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Abstract 

Naturalistic driving study (NDS) data offers a different lens to examine the causal factors of crashes and near-crashes (CNC). In 
the U.S., a comprehensive NDS data collection effort was conducted as part of the Second Strategic Highway Research Program 
(SHRP 2). SHRP 2 NDS data includes information related to driver behavior and various non-driving related tasks performed while 
driving. Where the NDS data markedly differs from traditional crash databases is its capture of microscopic data pertaining to 
driver behavior (e.g. distraction, secondary tasks). In this article, we present the results of an exploration of NDS data. The 
exploration included developing a Logistic regression model to estimate crash risk for different factors using matched case-control 
design and odds ratios. The developed model’s goodness of fit was evaluated using receiver operating characteristic curves for 
training and validation data sets. The study found that performing a non-driving related secondary task for more than 6 seconds 
increases the CNC risk by 5.48 times. Among different driver behavior factors, inattention was found to be the most critical factor 
contributing to CNC risk with an odds ratio of 16.16. Traffic conditions corresponding to Level of Service (LOS) D exhibited the 
highest level of CNC risk. The computation of odds ratios enables making informed decisions while designing countermeasures to 
enhance safety. NDS data provides an opportunity to perform these computations.  
 
© 2018 The Authors. Published by Elsevier B.V.  
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1. Introduction  

Safety continues to be a high priority for transportation agencies around the world. According to National Highway 
Traffic Safety Administration (NHTSA), in 2016, 37,461 lives were lost on U.S. roads, an increase of 5.6 percent from 
2015. Understanding the causes of crashes is essential for developing proactive countermeasures to improve safety.         
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Traditional safety research relied on using statistical modeling approaches to capture the effect of various road, 
traffic, and environmental characteristics. Poisson and Negative Binomial models are well accepted approaches to 
model count data such as crashes [Guo et al. (2010), Lord and Mannering (2010), Lord et al. (2005), El-Basyouny and 
Sayed (2006)]. However, the effect of individual driver’s behavior is typically not included in such approaches due to 
the difficulty in measurement. The Transportation Research Board’s second Strategic Highway Research Program 
(SHRP 2) conducted a large naturalistic driving study (NDS) to investigate the role of driver and other factors in crash 
and near-crash events [Dingus et al. (2015)]. Over 3,000 drivers participated in the comprehensive driving experiment 
from six sites in Florida, Indiana, New York, North Carolina, Pennsylvania, and Washington. Nearly 50 million vehicle 
miles of data was recorded from trips made by these drivers. This unprecedented data allows for the investigation of 
the role of driver behavior in traffic safety. The interaction of driver with the vehicle, roadway, and the environment 
is captured in detail. Such highly detailed data enables a more accurate determination of the causes of crashes and 
near-crashes than the typical post-crash investigation using law enforcement data. The NDS data addresses a need that 
is not fulfilled by traditional data sources used in safety research.  

This study was conducted to better understand the contributing factors of safety critical events using NDS data. 
This improved understanding of risk of a safety critical event occurring should enable design of countermeasures such 
as proactive warning systems to alert drivers of impending hazardous conditions. The dataset comprised of safety 
critical events related to drivers of all age groups and various weather and geometric conditions. The study has three 
key objectives: (1) identify factors associated with individual driver risk of being involved in a safety critical event, 
(2) develop a logistic regression model to predict this risk, and (3) quantify risk for different factors using matched 
case-control design and odds ratio (OR). 

2. Literature Review 

The SHRP 2 NDS data has only become publicly available recently. Thus, there are few research studies in the 
literature using this data. However, there have been studies using other types of naturalistic driving data from much 
smaller samples (e.g. 100-car study). The SHRP 2 experiment is the most comprehensive of the three data sources. It 
includes data from different road conditions, facilities, weather conditions, traffic conditions, and driving behavior.   

Both statistical and machine learning methods have been explored in previous NDS research. Klauer et al. (2006) 
studied the relationship between driving behavior and CNC involvement. ORs were estimated using CNC and baseline 
driving data for various sources of inattention. The results indicated that driving while drowsy results in four- to six-
times higher CNC risk than alert drivers. Drivers engaging in visually and/or manually complex tasks have a three-
time higher CNC risk than drivers who are attentive. The number of actual crashes observed in NDS studies is 
relatively small, so near crashes are usually used as a crash surrogate. Guo et al. (2010) used precision and bias of risk 
estimation to validate near crash as a crash surrogate. The results suggested that near crash can be combined with 
crashes for statistical analysis. Klauer et al. (2010) calculated relative crash risk associated with various types of 
secondary tasks using case-crossover baseline. Conditional logistic regression was used to calculate ORs for 
drowsiness, secondary task engagement, and total time eyes-off-road. The study also assessed the relationship between 
task duration and eyes-off-road total time. Results indicated that drivers in the 100-Car Study engaged in secondary 
tasks 23.5 percent of the time that they were driving, approximately 40 percent higher than indicated in previous 
research. Guo and Fang (2013), used negative binomial method to identify factors related to crash and near-crash risk 
of individual drivers. After identifying the factors, drivers were classified into three risk groups using K-mean cluster 
method. The logistic regression method was applied to predict the high- and moderate-risk drivers. The study 
concluded that crash and near-crash risk for individual drivers is associated with the critical incident rate, and 
demographic and personality characteristics.  

Xu and Fujimura (2014), employed Random Forest for driver’s activity recognition. For training the model, a 
sequence of depth images were used as input, and output was an activity class among a predetermined set of driver 
activities. Geng et al. (2016) developed a neural network-based model for driver speed profile modeling at curvy paths. 
Five models with different prediction steps were developed to fit driver speed profiles under different driving 
situations. Chang and Edara (2017), applied classification methods to examine safety critical events in work zones. 
Four machine learning algorithms, Random forest, Deep Neural Network, Multilayer Feedforward Neural Network, 
and t-Distributed Stochastic Neighbor Embedding (t-SNE), were applied to work zone events within NDS data. The 
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Random forest algorithm performed the best in classifying NDS data into crashes, near-crashes, and baseline using 
pre-event variables. 

The reviewed literature revealed that few studies used SHRP 2 NDS data for understanding crash causation. 
Majority of the existing using naturalistic driving data relied on significantly smaller datasets such as the 100-car 
study. The SHRP 2 NDS data is the most comprehensive NDS dataset available in the US, thus providing greater 
variability of conditions in which crashes occur.  

3. SHRP 2 NDS data  

SHRP2 NDS data consists of 36,103 crash, near-crash, and baseline events representing various drivers and 
conditions. For each event, data is available for 76 different variables. Each variable consists of several categories, 
which provide in depth details of driver behavior and other network characteristics. For example, “Driver behavior” 
variable includes the following categories: ‘Distracted’, ‘Drowsy, sleepy, asleep, fatigued’, ‘Exceeded speed limit’, 
‘Exceeded safe speed but not speed limit’, ‘Driving slowly: below speed limit’, ‘Passing on right’, ‘Illegal passing’, 
‘Cutting in, too close in front of other vehicle’, ‘Making turn from wrong lane’, ‘Aggressive driving’, and ‘Following 
too closely’. Table 1 shows the sample sizes for different types of NDS events.   
 

Table 1. Sample size of SHRP2 NDS events 

Event All Events 
Crash 1,474 (4.1%) 

Near-Crash 2,767 (7.7%) 
Baseline 31,862 (88.3%) 

Total 36,103 (100.0%) 
 

The Virginia Tech Transportation Institute (VTTI) processed and provides SHRP 2 NDS data for researchers 
[Hankey et al. (2016)]. VTTI defines safety critical and baseline events as follows:  

 
• Crash: Any contact that the subject vehicle has with an object, either moving or fixed, at any speed in which 

kinetic energy is measurably transferred or dissipated is considered a crash. 
• Near-Crash: Any circumstance that requires a rapid evasive maneuver by the subject vehicle, or any other 

vehicle, pedestrian, cyclist, or animal, to avoid a crash is considered a near-crash. 
• Baseline: The goal of the baselines is to provide an estimate of what constitutes “normal driving” and “typical 

driver behavior” across the sample. 

4. Logistic Regression for Prediction of Crashes and Near Crashes 

In the NDS data, events were classified as crashes, near-crashes and baseline with a set of explanatory variables 
related to driver, roadway, and traffic conditions. The safety critical events are discrete responses and logistic 
regression is one of the most common methods used to investigate the relationship between discrete responses and a 
set of predictors [Kleinbaum et al. (2013)]. For binary responses, the outcome is expressed in terms of the probability 
of modeled response. For building a logistic regression model, a dichotomous variable was created by combining crash 
or near crash (CNC) as one response (i.e. a safety critical event) and baseline as the other. The setup of the model is 
illustrated as follows. 

 

𝑌" = 	 %
1	𝑖𝑓	𝑐𝑟𝑎𝑠ℎ	𝑜𝑟	𝑛𝑒𝑎𝑟	𝑐𝑟𝑎𝑠ℎ	

0	𝑖𝑓	𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  

 
   Let 𝑋" is a matrix of predictors for an individual event i and 𝑝"	= Pr (𝑌" = 1)	is the probability of occurrence of 
CNC, the logit function [Guo and Fang (2013)] can be defined as 
Logit (𝑝"	) = log ; <=	

>?<=	
@ = 	𝑋"𝛽        (1) 

   Where, β is the vector of regression parameters.     
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4.1. Development of the Prediction Model 

In this study, potential risk factors related to safety critical events were identified from a previous study conducted 
by Chang and Edara (2017). These factors are duration of secondary task, driving behavior, maneuver judgement, 
traffic density and intersection influence. A secondary task in NDS data is defined as a non-driving related task 
performed by the driver while driving such as eating, talking, texting, etc. The dataset recorded up to three secondary 
tasks performed by the drivers with start and end time of each task. For this study, duration of secondary task was 
classified into two categories: 0-6 secs and greater than 6 secs. The 6 second cut off point was determined from quantile 
values. It was observed from the available NDS data that upper quantile value of secondary task duration is nearer to 
6 seconds (secs) for safety critical events. Thus, a cut off value of 6 secs was established for comparison purposes.    

The driving behavior variable is defined as behavior prior to a precipitating event or those resulting from the context 
of the driving environment, contributing to the crash or near crash. The dataset defines 55 different categories of 
driving behaviors. In compliance with the studies conducted by Reason et al. (1990), Åberg and Rimmö (1998), 
Rimmö and Åberg (1999), the driving behavior categories in the present study were merged into four groups, namely, 
violation, mistakes, inattention and experience. 

Maneuver judgement is defined based on vehicle kinematics. Vehicle kinematics includes the subject vehicle's 
position and speed and direction of movement in relation to other vehicles, or environmental characteristics and 
surroundings. In present study, maneuver judgement is classified into two categories: safe and unsafe maneuvers. 

The traffic density variable is classified into six categories from level of service A to F [HCM (2010)], based on 
the operating conditions. The six defined levels of service, A-F, describe operations, from the best to the worst, for a 
type of facility.  Intersection influence is variable created based on subjective determination of whether the subject 
vehicle's safe movement, travel path, and travel speed, are under the influence of an intersection at the time of the 
event. The variable is defined in to six categories as no influence, interchange, parking, stop sign, signal and 
uncontrolled. Statistical analysis software (SAS, 9.4) was used to develop the logistic regression model for safety 
critical events. From the NDS dataset, 80% data were used to develop the model while remaining 20% were used for 
validation. The model estimates are summarized in Table 2. 

 
Table 2. Summary of logistic model estimates 

Effects  Estimate P-value  
Intercept -4.1056 <.0001 

Duration of secondary task: < 6 sec vs. 0-6 sec    1.5012 <.0001 

Behavior : Violation vs. None 0.7471 <.0001 

Behavior : Mistake vs. None 1.7807 <.0001 

Behavior : Inattention vs. None 3.0398 <.0001 

Behavior : Inexperience vs. None 3.4272 <.0001 

Maneuver : Unsafe vs. Safe 1.8261 <.0001 

Traffic density : LOS B vs. LOS A 0.5192 <.0001 

Traffic density : LOS C vs. LOS A 1.3683 <.0001 

Traffic density: LOS D vs. LOS A 1.5277 <.0001 

Traffic density : LOS E vs. LOS A 1.0668 <.0001 

Traffic density : LOS F vs. LOS A 0.3503 0.4341 

Intersection influence : Interchange vs. No influence 1.7069 <.0001 

Intersection influence : Parking vs. No influence 2.5028 <.0001 

Intersection influence : Stop sign vs. No influence 1.0232 <.0001 

Intersection influence : Signal vs. No influence 1.6645 <.0001 

Intersection influence : Uncontrolled vs. No influence  2.3274 <.0001 
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Model fitness was evaluated using two approaches. The first approach was using goodness of fit statistics. The 
Hosmer-Lemeshow test [Hosmer et al. (2013)] can compute the goodness of fit for logistic regression models. A small 
Chi-squared value (with larger p-value i.e. >.05) indicates a good logistic regression model fit. For the estimated 
model, Chi-square value was 6.35 (p-value =0.17), indicating good fit. The second approach is to evaluate the 
predictive power of the model with the help of Receiver Operating Characteristic (ROC) Curves. An ROC curve is a 
plot of the proportion of sensitivity (CNC predicted to be CNC) versus the proportion of specificity (baseline predicted 
to be baseline). The output of logistic regression contains predicted probabilities of CNC for each observation. For 
any given threshold (i.e., predicted probability of CNC), there is a tradeoff between sensitivity and specificity. A set 
of possible thresholds between 0 to 1 were generated, and respective sensitivity and (1-specificity) were plotted for 
ROC curve in FIGURE 1 (a). The predictive power of models was estimated by the area under curve (AUC), where a 
higher area indicates better prediction ability. The AUC for prediction model was 0.877, indicating good prediction 
ability of CNC events (highest possible value of AUC=1).   

4.2. Validation of the Prediction Model 

The performance of the prediction model was evaluated by applying the model to the validation data set. The 
probability of CNC for each event is calculated as follows, 

 
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	(𝐶𝑁𝐶) = GHI(?J.>LMN>.ML>∗PQRST"UVNL.WJW∗X"UYST"UVN⋯………N\.]\W∗QV^UVTRUYY_P)

>NGHI(?J.>LMN>.ML>∗PQRST"UVNL.WJW∗X"UYST"UVN⋯………N\.]\W∗QV^UVTRUYY_P)
                                (2)            

 
An ROC curve was developed for the predicted probabilities of CNC for the validation dataset. The AUC was 

0.8862 for the validation dataset, indicating good predictive ability of the model and is plotted in FIGURE 1(b). 
Another approach to visualize the performance of the prediction model on the validation data set is to plot all CNC 
and baseline events with respect to predicted probabilities, as is depicted in FIGURE 2.  Higher probability values 
indicate a higher likelihood of CNC event occurring.  
 

 
 

                                          Fig. 1 (a)                                                          Fig. 1 (b) 
Fig. 1(a) Prediction model ROC (b) Validation dataset ROC 
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Fig. 2. Probability of CNC for CNC and baseline events 

5. Crash and Near Crash Risk Assessment using Matched Case Control Design  

Regression can be used to achieve two different goals. The first is to predict a dependent variable using a set of 
predictors. The second is to quantify the relationship between predictors and a dependent variable. In logistic 
regression, the exponential of regression parameter, exp (β), is the odds ratio (OR) for a variable. OR compares two 
or more groups of a predictor variable with regard to the dependent variable. To estimate accurately the elements of β 
of a variable, it is important to control for confounding variables. A confounding effect exists if inclusion or omission 
of an extraneous variable changes completely or partially the apparent association between an outcome and risk factor 
[Kleinbaum et al. (2013)]. In observational studies, potential confounding variables can be controlled directly by 
matching cases and controls during the design stage. In this study, events with CNC are considered as cases while 
baselines are considered as controls. In matched case control studies, each case is matched with one or more controls 
who have the same values or same categories of each potential confounding variable. The ratio of controls to cases 
depends on the availability of data, and, as the ratio increases, the power of the design increases but at a decreasing 
rate [Gross and Jovanis (2007), Woodward (2005)]. In this study, one control is selected for each case (a one to one 
ratio), which reaches about 90% power [Gross and Jovanis (2007), Woodward (2005)]. For a matched dataset, 
conditional logistic regression is appropriate to use [Kleinbaum et al. (2013), Gross and Jovanis (2007)]. The model 
is 
                                             𝐿𝑜𝑔𝑖𝑡	(𝑝") = 	𝛽L +	𝛽>𝐸 +	∑ Ɣ"𝑉"V?>

"g>                                                                             (3) 
 
Where, 𝑝"	 is the probability of occurrence of CNC; E is the predictor variable; Vi denote a set of variables 

distinguishing matched for n number of pairs. In this study, conditional logistic regression were applied to estimate 
the relative CNC risk for three predictor variables of interest – driver behavior, traffic density, and duration of 
secondary task. 

5.1. Assessment of Confounding Variables   

As previously stated, confounding effects exist if presence of an extraneous variable significantly changes the 
relationship between outcome and risk factor. Thus, confounding effect, on an outcome-risk factor relationship can be 
assessed by comparing the crude estimates (considering the effect of only risk factor at a time) with adjusted estimates 
(considering the effect of a risk factor along with its confounders). If estimates change by 10% or more, due to the 
addition of an extraneous variable, the confounding effect can be considered to be significant [Kleinbaum et al. 
(2013)]. The methodology was applied to identify the significant confounding variables of driver behavior, traffic 
density, and duration of secondary task. The identification procedure is illustrated in Table 2 for duration of secondary 
task.   
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Table 2. Identification of significant confounders for duration of secondary task 

Models  β estimate for duration  Change in β 
Duration of secondary task (crude model) 1.82  
Duration of secondary task + Behavior 1.55 14% 
Duration of secondary task + Traffic density 1.82 0% 
Duration of secondary task + Intersection influence 1.83 -1% 
Duration of secondary task + Maneuver judgement 1.82 0% 

 
From Table 2, it can be observed that behavior is a significant confounding variable for duration of secondary task 

variable. Due to the addition of the behavior variable, the crude estimates of duration changed significantly (14%). 
Therefore, behavior can be controlled using a criterion to match cases and controls. 

The process was repeated for behavior and traffic density variables and their confounders. It was found that 
maneuver and intersection influence were significant confounders for driving behavior and duration, maneuver, 
intersection influence and behavior were significant confounders for traffic density.     

5.2. Matching Cases and Controls 

Matching of cases and controls was accomplished for duration, behavior, and traffic density variables. Three 
separate datasets were generated, with one for each variable of interest (duration, behavior and traffic density). 
Significant confounders of the variable were considered as matching criteria for each dataset. The matching process 
was accomplished with MatchIt package of R software. MatchIt package is developed for non-parametric 
preprocessing of data with various matching methods [Ho et al. (2011)]. The goal of the matching process was to 
create a dataset where the distribution of confounding variables is similar in both case and control groups, which is 
known as balance [Ho et al. (2011)]. The balance was evaluated by comparing the differences in means between the 
groups. Upon matching, 2673 pairs of case-control were identified for the secondary task duration variable, 2945 pairs 
for behavior and 1680 pairs for traffic density were identified. An example of matching data set for the duration 
variable, where behavior is considered as a criterion for matching, is shown in Table 3. Case and controls were selected 
randomly without replacement and matched one-to-one for the most significant variable i.e. behavior. Each selected 
case control pair have same category of behavior while other variables were unmatched.     

 
Table 3. Sample matching for secondary task time duration 

Pair Outcome Behavior Traffic density Maneuver Influence Duration 

1 

 

CNC Inattention LOS C Safe Signal <6 secs 

baseline Inattention LOS B Safe None 0-6 secs 

2 

 

CNC Inattention LOS D Safe None <6 secs 

baseline Inattention LOS A Safe None <6 secs 

3 

 

CNC None LOS B Safe None 0-6 secs 

baseline None LOS A Safe None 0-6 secs 

4 

 

CNC Violation LOS A Unsafe Parking 0-6 secs 

baseline Violation LOS A Unsafe None 0-6 secs 
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5.3. Analysis and Results 

Logistic regression was used to estimate both crude and adjusted odds ratios. Three univariate logistic regression 
models were developed for duration, behavior and traffic density to estimate the relationship of respective variables 
with safety critical events. The crude odds ratios estimated from the univariate models were unadjusted for confounders 
and reported in Table 4 with 95% confidence intervals. 

 
Table 4: Crude odds ratios from regression 

Risk Factors  Categories Odds Ratio (95% CI in parenthesis) 
Duration of secondary task <6 secs vs. 0-6 secs 6.15 (5.63-6.71) 
Behavior Violation       vs. None 7.75 (6.93-8.67) 

Mistake         vs. None 13.65 (11.96-15.58) 
Inattention     vs. None 29.71 (26.39-33.43) 
Inexperience  vs. None  50.53 (26.80-95.29) 

Traffic density LOS B vs. LOS A 1.72 (1.59-1.87) 
LOS C vs. LOS A 3.65 (3.21-4.16) 
LOS D vs. LOS A 4.82 (3.89-5.96) 
LOS E vs. LOS A 2.57 (1.83-3.62) 
LOS F vs. LOS A 3.12 (1.63-5.96) 

 
From Table 4, it can be observed that there was significant unadjusted association between safety critical events 

and risk factors. The risk of crash (or near-crash) is significantly higher for behavior risk factors. Table 4 shows that, 
among listed levels of behavior, risk increased gradually from violation to inexperience level. For traffic density, the 
risk of CNC increased by 1.72 times for LOS B as compared to LOS A. The risk is further increased in LOS C and 
LOS D, beyond which a decreasing trend in risk was observed. LOS D is found to have the highest level of risk of 
CNC. The results also indicate that duration is a significant factor contributing to risk of CNC.  

As discussed in the previous section, for more precise estimation of the elements of β of a variable, it is important 
to control for confounding variables. The confounding status can be elucidated by matching the cases and controls for 
significant confounders. After matching the significant confounders, three conditional logistic regression models were 
developed to investigate the relationships of CNC with duration, behavior and traffic density. In all the three models, 
significant confounders were matched for case controls while remaining covariates were unmatched. ORs obtained 
from the conditional logistic regressions for a variable were adjusted for all potential confounders. Adjusting for 
confounders, the odds of CNC for duration, behavior and traffic density are provided in Table 5 along with 95% 
confidence intervals. 

 
TABLE 5: Adjusted odds ratios for safety critical events  

Risk Factors  Categories  Odds Ratio (95% CI in parenthesis) 
Duration of secondary task: <6 secs vs. 0-6 secs 5.48 (4.35-6.91) 
Behavior Violation       vs. None 1.97 (1.39-2.79) 

Mistake         vs. None 5.09 (3.97-6.51) 
Inattention     vs. None 16.16 (11.65-22.43) 
Inexperience  vs. None  9.27 (3.35-25.69) 

Traffic density LOS B vs. LOS A 1.53 (1.29-1.81) 
LOS C vs. LOS A 4.37 (3.18-6.01) 
LOS D vs. LOS A 4.65 (2.45-6.72) 
LOS E vs. LOS A 1.92 (0.98-3.77) 
LOS F vs. LOS A 0.38 (0.04-3.34) 

 

The adjusted odds ratios overall trends are consistent with those observed for crude odds ratios. Although similar 
trend can be observed for different categories of variables, the values changed significantly after adjusting for 
confounders. From the odds ratio estimates of TABLE 5, the duration of secondary task greater than 6 secs increases 
the CNC risk by 5.48 times. Driving behavior was found to be the most critical risk factor. Any kind of deviation from 
normal driving can cause or contribute to higher CNC risk. The risk of CNC increased by 1.97 times for any ‘violation’ 
and 5.09 times for any ‘mistake’. Among all types of driver behavior exhibited in a safety critical event, ‘inattention’ 
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has the highest level of CNC risk (16.16 times). For traffic density, there is an incremental trend of CNC risk from 
LOS B to LOS D then there is decreasing trend in risk. LOS D was found to have highest level of risk for CNC (4.65 
times). The highest CNC risk in LOS D could be due to traffic flow transitioning from free flowing to congested 
conditions and possibly less opportunities for lane changing. The reversal of trend after LOS D could be due to the 
lower speeds encountered in LOS E and F conditions.       

6. Conclusion  

This study used NDS data to explore the relationship between safety critical events and various potential 
contributing factors. A simple binary Logistic regression model was found to accurately capture the relationship. The 
study found that the duration of secondary task, driving behavior, traffic density, maneuver judgement and intersection 
influence were significant risk factors.  

Driving behavior was found to be the most critical risk factor. Among all types of driver behavior exhibited in a 
safety critical event, inattention has the highest level of CNC risk. This finding points to the need for developing 
countermeasures such as warning messages to alert the driver. There was also evidence that performing a non-driving 
related secondary task for more than 6 seconds increases the CNC risk (by 5.48 times). Traffic conditions 
corresponding to Level of Service (LOS) D exhibited the highest level of CNC risk. The computation of odds ratios 
enables making informed decisions while designing countermeasures to enhance safety. 

The study results provide motivation to apply the developed methodology to compute the odds for different subsets 
of NDS data such as: 1) older drivers, 2) younger drivers, 3) intersection crashes, 4) weather, and 5) rural intersections. 
Having separate models for each emphasis area will enable the development of optimal countermeasures targeted to 
that specific area.  
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