15  
Volvo  0.14 0.24 0.17   0.45 

 

Figure 2. Schematic overview of the nesting structure used for the cross-nested multinomial logistic regression model. Each nest is associated 
with its own colour. Contrary to the nested model, alternatives are allowed to belong to multiple nests. The colour(s) of the alternatives indicate 
the nest(s) they belong to. Note that for interpretability reasons, only three nests are shown.  

4. Results 

This section describes the obtained results by all three discussed logit models. Recall that all models utilize the 
same data, and that estimates of the multinomial logit model are used as starting values for both the nested and cross-
nested models. Observe from Table 7 the results regarding all discrete choice models. The leftmost column states 
performance measures, whereas the remaining columns indicate the values associated with these measures for the 
standard, nested, and cross-nested multinomial logistic regression models respectively. The statistic ℒ(0) corresponds 
to the null log likelihood. The null log likelihood is the log likelihood of the sample for a logistic regression model 
such that the deterministic part of the utility function is zero for all alternatives (Bierlaire, 2015). In addition, ℒ(c) is 
defined as the log likelihood of the sample where the deterministic part of utility of each alternative contains only the 
alternative specific constants. The statistic  denotes the final log likelihood of the estimated model, and −2[ℒ 
(0) − ] denotes the likelihood ratio test. The likelihood ratio test compares the goodness of fit of two models, the 
null and final model. Lastly,  and  are defined as the likelihood ratio index and the adjusted likelihood ratio 
index respectively. The latter is a slight adjustment of the former sine it considers the number of estimated parameters 
K. 
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Table 5. Performance of al logit models on training data. Each model was estimated using 62,056 observations. Values equal for all three models 
are omitted in the two rightmost columns. 

Summary Statistics MNL nested MNL cross-nested MNL 
ℒ (0) -159,170.497   
ℒ (c) -152,117.028   

 -106,158.670 -106,121.880 -105,995.517 
−2[ℒ (0) − ] 106,023.655 106,097.235 106,349.960 

 0.333 0.333 0.334 
 0.329 0.329 0.330 

 
Observe from Table 7 that the cross-nested model achieves best results on all performance measures. Of course, it 

is to be expected that both the nested and cross-nested models outperform the standard multinomial logit model, since 
estimates of this model are taken as starting values of the nested and cross-nested models. The likelihood ratio test 
indicates that all three models are significant improvements relative to the null-model. Comparing this statistic for all 
three models, the more restrictive assumptions are relaxed, the better fit the model is on training data. Only for the 
cross-nested model the improved final log likelihood with respect to the other two models, results in a better (adjusted) 
likelihood ratio index. Observe that the improvement of final log likelihood value of the nested model is not significant 
enough to obtain a better likelihood ratio index.  

Since performance of all three models is roughly similar, it need be checked if dropping the IIA assumption is 
relevant. To do so, note the estimates of the nest parameters stated in Table 8. Recall from section 3.3 that the nested 
model collapses to a standard multinomial logistic regression model if all nest parameters are equal to one, λk = 1 ∀k. 
Note that both nest D and SUV are significant irrelevant of the maintained significance level. Nest C is deemed 
appropriate depending on the maintained significance level. Albeit slight, all estimated nest parameters are greater 
than one, hence validating relaxing of IIA.  

Table 6. Relevance of nest parameters of the nested multinomial logit model. 

Nest Estimate Std. Error t-stat p-value 
C 1.24 0.124 1.92 0.05 
D 1.66 0.126 5.18 0.00 

LCV 1.00 FIXED   
SUV 1.73 0.249 2.93 0.00 

 
Further relaxation of assumptions leads to the cross-nested model, of which the nest and allocation parameters are 

displayed in Table 9 and Table 10 respectively. Note that some allocation parameters are fixed. These parameters 
were estimated with infinite standard error at first. The cross-nested model was estimated again fixing these allocation 
parameters at the estimated value produced on the first run. Interestingly, all nest parameters are significant and all 
estimates of these parameters differ significantly from one, hence relaxing assumptions is again validated. Observe 
that nest MPV has the highest estimated parameter value. The higher the nest parameter estimate, the more correlated 
alternatives of this nest are within the nest, rather than outside the nest.  

Table 7. Relevance of the nest parameters of the cross-nested logit model. Note that no statistics are displayed for nest LCV. This parameter was 
estimated with infinite standard error at first. On the second run this parameter was therefore held fixed at the estimated value of the first run. 

Nest Estimate Std. Error t-stat p-value 
B 1.75 0.319 5.490 0.00 
C 1.54 0.034 45.28 0.00 
D 2.08 0.066 31.46 0.00 
E 1.24 0.148 8.420 0.00 
LCV 1.10 FIXED   
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MPV 2.89 0.160 18.02 0.00 
SUV 1.94 0.177 10.98 0.00 

 
Even though all nest parameters of the cross-nested model are deemed significant and relevant, Table 10 states 

some allocation parameters indicating that inclusion of the corresponding alternative in the concerned nest is not 
strongly supported by the given data. In other words, some allocation parameters are deemed insignificant. The third 
column of this table states the starting value of the respective allocation parameters. Recall that these estimates are 
solely based on the nesting structure provided by the vehicle leasing company. Note that most estimated values do not 
differ much from the provided starting value of the parameter. Interestingly enough, estimates of allocation parameters 
that differ much from the corresponding starting value are typically significant. Lastly, note that for each of the 
alternatives at least one of the allocation parameters is significant, indicating inclusion in one of the nests is indicated 
by the data.  

Table 8. Statistics on the allocation parameters α. In αik, i denotes the alternative and k the corresponding nest. All values for which statistics are 
not displayed were fixed at run-time. These parameters were estimated with infinite standard error at first. On the second run they were fixed at 
the produced output value of the first run. 

Allocation Parameter Estimate Start. Value Std. Error t-stat p-value 
αAudi – C 0.367 0.23 0.222 1.65 0.10 
αAudi – D 0.378 0.41 0.243 1.56 0.12 
αAudi – E 0.111 0.17 FIXED   
αAudi – SUV 0.145 0.19 FIXED   
αBMW – C 0.103 0.20 0.105 0.98 0.33 
αBMW – D 0.665 0.34 0.055 12.18 0.00 
αBMW – E 0.091 0.18 0.095 0.96 0.34 
αBMW – SUV 0.141 0.28 0.042 3.35 0.00 
αCitroen – C 0.147 0.29 0.109 1.35 0.18 
αCitroen – LCV 0.212 0.42 FIXED   
αCitroen – MPV 0.641 0.29 0.165 3.88 0.00 
αFord – B 0.096 0.19 0.071 1.34 0.18 
αFord – C 0.153 0.28 0.100 1.54 0.12 
αFord – D 0.485 0.16 0.122 3.97 0.00 
αFord – LCV 0.190 0.22 0.061 3.13 0.00 
αFord – MPV 0.076 0.15 0.019 4.08 0.00 
αMercedes-Benz – D 0.685 0.64 0.051 13.33 0.00 
αMercedes-Benz – E 0.102 0.17 0.068 1.50 0.13 
αMercedes-Benz – SUV 0.213 0.19 0.042 5.01 0.00 
αNissan – SUV 1.000 1.00 FIXED   
αOpel – C 0.365 0.72 FIXED   
αOpel – D 0.635 0.28 FIXED   
αOther – B 0.231 0.41 0.104 2.23 0.03 
αOther – C 0.111 0.22 0.038 2.89 0.00 
αOther – SUV 0.658 0.37 FIXED   
αPeugeot – C 0.379 0.49 FIXED   
αPeugeot – D 0.351 0.12 0.074 4.74 0.00 
αPeugeot – LCV 0.101 0.20 FIXED   
αPeugeot – SUV 0.168 0.19 0.030 5.62 0.00 
αRenault – B 0.336 0.41 0.113 2.98 0.00 
αRenault – C 0.184 0.16 0.097 1.91 0.06 
αRenault – LCV 0.378 0.31 0.196 1.92 0.05 
αRenault – MPV 0.102 0.12 0.023 4.43 0.00 
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αSkoda – C 0.338 0.67 0.078 4.32 0.00 
αSkoda – D 0.662 0.33 0.078 8.44 0.00 
αVolkswagen – C 0.225 0.38 0.148 1.52 0.13 
αVolkswagen – D 0.211 0.34 0.068 3.11 0.00 
αVolkswagen – LCV 0.206 0.13 0.060 3.41 0.00 
αVolkswagen – MPV 0.357 0.15 FIXED   
αVolvo – C 0.071 0.14 FIXED   
αVolvo – D 0.131 0.24 0.077 1.70 0.09 
αVolvo – E 0.086 0.17 0.088 0.98 0.33 
αVolvo – SUV  0.712 0.45 0.093 7.64 0.00 

 
Since this research aims to construct predictive models rather than descriptive models, performance on test data is 

important. Table 11 states the achieved accuracy of each model on test data. Recall that the test data consist of the 
most recent 10% of switches. In addition to the achieved accuracy of the aforementioned models, accuracy of a 
benchmark model is stated as well. This benchmark model assumes loyalty of drivers. It assumes that a driver chooses 
the same make as he or she was driving prior to his or her current vehicle, hence this model solely copies the variable 
make to the choice variable new make. Observe that, in the test data, almost 45% of drivers remain loyal to their 
previously driven make. Interestingly enough, the nested model generalizes worst on unseen data, whilst best 
performance of the cross-nested model on training data directly relates to best performance on unseen data. Note that 
an accuracy value of 1% translates to roughly 69 correctly predicted switches.  

Table 9. Performance of all logit models on test data. Each model predicts the most likely next make of vehicle given previous contract attributes. 
The test data contain 6,896 matched contracts. 

Model Accuracy 
MNL 48.26% 
nested MNL 47.96% 
cross-nested MNL 48.39% 
benchmark 44.90% 

 
Next, the relevance and influence of the explanatory variables is discussed. Note that insignificant parameters are 

also displayed. These parameters serve two purposes. Firstly, insignificance of parameters could serve an explanatory 
purpose regarding inclusion in models. Secondly, exclusion of these parameters causes both the final log-likelihood 
of models and the achieved accuracy on test data to worsen. Therefore, all insignificant estimates were maintained 
and used for prediction. Since nearly 45% of drivers stays loyal to their make, it is expected that parameters regarding 
make are of great importance. Table 12 portrays the estimates for these parameters. Per state of make only the two 
parameters with the highest estimated value are shown. Note that for nearly all these βs, the one indicating make 
loyalty has the highest value. Only the parameters βmake BMW BMW and βmake Renault Renault are not the estimate 
with the highest value for that particular state of the variable. In addition, note that all these estimates are significant. 
This table portrays the estimates of the multinomial logistic regression model. Similar phenomena are observed for 
both the nested and cross-nested models.  

Table 10 Importance of previously driven make of vehicle for the multinomial logit model. The two βs with the highest value are shown per 
previous make. The parameter βmake Audi Audi is omitted, since this parameter is fixed at zero. Note that insignificant βs are not considered. All 
alternatives are stated in italics.  

Parameter Estimate Std. Error t-stat p-value 
βmake Audi Peugeot  -0.85 0.248 -3.44 0.00 
βmake BMW Opel 1.02 0.226 4.49 0.00 
βmake BMW BMW 0.92 0.104 8.81 0.00 
βmake Citroen Citroen  3.32 0.434 7.65 0.00 
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βmake Citroen Peugeot 2.30 0.261 8.80 0.00 
βmake Ford Ford 2.70 0.165 16.39 0.00 
βmake Ford Citroen 2.12 0.430 4.93 0.00 
βmake Merc-B Merc-B 1.54 0.122 12.58 0.00 
βmake Merc-B Opel 0.56 0.252 2.22 0.03 
βmake Nissan Nissan 3.35 0.363 9.23 0.00 
βmake Nissan Opel 1.50 0.328 4.56 0.00 
βmake Opel Opel 2.88 0.225 12.79 0.00 
βmake Opel Peugeot 1.52 0.249 6.12 0.00 
βmake Other Other 1.85 0.134 13.82 0.00 
βmake Other Citroen 1.51 0.430 3.52 0.00 
βmake Peugeot Peugeot 2.53 0.247 10.26 0.00 
βmake Peugeot Citroen 1.76 0.429 4.11 0.00 
βmake Renault Citroen 2.54 0.428 5.92 0.00 
βmake Renault Renault 2.07 0.186 11.11 0.00 
βmake Skoda Skoda 2.63 0.190 13.83 0.00 
βmake Skoda Nissan 1.57 0.385 4.08 0.00 
βmake Volkswagen Volkswagen 1.41 0.107 13.16 0.00 
βmake Volkswagen Peugeot 0.57 0.240 2.39 0.02 

 
Regarding the remaining explanatory variables, observe that estimates of the parameters included in all three 

models portray similar characteristics. Most parameters considered important in one model, prove important for the 
other two models as well. Recall that the leasing company segments drivers by country and client segment. The 
estimates regarding these parameters indicate that segmentation by country is often more relevant than by client 
segment. Noteworthy, the estimates regarding the state Norway of parameter country are all significant for prediction. 
This is the only branch of the company for which true data is provided. The categorical variable fuel type seems to 
play an important predictive role, even though that the distribution of the states of this parameter is dis-balanced. In 
addition, the parameter vehicle segment proves its relevance depending on the state of the variable. It seems that the 
states chosen to serve as nests prove slightly more predictive power than the excluded states. Observe that nearly all 
states of the variable body style do not add much explanatory power to the model. Only the states Car Van and Delivery 
Van add some strength to the model. Regarding the numerical variables included, the variable catalogue price proves 
its explanatory power for all alternatives except Volvo. In addition, the parameters mileage month and standard 
discount percentage influence most drivers when choosing a new make of vehicle.  

5. Discussion 

Logit models have historically proven successful for analyzing and predicting mode choice. This paper presented 
a mode choice case study by which performance of several logit models, each relaxing correlation assumptions more, 
was compared. It was expected that the models in which correlation assumptions were relaxed would perform best. 
The presented results did indeed indicate better performance of such models. More precisely, these models fit training 
data better and generalize better on unseen data, obtaining higher accuracy on test data.  

The standard multinomial logit model was estimated first. Due to a guarantee of convergence, such models prove 
extremely convenient when relaxing assumptions on the distribution of error terms. When defining a nesting structure 
the estimated parameters of the standard model were taken as starting values for the parameters of the nested models. 
The presented results indicate that the leasing company defined nesting structure proves accurate, with almost all 
estimated nest parameters being significant. Whereas performance of the nested logistic regression model was slightly 
better than that of the standard model on training data, it generalized worse on unseen data. Performance of the cross-
nested model was better on both training and test data. Considering that the increase in log-likelihood of the nested 
model relative to the standard model was negligible, both an increase in log-likelihood and accuracy on test data was 
observed for the cross-nested model. Even though the nesting structure used for the cross-nested model was considered 
accurate, the training data did not support the entire allocation of makes across nests. Relaxing assumptions on error 
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term distribution does indeed improve performance of models, albeit slight. From estimation results it can be 
concluded that correlations across alternatives indeed exist, hence assigning each make one or multiple nests is 
justified.  

In conclusion, relaxing assumptions on error term distribution allows for better capturing of correlations across 
alternatives. For the leasing company to use the models discussed in this thesis, the company should keep track of the 
drivers of their vehicles. Doing so will allow for accurate matching of contracts, whilst concurrently enhancing 
predictive power by addition of explanatory variables.   
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