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Abstract 

Climate change and sea level rise have increased the frequency and severity of nuisance flooding events, leading to 
cascading impacts on roadway networks. While these flooding events are typically low impact and span only a few 
hours, they consistently cause disturbances in traveller’s daily routines. This paper uses the City of Norfolk, Virginia, 
as a case study area to quantify the impacts of nuisance flooding on the transportation network using empirical data. 
Using a combination of traditional and crowdsourced data, a data-predictive approach is proposed to expand the spatial 
coverage and temporal resolution of traffic volume data. The random forest decision tree model specification utilizes 
roadway features, traffic flow characteristics, and hydrological data to estimate personal vehicle volumes on 7736 
segments in the study area. Model outputs suggest that the presence of flooding events consistently reduces network-
wide vehicle-hours of travel, with an average reduction in travel of 21%. These estimates are line with the spatially 
limited ground truth count station volume data, which show an average reduction in traffic volumes by 12% and an 
average reduction in travel speed by 6%. Results suggest that the impact of nuisance flooding on travellers comes in 
the form of abandoned trips (decreased travel demand) and increased travel times (due to decreased speeds). The data-
predictive framework proposed here can be used to expand the spatial coverage and temporal resolution of other types 
of transportation data, whether for the purpose of examining impacts of other types of disruptions or routine traffic 
management strategies. 
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1. Introduction 

    Rising sea levels and subsequent coastal flooding are increasingly affecting coastal communities across the US. 

Almost 30 coastal cities have witnessed more than double the number of annual flood days in the 2010s as compared 

to the 1950s, with more than 10 major cities on the US east coast experiencing a fourfold or greater increase in the 
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frequency of flooding (US EPA, 2016). With continued relative sea level rise, nuisance flooding (which can occur in 

high tide without the presence of a major storm) is expected to occur more frequently, and propagate to more inland 

locations (NOAA, 2016). There is a growing need to understand the subsequent impacts to people and civil 

infrastructure (traveller response, frequency and duration of roadway closures, reduction of infrastructure life and 

stormwater drainage capacity, etc.). The existing literature on transportation disruptions due to flooding are mostly 

focused on major storms, with much of the research oriented towards evacuation and rehabilitation efforts, and not 

the recovery of daily transportation activities. Coastal nuisance flooding is considered a minor disruption compared 

to consequences of catastrophic storms. However, inundated areas in coastal cities greatly deteriorate the mobility of 

road users, by increasing travel delay and by disrupting the ability to complete trips. A report by NOAA (2014) shows 

that there is a significant increase in the occurrence of nuisance flooding in the US north-east coast, with most notable 

changes in sea level rise observed in the tidal gauges in the Chesapeake Bay. This study aims to quantify the 

transportation impacts associated with nuisance flooding borne by roadway users via a case study of Norfolk, Virginia, 

using a combination of state agency collected data and crowdsourced data.   

2. Background and literature review 

    Historically, nuisance flooding has been a low-frequency, low spatial- and temporal- scale disruption on the 

transportation system, considered to have minor impacts. However, nuisance flooding frequencies have changed 

significantly in the last decade or so, with the Atlantic Coast experiencing the biggest increase in frequency from 2000 

to 2015 (75% along the Northeast Atlantic and 125% along the Southeast Atlantic) (US EPA, 2016). The studies 

examining the impacts of sea level rise on transportation are relatively recent and often include significant data 

limitations (in temporal or spatial resolution and coverage). Furthermore, the studies rely heavily on projected data, 

rather than characterizing empirical evidence of impacts. For example, a study conducted by Jacobs et al. (2018) 

identifies the most vulnerable roads in the Eastern US to the risk of nuisance flooding using Federal Highway 

Administration’s Highway Performance Monitoring System (HPMS) data, combined with flood frequency maps, and 

future projections of annual minor tidal flood frequencies and durations. The study estimates that the current total 

vehicle hours of delay due to nuisance flooding at over 100 million hours annually, and projects this delay to increase 

to 160 million vehicle-hours by 2020 and 1.2 billion vehicle-hours by 2060. As the study notes, HPMS data report 

annual average daily traffic (AADT), which is not uniformly distributed throughout the day. Further, the study only 

includes impacts on highways in the HPMS, and ignores urban streets. On a city-wide scale, Suarez et al. (2005) 

estimates the indirect costs of increased flooding in Boston by examining the effects of coastal flooding due to sea 

level rise and riverine flooding due to heavy rainfall events. The study simulates these effects in an urban 

transportation model and projects an increase in delay and lost trips of around 80% in 2100 compared to 2000, with 

an assumed sea rise level of 0.3 cm per year and an increase in magnitude of heavy rainfall events of 0.31% per year. 

As a part of a larger study in Portland, Oregon (Chang et al., 2010), an analysis of traffic impacts due to coastal 

flooding disruptions is conducted. The study uses predicted flooding frequency and locations based on hydrological 

models to determine impacts of flooding on the roadway network in 2035, using the four-step regional travel demand 

model (TDM). There was a non-linear relationship found between precipitation and travel disruption impacts. The 

study predicted a negligible change in vehicle miles travelled (VMT), however, vehicle-hours of delay increased by 

10% in one of the sub-areas analyzed. More broadly, Koetse, et al. (2009) presents a literature review of studies on 

the impact of climate change and weather on transport, and describe several studies which utilize digital elevation 

models to estimate the inundation risk of transportation networks under various sea level rise scenarios (see, e.g. 

Wright and Hogan (2008), Kafalenos and Leonard (2008)). 

    Only a few studies have characterized the impacts of flooding events on transportation systems using empirical 

data, and these studies focus on large-scale disruptions. For example, New York City taxi and subway ridership 

datasets were made publicly available for 2010 through 2013, during which hurricanes Irene and Sandy significantly 

disrupted the transportation and power networks in the area. Zhu et al. (2016) and Donovan and Work (2017) used 

these datasets to propose new methodologies to quantify city-scale transportation system resilience to extreme events. 

These studies serve as post-disruption analysis. Zhu et al. presented resilience curves, which showed that Hurricane 

Sandy had a slower transportation recovery rate than Hurricane Irene. Resilience of the roadway network was found 

to be better in both disruptions than the subway network. In the post disruption period of Hurricane Sandy, Donovan 

and Work found an increase in delay of over two minutes per mile about two days after the hurricane had struck, 
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although a faster traffic flow was observed during most of the post-disruption period. A day-to-day traffic evolution 

process after an unexpected network disruption was modelled in a study conducted by He and Liu (2012). The study 

proposes a prediction-correction process, where traffic flow and the travel link cost are a weighted average of the 

expected and experienced traffic conditions after a disruption. Data for this study was obtained from driver behaviour 

surveys and loop detector data. The process was validated with data from the I-95 bridge collapse in Minneapolis. 

Authors suggest this traffic assignment method can be utilized effectively for prioritization of traffic flow restoration 

strategies. 

    Furthermore, when it comes to cost of flooding on transportation systems, the existing literature focuses on 

infrastructure damages in major storms like hurricanes Katrina and Rita (see, e.g. Grenzeback and Lukmann (2007), 

Jacob et al. (2007)). While these damages are significant in major storms, they are not as evident during nuisance 

flooding. In Norfolk, annual frequencies of nuisance flooding events are accelerating at a quadratic rate, with the 

number of high tide flood days in 2016 almost double that in 2000 (Sweet et al., 2018). The entire city has an elevation 

of less than 5 meters from the sea level, making it particularly susceptible to climate change and sea level rise 

(Kleinosky et al., 2006). It is necessary to estimate the impacts of such flood events from a different perspective. In 

this study, we utilize 9 months of empirical flooding and traffic data in 2017 to assess the travel impacts for personal 

vehicles due to nuisance flooding in Norfolk. 

3. Methodology and data 

    The impacts of flooding borne by travellers on a roadway network for this study are accounted for by comparing 

the vehicle-hours of travel (VHT) on a day with recorded flood event versus days without a flood event. To assess the 

total vehicle-hours of travel on any day, we estimate the link volumes in the entire roadway network of the study area, 

and multiply it with the average travel time for that link in the specified time period. Flooded day traffic volumes and 

vehicle hours of travel are compared with those of non-flooded days, to estimate the network-wide impacts of nuisance 

flooding. For each flooded day (FD), four non-flooded days (NFDs) are selected to obtain an average NFD link 

volume. These NFDs are selected from three weeks around the week containing the FD, but not within the same week 

as the FD, to avoid the pre- and post-disruption effects of a FD on the NFD average link volume. This is somewhat 

similar to the approach taken by Zhu et al (2016), where the data is compared to the same day in the prior year, to 

observe differences in traffic flow but account for seasonal traffic variation. Since we only have 9 months of data, we 

use comparable days within the three week window minimize effects of seasonal traffic variation. The flooding in the 

study area may occur due to two environmental conditions: high tides or rainfall, or both. The NFDs for a high-tide 

(but no rainfall) FD are picked as the same type of day (workday or non-workday) with no rainfall within the three 

week window. For FDs with rainfall, the NFDs are chosen from the same type days that experienced rainfall, but 

recorded no flooding. Traffic delays occurring due to flooding are evaluated using the equation 2:   

 

       𝑉𝐻𝑇𝑖,𝑗  = (𝑣𝑖,𝑗 ∗ 𝑡𝑡𝑖,𝑗)                                                               (1) 

     𝛥 𝑇𝑟𝑎𝑣𝑒𝑙 = ∑ [(𝑉𝐻𝑇𝑖,𝑗)𝐹𝐷 −
𝑖,𝑗

(𝑉𝐻𝑇𝑖,𝑗) 𝑁𝐹𝐷]                                                                                                                   (2) 

Where  i= roadway segment 

 j= time-of-day (TOD) 

 𝛥 𝑇ravel is the network-wide difference in veh-hrs of travel on a FD compared to NFD  

𝑡𝑡𝑖,𝑗 = travel time on segment i during TOD j  

𝑣𝑖,𝑗= traffic volume on segment i during TOD j  

(𝑉𝐻𝑇𝑖,𝑗)𝐹𝐷= VHT on segment i during TOD j on a FD 

(𝑉𝐻𝑇𝑖,𝑗)𝑁𝐹𝐷= VHT on segment i during TOD j on a NFD 

 

    Virginia Department of Transportation (VDOT) collects traffic data at 12 continuous count stations (CCS) on 

freeways and arterials within the city of Norfolk (locations shown in Figure 1). This data is collected at 15-minute 

intervals throughout the year. However, due to the limited spatial representation of these 12 count stations, the 

network-wide effects of flooding events cannot be deciphered. Streetlight Data (founded in 2011) is a commercial 

platform that provides various types of transportation data such as road segment volume data, origin-destination (OD) 
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analysis data, zonal activity data, etc. 

In this platform, Streetlight (StL) trip 

indices (estimated link volumes) and 

travel speeds are projected from 

signals or pings (called StL trip 

counts), generated from applications 

using location-based services (LBS) 

on mobile phones, tablets, connected 

cars, and other electronic devices. 

LBS-data enabled devices are 

reported to have an approximately 

23% penetration rate among all 

traffic (Streetlight, ND [1]). Thus, 

with sufficient samples of StL trip 

counts across the Norfolk roadway 

network, Streetlight Data is able to 

provide significantly greater spatial 

coverage of traffic volume estimates 

(StL trip indices) compared to the 

VDOT CCS data. The network links 

coded in green in Figure 1 show the extent of spatial coverage of Streetlight Data used in this case study. The 

calibration process of the StL trip indices on these links and in zonal analyses is internal to Streetlight Data as a part 

of their data cleaning and imputation process, but is disclosed by Streetlight Data to be based on AADT metrics from 

VDOT roadways in Bristol, VA (Streetlight, ND [2]). Thus, direct application of the StL trip indices may not serve as 

accurate link volume estimates for Virginia. In fact, on examining the ratio of VDOT CCS volumes to StL trip indices 

for 35 randomly sampled days in 2017, we found that these ratios were typically closer to 1 during peak periods of 

travel, but ranged from 0.2 to 26 at other time periods in the day (median value of 1.57). Streetlight Data obtains the 

speed information on individual links from commercial partner INRIX. To confirm, StL link speed estimates were 

compared with INRIX data provided by RITIS (a relatively more established commercially available data source 

which estimates travel speeds and travel times based on location information emitted by GPS-based mobile devices) 

for two weekdays in March 2017, across all CCS locations for all time-of-day (TOD) periods. There was no 

statistically significant differences observed when comparing both speed datasets. Thus, this study utilizes a data-

predictive approach to transform the raw StL trip counts to estimated traffic volumes, rather than directly using the 

StL trip indices as traffic volumes. StL link speeds, on the other hand, was directly used as one of the model inputs.  

    Three different types of input variables are used in developing the predictive model to transform StL trip counts to 

link volumes for the spatial extent of the study network: roadway, traffic, and hydrological variables. Roadway 

characteristics consist of geometric features like number of lanes, speed limit, and per lane capacity, which are 

obtained from the Hampton Roads Regional Travel Demand Model (HRRTDM). Thus, the roadway network analyzed 

in this study is limited to the links in the HRRTDM data set (shown in green in Figure 1), which includes interstates, 

other freeways and arterials in Norfolk. Minor streets (minor arterials, collectors and local streets, shown in orange in 

Figure 1) are excluded. This spatial coverage is significantly greater than the VDOT CCS station coverage, but not as 

extensive as the StL network coverage. Traffic characteristics include the crowdsourced StL trip counts and speeds, 

type of day (work day [Monday through Friday] versus non-work day [weekends and holidays]), and TOD (segmented 

into five periods per day, matching the Streetlight default, and include early AM [12 to 6 am], peak AM [6 to 10 am], 

mid-day [10 am to 3 pm], peak PM [3 to 7 pm], and late PM [7 pm to 12 am]). Hydrological characteristics include 

flood, rain gauge, and tidal gauge data. Flood data from the Hampton Road Sanitation District (HRSD) is 

crowdsourced, and is collected when City of Norfolk employees report the flooded locations on a specific day in a 

mobile phone application (Sadler et al., 2018). Due to the lack of a timestamp associated with the flood report (only 

date data), flood data is coded in as a binary variable, with any day with one or more flood reports (number of flood 

locations in the city) considered a FD and any day without flood reports considered a NFD. Spatial distribution of 

flood locations is not considered in this model, due to lack of city-wide spatial representation of the small sample of 

reports for each FD. The rainfall data, collected at 15-minute intervals, comes from HRSD, which has seven stations 

Fig. 1. Roadway network coverage by various data sources. 
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in the city. Tide level data is available at the sole tidal gauge in the city at Sewell’s Point, and data collected every six 

minutes is archived and obtained by NOAA Tides and Currents. These two datasets are aggregated to match the TODs 

specified in the traffic data description. Finally, VDOT CCS data are considered as ground truth volumes, and serve 

as the calibration and validation dataset for the models here. The framework for the overall data-predictive volume 

estimation is shown in Figure 2.  

 

Fig. 2. Data predictive model framework for volume estimation 

    As seen in Figure 2, several types of predictive models are utilized in this study to predict the link volumes, to check 

for best prediction accuracy without overfitting the data. We start with the linear regression model to see if there is a 

linear relation between the variables and the volumes on the roadway. Classification & regression trees (CRT) and 

Random forest (RF) models, which group data points with similar dependent variable values together based on their 

independent variables, are also used here. In CRT models, a parent node in the CRT is divided based on any 

independent variable into two child nodes, such that each child node is more homogenous (or less impure) than the 

parent node. Homogeneity is measured by the least squared deviation measure of impurity (within-node variance). 

The process continues until constraints such as minimum number of cases per node, maximum tree depth, node 

homogeneity, minimum change in improvement are satisfied. In our study, 70% of the observations was reserved for 

training the dataset, and 30% reserved for validation. Through trial and error, a 50-20 split of data in parent node and 

child node was used (minimum 50 observations from the dataset in the parent node, and minimum 20 observations in 

the child node), which was pruned to avoid overfitting. Pruning reduces the size of decision trees, trying to keep the 

nodes from being very specific, thereby keeping the model more generalized. Random forest models are a step further 

in decision tree modelling from CRT models. In random forests, similar to the CRT models, a 70-30 split of 

observations is used for training and testing the dataset, respectively. Random sampling of subsets of data is performed 

on the training dataset, to fit these samples into a model prediction, while reducing the total error in the model. The 

response variables are divided into groups until the resulting predictions reach a minimum amount of node impurity 

(sum of squared deviations between predicted and actual value, a certain type of error). Random forest is a preferred 

method because it introduces randomness into the model, as opposed to CRT, which greedily searches for the best 

predictors to create subsets. CRT models are also prone to overfitting of the data, and random forest addresses the 

issue by creating various random groups of randomly selected regression trees while running the model. Once the 

model is developed, errors are calculated for training and testing data, which is used as a criterion for selection of the 

appropriate model. Errors calculated for these models are Root mean squared error (RMSE) and normalized root mean 
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squared error (NRMSE), given by equations 3 and 4. 

     𝑅𝑀𝑆𝐸 = √
∑ (𝑣𝑜𝑏𝑠,𝑖−𝑣𝑚𝑜𝑑𝑒𝑙,𝑖)2𝑛

𝑖=1

𝑛
                                                                                                                                                 (3)                       

     𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑣𝑜𝑏𝑠,𝑚𝑎𝑥 − 𝑣𝑜𝑏𝑠,𝑚𝑖𝑛
                                                                                                                                               (4) 

Where  i= observations in the dataset 

 n= maximum number of observations in the dataset 

 𝑣𝑜𝑏𝑠,𝑖=observed VDOT CCS volumes 

𝑣𝑚𝑜𝑑𝑒𝑙,𝑖=predictive model’s estimated volumes 

4. Results and discussion 

4.1. Continuous Count Station (CCS) trend analysis 

    To understand the baseline roadway network impacts due to flooding, the variation of traffic across all VDOT CCS 

locations with available data were compared. The CCS are strategically placed on major arterials and freeways where 

there are no historic congestion/bottlenecking issues, to ensure accurate volume estimates. Due to the specific location 

selection criteria and sparse spatial representation of CCS across Norfolk, an accurate estimation of the flooding 

impacts throughout the network cannot be made, but general trends can be observed. The CCS volumes and speeds 

on FDs are compared with their respective NFD counterparts, per the methodology described. The data is compared 

at 15-minute intervals for the 24-hour day, then aggregated over eight FDs in the 9 month study period. A two-sample 

one-tailed paired Student’s t-test was conducted to observe the patterns, and the p-values for volume and speed 

comparisons are summarized in Table 1. 

Table 1. CCS volume and speed trends. 

# Count 

Station 

Facility 

type 

FD 

average 

volume 

(veh) 

NFD 

average 

volume 

(veh) 

% 

change 

volume 

Volume 

p-value 

FD 

average 

speed 

(mpg) 

NFD 

average 

speed 

(mph) 

% 

change 

speed 

Speed p-

value 

1 
Principal 

Arterial 
188.35 210.80 -11% <0.0001 37.64 38.77 -3% <0.0001 

2 Freeway 709.50 789.70 -10% <0.0001 59.94 62.10 -3% <0.0001 

3 Freeway 594.59 655.47 -9% <0.0001 60.00 62.44 -4% <0.0001 

4 Freeway 553.78 627.52 -12% 0.0001 71.91 77.76 -8% <0.0001 

5 
Principal 

Arterial 
79.76 96.60 -17% <0.0001 34.85 40.04 -13% <0.0001 

6 
Principal 

Arterial 
91.77 111.75 -18% <0.0001 35.52 38.63 -8% <0.0001 

7 
Principal 

Arterial 
174.11 188.87 -8% <0.0001 36.84 39.01 -6% <0.0001 

8 
Principal 

Arterial 
144.77 160.87 -10% <0.0001 36.19 37.14 -3% <0.0001 

9 
Principal 

Arterial 
98.32 109.86 -11% <0.0001 43.84 48.55 -10% <0.0001 

 

    Results from Table 1 show that links volumes and speeds on the freeways and principal arterials at CCS locations 

are statistically significantly lower on FDs than on NFDs (all p values <0.05). On average, traffic volumes decreased 

by 12% and speeds decreased 6% on a FD compared to NFDs. This result suggests that traffic demand is lower on 

FDs. At the same time traffic volumes are decreasing, those who are traveling on FDs also experience increased travel 
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times.  

4.2. Traffic volume model training and validation 

    While general trends of traffic impacts of nuisance flooding can be observed with the CCS data, a network wide 

impact assessment requires more spatial coverage. Here, the proposed data predictive model (using agency provided 

roadway characteristics and weather data along with crowdsourced traffic flow and flood data) estimates volumes 

across all freeways and arterials in Norfolk. The dataset used for model calibration (training) and validation (testing) 

consists of all the input variables and traffic count data from all CCS for 35 randomly selected days (approximately 

13% of total days during study period), with different environmental conditions as shown in Figure 3. The days with 

flooding but no rainfall is an indicator of flooding due solely to high tide levels. 

 

Fig. 3. Distribution of type of days within calibration dataset. 

    Linear regression and CRT models were calibrated with all the variables previously mentioned in the three 

categories: hydrological, roadway, and traffic flow characteristics. The model fit results (RMSE and NRMSE values), 

along with statistically significant variables, are shown in Table 2 for comparison across models. StL trip indices were 

also compared against the ground truth CCS data. As seen in the model fit results, the two random forest model 

specifications outperformed linear regression and CRT. For random forest models, the first model (RF1) uses only the 

roadway and traffic flow characteristics as input variables. In this model, the StL dynamic crowdsourced trip counts 

had less importance than some other static variables like number of lanes and type of day, which is counterintuitive. 

When the hydrological variables are introduced into the random forest mode specification (RF2), tide level and rainfall 

were found to be the least important variables, but the StL trip count became the highest significance variable, which 

is intuitive. The final model specification’s (RF2) relative variable importance is shown in Figure 4. Other relatively 

high importance variables describe patterns associated with traffic flow in specific environments, such as TOD, per 

lane capacity, posted speed limit, and link speed. This model specification also proved to be the best performing 

(lowest RMSE and NRMSE), as seen in Table 2. 

 

 

Table 2. Model fit summary. 

Model Type RMSE NRMSE Significant/ high 

importance variables 

Insignificant/low 

importance variables 

 

Streetlight Data 

 

5067.53 

 

0.253 
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model 

 

Linear Regression 2384.43 0.085 Rainfall 

Tide level 

Flooding 

Number of lanes 

Posted speed limit 

TOD 

StL trip count 

 

Per lane capacity 

Segment speed 

Type of day 

CRT 2512.22 0.157 StL trip count  

Posted speed limit  

TOD 

Rainfall 

Tide level 

Flooding 

Number of lanes 

Per lane capacity 

Segment speed 

Type of day 

 

RF1 with roadway 

and traffic 

characteristics 

 

 

Train: 679.80 

Test: 1419.09 

 

Train: 0.026 

Test: 0.058 

 

TOD  

Per lane capacity  

StL trip count  

 

Number of lanes 

Type of day 

RF2 with roadway, 

traffic, and 

hydrologic variables 

Train: 683.20 

Test: 1315.40 

Train: 0.026 

Test: 0.054 

StL trip count 

TOD  

Per lane capacity 

Posted speed limit 

Type of day  

Tide level 

Rainfall 

 

  

Fig. 4. Relative variable importance in RF2 model specification. 
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Fig. 5. Relationship of StL trip counts with predicted volumes. 

    Figure 5 demonstrates the high correlation between StL trip counts and predicted segment volumes in the RF2 

model specification. In fact, a linear regression of the two variables reveals a R2 of 0.75. 

4.3. Roadway network impacts 

    The RF2 model is then propagated to the HRRTDM roadway network in Norfolk, to predict the volumes on each 

roadway segment all TODs. The HRRTDM roadway network consists of 7736 segments, which were input into 

Streetlight Data to retrieve the associated StL trip counts, segment speed, and travel time on each segment. StL trip 

counts and segment speed, along with other roadway and hydrological variables, were used as input into the random 

forest model and run in R to obtain volume estimates on FDs and NFDs. Total vehicle-hours of travel on FDs and 

NFDs are calculated per Equation 2. There were 9 flooded days recorded by City of Norfolk (3.4% of total days in 

the dataset). Table 3 shows the total vehicle-hours of travel on each FD compared to the corresponding NFDs. One of 

the FDs was discarded due to insufficient comparable NFDs within the three weeks window. Number of flood reports 

refer to the number of geographic locations that were reported by City of Norfolk employees on the respective day.  

Table 3. Roadway network impact summary (RF2 volume estimations). 

Date 
# Flood 

Reports 

Rainfall 

(in) 

Tide 

Level 

(ft) 

VHT- FD 

(veh-hrs) 

VHT- NFD  

(veh-hrs) 

Δ Travel 

(veh-hrs) 
% change VHT 

1/2/2017 3 3.01 1.32 1,084,946.20 895,399.45 189,546.75 21.17% 
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1/8/2017 1 0.00 1.18 1,070,563.50 1,172,391.75 -101,828.25 -8.69% 

3/31/2017 4 0.00 1.91 968,877.00 1,183,950.28 -215,073.28 -18.17% 

7/18/2017 9 0.00 1.68 915,124.80 1,167,259.25 -252,134.45 -21.60% 

8/7/2017 2 0.01 1.62 780,751.70 1,055,261.68 -274,509.98 -26.01% 

8/29/2017 40 5.84 3.84 937,688.10 1,164,132.88 -226,444.78 -19.45% 

9/8/2017 1 0.00 1.71 797,361.40 1,114,960.98 -317,599.58 -28.49% 

9/26/2017 1 0.15 3.12 933,571.12 1,232,670.68 -299,099.56 -24.26% 

 

Table 3 shows that based on the predicted vehicle volumes and StL travel speeds, the network wide vehicle-hours of 

travel were consistently reduced on a FD compared to NFDs, with the exception of the first FD. The first FD in the 

dataset is the day after New Year’s Day, which, despite technically not being a holiday, may have different travel 

patterns compared to a typical work day. On an average FD, total network-wide VHT was reduced by 21%, compared 

to NFDs (excluding the first FD). This is likely due to an overall reduction in travel demand on FDs, as seen in the 

CCS data. In contrast, Table 4 presents the impact of flooding when StL trip indices are used. 

Table 4. Roadway network impact summary (StL trip indices). 

Date 
# Flood 

Reports 

Total 

Rainfall 

(in) 

Average 

Tide 

Level (ft) 

VHT- FD 

(veh-hrs) 

VHT – 

NFD (veh-

hrs) 

ΔTravel 

(veh-hrs) 
% change VHT 

1/2/2017 3 3.01 1.32 103,634.45 189,225.87 -85,591.42 45.23% 

1/8/2017 1 0 1.18 182,267.87 274,980.21 -92,712.34 -33.72% 

3/31/2017 4 0 1.91 228,454.04 229,804.91 -1,350.87 -0.59% 

7/18/2017 9 0 1.68 191,282.75 156,912.89 34,369.86 21.90% 

8/7/2017 2 0.01 1.62 186,418.79 155,979.69 30,439.10 19.51% 

8/29/2017 40 5.84 3.84 128,914.17 170,345.77 -41,431.59 -24.32% 

9/8/2017 1 0 1.71 122,055.25 174,379.68 -52,324.43 -30.01% 

9/26/2017 1 0.15 3.12 180,104.44 172,718.66 7,385.78  4.28% 

 

    Contrasting Table 3 with Table 4, we can see that that StL trip indices range between 10% to 25% of RF2 volume 

estimates, as link travel times used to calculate VHT in both tables are from the same dataset. Unlike Table 3, Table 

4 shows inconsistent impact of flooding on network-wide VHT. On average, StL trip indices indicate that there is a 

6.32% decrease in VHT on a FD compared to NFDs, but the range varies from a reduction of 33% to an increase of 

21%. Considering the consistent reduction in traffic volumes and travel speeds at the CCS locations on FDs, the 

consistent pattern of VHT decrease in the RF2-based estimates seem more reasonable than the StL trip indices-based 

estimates. Decreased VHT on the roadway network may imply higher rates of abandoned trips, which would signify 

an economic impact of nuisance flooding (decreased business transactions, work productivity, etc.). Since the sample 

of flooded days is small (N=8), Figure 6 is shown to demonstrate the relationships between hydrological variables and 

estimated reductions in network-wide VHT. In Figure 6, normalized values for rainfall, tidal level and number of 

flood reports (locations) are shown with reduction in VHT (on a FD compared to NFDs), as estimated by the RF2 

model. Figure 6 suggests that generally speaking, an increase in either tide level or rainfall level increases the reduction 

in VHT on a FD. This may suggest more trips are abandoned with an increase in tide or rain level. The flooding day 

on August 29 shows an anomaly, where despite high rain and tide levels, the reduction in VHT was not as high as 

other FDs. The dip in the percentage reduction of VHT in the figure can be explained by examining the day from 

Table 3, where it is evident that the NFDs around August 29 exhibited low VHT compared to the other NFDs 

throughout the study period. 
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Fig. 6. Normalized comparison of roadway network impacts by date. 

5. Conclusions and Limitations 

    Nuisance flooding is becoming increasingly frequent in coastal cities, especially in eastern coast of the US. In this 

study, we quantify the impacts of nuisance flooding on the transportation network in coastal Norfolk, Virginia using 

a data predictive approach. Limited studies have used empirical data to quantify transportation impacts of flooding 

due to spatial and temporal limitations of traditional transportation data sources. In this study, we supplement the 

spatially sparse traffic volume data (obtained at VDOT CCS locations) with predicted link volumes derived from a 

random forest model using crowdsourced data from LBS devices (StL trip counts), in combination with roadway 

characteristics and hydrological data. This allows us to expand the spatial extent of the 9 CCS locations to 7736 

roadway segments throughout Norfolk. Model results estimate a consistent decrease in network-wide VHT on FDs as 

compared to NDFs in the same time period, with an average decrease of 21%. A decrease in VHT can imply a decrease 

in traffic demand, speed, or both. On examining traffic volume and speed patterns on FDs and NFDs only at the CCS 

locations, traffic volumes decreased on average 12% while travel speeds decreased on average 6%. These results 

imply that the impact of nuisance flooding on travelers in Norfolk is two-fold. First, it is likely that a travel demand 

is significantly reduced on a FD as compared to a NFD, implying that travelers are abandoning trips in the face of 

flooding (with subsequent economic opportunity costs due to productivity loss, reduction in business transactions, 

etc.) Secondly, for travelers choosing to travel on a FD, speeds are likely reduced, causing longer travel times (and 

again productivity loss).  

 This study is a first foray into examining the transportation impacts of nuisance flooding using empirical data. The 

methodology proposed here can provide the basis for estimating transportation impacts of all types of disruptions, 

such as accidents, construction-related lane closures, etc. While the data-predictive approach enhances the limited 

traditional transportation data sets, it comes with many limitations. First, the flood variable in the random forest model 

specification is binary, due to lack of temporal and spatial intensity information in the HRSD flood data set. Second, 

this HRSD flood dataset does not include all nuisance flooding disruptions, as it is biased towards the larger of the 

nuisance flooding events. This may bias our results, as road users prefer to not travel when there is heavy rainfall or 

high tide events, given historic vulnerability of roads to such events in the city. In future work, use of emerging 

crowdsourced datasets such as Waze data, which can identify disruptions by cause (e.g., accident versus flooding) and 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1/2/2017 1/8/2017 3/31/2017 7/18/2017 8/7/2017 8/29/2017 9/8/2017 9/26/2017

# of Flood Reports (normalized by max) Rainfall (in) Tide Level (ft) % reduction in VHT



12 S. Praharaj et al. / Transportation Research Procedia 00 (2018) 000–000 

 

provide duration information for the disruption, would be able to better capture the impacts of nuisance flooding. 

Further, our dataset consists of personal vehicles only, ignoring impacts on freight movement. Freight transportation 

tends on schedule, and diversion from their regular schedule incurs significant economic cost due to greater value of 

travel time, which has not been quantified in this study. Lastly, since our study focuses on network-wide impacts of 

these flooding events, it is assumed that hydrological variables (flooding, tide level, and rainfall level) was uniform 

throughout the city, due to lack of availability of spatially heterogeneous data.  
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