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Abstract 

Bluetooth technology is receiving more and more attention to support travel time measurement for intelligent transportation 
systems (ITS) applications. Bluetooth receivers are used to time-stamp passing identical vehicles at different locations based on 
their unique MAC addresses. This information is useful to predict travel times and estimate origin-destination flows on freeways. 
However, there is more valuable information in this big data source than has been explored to date. The main objective of this 
paper is to show vehicle type as a new feature that can be extracted from Bluetooth data, presenting a semi-supervised learning 
methodology which can be used to identify trucks on freeways. In this paper we also address how to deal with outliers in the 
Bluetooth data using an unsupervised machine learning technique to make vehicle identification and other data analysis more 
reliable. The predominant application for this vehicle identification is to predict travel time and estimate origin-destination 
specifically for freight transport. We use the A15 freeway in the Netherlands as a testbed. This corridor connects the port of 
Rotterdam to its hinterland and is one of the important freeways for logistic trip planning. The results show that the proposed 
method can identify trucks next to passenger cars with acceptable certainty and improved accuracy.  
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1. Introduction 

Predicting the travel times of trucks is vital mostly for freight carriers and third party logistics service providers 
who are responsible for trip planning for freight transport. For transport planners, knowledge of aggregate truck 
flows is important for studying the relations between logistics operations and traffic. Therefore, travel time 
prediction and origin-destination estimation for trucks has long been studied, using different sources of data. Weigh-
in-motion, inductive loop detectors and GPS are the most popular data sources that have been used to estimate travel 
time. Some of these sources like weigh-in-motion need some sort of preprocessing to re-identify vehicles (i.e. to 
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classify vehicles based on the recorded signal). For example, Cetin and Nichols (2009) presented a two-stage 
methodology for vehicle re-identification and classification based on data collected by weigh-in-motion sensors. 
They used a Bayesian method to match vehicles between different locations in the first stage and solved a one-to-one 
assignment optimization problem in the second stage to make sure every vehicle is assigned only once. The results 
showed 99% accuracy for matching vehicles based on weigh-in-motion data. Ndoye et al. (2011) used the maximum 
a posteriori probability method for matching the vehicle signature detected downstream by inductive loop detectors 
with vehicles signatures detected upstream. Although this method showed accurate results in re-identification of 
vehicles using inductive loop detectors, it cannot classify vehicles into types. There are a few methodologies in 
literature that have been developed to improve the functionality of inductive loop detector devices in order to 
classify vehicles (Jeng et al. (2013), Chaudhuri et al. (2011), Ki and Baik (2006), Zhang et al. (2008), Keawkamnerd 
et al. (2008), Meta and Cinsdikici (2010)). Even though specific types of inductive loop detectors can classify 
vehicles, there are not enough installed devices with this option yet that can cover transportation networks. 
Therefore, most of the researchers focus on travel time estimation based on inductive loop detectors without 
considering any specific class of vehicle (Vanajakshi et al. (2009), Van Lint and Van der Zijpp (2003), Van Lint et 
al. (2005)). 

GPS is another source of traffic data which can be used for more class specific travel time prediction and origin-
destination estimation. Wang et al. (2016) described the speed distribution coefficient of variation to measure travel 
time reliability of trucks using probe data collected by GPS. Figliozzi et al. (2011) also used GPS data to calculate 
truck travel time and reliability for freight movements and also to assess the impact of congestion on freight 
vehicles. Another example of applications for class specific travel time prediction using GPS data is tracking real-
time information of buses, aiming to reduce waiting times at bus stops (Vanajakshi, Subramanian et al. (2009), Lin 
and Zeng (1999)). The major challenges to use GPS data are map matching which requires extensive processing and 
privacy considerations, which limit the access to data. 

The growing number of mobile devices has introduced another type of sensor for data collection. These sensors 
integrate the wireless communications technology (Wi-Fi spectra) and Bluetooth technology to connect sensors and 
mobile devices to each other. Bluetooth sensors record the unique MAC addresses of bypassing devices. To ensure 
privacy issues, providers hash this MAC address to unique IDs which are not trackable. This MAC addresses are 
time-stamped once they are detected by a sensor. The time difference between matching MAC addresses at different 
locations gives the travel time of different devices between different locations (see Fig. 1).  

 

Fig. 1. Representation of how Bluetooth devices can capture vehicles. 
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This approach is becoming very popular because it is cost-effective, easy to use, and without any privacy issues 
compared to the three other methods used in the travel time data collection. For instance, Haghani et al. (2010) 
discussed about data processing algorithm for collecting ground truth travel times from Bluetooth technology. 
Martchouk et al. (2010) used Bluetooth data to study on travel time variability in freeways. Beside the advantages of 
this data collection technology, the presence of outliers may significantly affect the accuracy and reliability of travel 
time estimation obtained based on Bluetooth sensors (Araghi et al. (2015)). Therefore, Díaz et al. (2016) studied the 
reliability of the measurements, the representativeness of the travel time estimates and the issues regarding data 
filtering and outliers detection in Bluetooth data. Barceló et al. (2010) also applied Kalman filtering on the data 
obtained from Bluetooth sensors for short-term travel time prediction on freeways and to identify time-dependent 
origin-destination flow volumes. All these studies proved the quality of Bluetooth data for the travel time prediction 
and dynamic origin-destination flow estimation. However, we believe that there is more valuable information in this 
big data, which could be exploited. The main contribution of our paper is to show that beside ease of development, 
straightforward data processing, privacy friendliness and cost-effectiveness, Bluetooth data can be used  to classify 
vehicle types on freeways as well. In this paper, we present a two-stage methodology using semi-supervised 
techniques to identify truck movements from Bluetooth data. In the first stage we use an unsupervised clustering 
approach using a Gaussian mixture model to identify truck movements within a series of travel time observations. In 
a second stage, we use support vector machine as a supervised classification method to improve the certainty of the 
truck identification using other spatial-temporal features which are driven from vehicle trajectory data. Fig.2 shows 
the process of the truck identification model based on Bluetooth data.  

This paper is organized as follow: In section 2, the travel time visualization, filtering data and the outlier detection 
are discussed. Details about the proposed methodology for truck identification and the experimental results are given 
in section 3. We conclude in section 4 and discuss possible future research topics. 

Fig. 2. Process of proposed methodology . 



4 Author name / Transportation Research Procedia 00 (2018) 000–000 

Fig. 3. location of Bluetooth devices along A15 motorway 

2. Getting Data and pre-processing  

There are 71 Bluetooth sensors (red dots in Fig. 3) located around A15 corridor and its connected links. This freeway 
connects port of Rotterdam to hinterland and is the most important transit motorway in Netherlands (see Fig.3). The 
data collected from all these sensors consist of 4 to 7 million of detections along one day. We collected all the 
detections from all devices for the 365 days in the year 2017. 

Working with such a big data needs some sort of pre-processing and data filtering which will be discussed in this 
section. This data consists of Longitude of sensors ,Latitude of sensors, Devices MAC address, sensors ID, Passage 
Time, and signal strength (see Table 1). 

  Table 1. An example of raw data collected from Bluetooth sensors along A15 motorway. 

Hashed MAC ID Sensor ID Longitude Latitude Passage time Signal strength 

"x4a1cbd68509" 526 5,607824 51,419942 01-Mar-2017 04:16:50 71 
"x4a1cbd68509" 526 5,607824 51,419942 01-Mar-2017 04:16:52 -84 
"x4a1cbd68509" 507 4,492719 51,864233 01-Mar-2017 11:31:28 86 
"bfe4bad7d45 " 514 5,310883 51,640003 01-Mar-2017 05:48:17 76 
"bfe4bad7d45 " 514 5,310883 51,640003 01-Mar-2017 05:48:17 69 
"bfe4bad7d45 " 514 5,310883 51,640003 01-Mar-2017 05:48:18 -71 
"bfe4bad7d45 " 514 5,310883 51,640003 01-Mar-2017 15:24:05 73 
"x0d3c05563a2" 1580339 4,338537 51,87211 01-Mar-2017 13:33:47 89 
"x0d3c05563a2" 1580335 4,32062 51,86935 01-Mar-2017 13:33:33 51 
"x0d3c05563a2" 1580335 4,32062 51,86935 01-Mar-2017 13:33:36 71 

  
One device might be detected by a sensor frequently and within some seconds with different signal strength (see 

Table 1). Because the resolution in this study is one second, we considered two times for each detection: one for 
arrival time of device to the sensor and the other for departure time of device from that sensor.  
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Fig. 4. travel time visualization for one day using Bluetooth data 

2.1. Calculate travel time 

To visualize this data, the time difference between arrival time of one (hashed) MAC ID to the one particular sensor 
and the departure time of the same MAC ID from the previous sensor is calculated. The result is the travel time of 
the vehicle between that sensor pair. For example, the travel time is illustrated in Fig. 4 for every vehicles passing 
sensor IDs “507” and “508” which are located along A15 Motorway from East to west direction toward Port of 
Rotterdam. The x-axis in this figure is time of day in seconds and the y-axis is travel time in seconds. 

3. filtering  

We can see from Fig. 2 that there exist a lot of outliers through travel time data. The reason for this outliers is that 
some vehicles passed sensor “507” but remained for some time in between sensors “507” and “508” for some reason 
(e.g. stop for gas station, break, loading or unloading, etc.) and then passed “508”. In this case, an abnormal travel 
time can be seen. In the following we describe how one can detect these outliers and remove them from the data set. 

3.1. Outlier detection 

One method used in literature to remove outliers is to limit data to those with travel time between a defined 
lower-bound and upper-bound (Barcelo et al. (2010)). In this method, the probability distribution of observed travel 
time is formed for a past period of time. Then, a moving average of the travel time frequencies is calculated which 
can be used to define the lower and upper bounds. Observations that represent travel time beyond these lower and 
upper limits are considered as outlier and removed from data. However, defining the lower and upper cut-off line for 
travel time cannot accurately detect all outliers; especially in congestion periods, where travel time is abnormally 
higher than in normal conditions, and also when two or more patterns of frequent travel time appear in the data. 
Therefore, we propose a density based clustering algorithm which can detect outliers based on their density of 
occurrence. This method is not based on defining lower and upper bound for travel time, instead, the approach is 
based on how travel time of one vehicle is far enough from other travel times so as to be clustered as noise. This 
method is based on the DBSCAN algorithm developed by Ester et al. (1996). Considering the set of travel times in 
(day time)×(travel time) space, points are classified as (1) core points, (2) reachable points and (3) outliers. A point p 
is a core point if at least a minimum number of points are within distance ε of it. A point q is directly reachable from 
p if point q is within distance ε from point p where p must be a core point. All those points which are not reachable 
from any other point are outliers. Considering 4 as the minimum number of points and 250 as the epsilon, the 
cleaned data is illustrated in fig. 5.  
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Fig. 5. Detection of peak period in travel time . 

3.2. Removing peak periods 

It is clear from Fig. 5 that there are two frequent patterns in travel times captured from those two Bluetooth 
sensors. This two patterns can only be explained under two conditions. The first reason is that there might be two 
different routes with two different travel time between sensors “507” and “508”. And the other reason is that there 
might be two class of vehicles with different speed limits. The first reason is not true due to this fact that there is 
only A15 corridor between these two sensors and vehicles only have to drive through A 15 to reach sensor “508” 
after passing “507”. In addition, we know that because of Port of Rotterdam, there are two class of vehicles, one 
trucks and one passenger cars, with different speed limits of 80 km\h and 120 km\h, respectively. Therefore we can 
infer that the vehicles with higher travel time are likely to be trucks. However, it can be seen in Fig. 3 that these two 
patterns convolved during the congestion period and thus make it impossible to see the clusters. This is because all 
types of vehicles drive at the same speed while they are in congestion. Therefore, the peak periods in the travel times 
must be detected and removed from data. To detect the peak periods, A general approach is to smooth the signal and 
then find peaks by comparing the local maximums of the fitted function. The same approach is used here using 
signal processing toolbox of Matlab to find local maxima and the peaks width in the travel time signal. By removing 
peaks width from travel time data, we have off-peak period of travel time data represented in Fig. 6  

 
 

Fig. 6. (a) Filtered travel time 

The values for Gaussian functions fitted on travel time is shown in Table 2 and the filtered travel time is 
presented in Fig. 6. 

 

Table 2. the parameters of travel time signal in peak periods 

Number of peaks peak location 
(× 104) 

width Prominence 

1 654 2.12 8005 340.3904 

2 742 6.27 7406 420.1834 
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3.3. Spatial constraint 

In addition to the outlier and peak period filtering, we used the terminal location dataset to put spatial constraint 
on Bluetooth data for clustering vehicles (in the first stage) and training classifier (in the second stage). It means that 
we filtered the dataset for those vehicles that have at least one of the terminal locations around port of Rotterdam in 
their trajectories. We applied this spatial filtering to increase the certainty of the clustering due to this fact that there 
are less passenger cars and more trucks that pass through A15 motorway and meet terminals. However, later we use 
the whole dataset and trained classifier to assign other vehicles to one of these two classes.    

4. Methodology for truck identification 

To identify trucks using travel times captured by the Bluetooth sensors, a two-stage semi-supervised learning 
model is proposed here. This model, in its first stage, solves an unsupervised clustering problem to detect two 
classes of vehicles and then, in the second stage, identifies vehicles that are likely to be truck using supervised 
classification.  

4.1. Clustering travel time 

Looking at the distribution of travel time (see Fig. 7), the data looks multimodal: there are two peaks in the 
distribution of travel times (TT). A mixture of many unimodal Gaussian distributions can be used to model such 
data. The Gaussian mixture model is a parametrized kernel function with three values, the mixture weights, means 
and variances. Having a univariate Gaussian mixture model with K kernels for travel time data, the ith  kernel has a 
mean of µi and variance of σi . the weight for kernel i is also defined as ϴi.  
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Fig. 7. Distribution of travel time 

 
The equation 6 normalizes the probability distribution. Given a univariate model's parameters, the probability that 

a point in data belongs to a cluster Ci is calculated using Bayes' theorem as shown in equation 7. 
 
 

 

 
(7) 

The a-posteriori estimates of the component probabilities are typically trained by using maximum likelihood 
estimation techniques, which maximize the similarity, or likelihood, of the observed data given the model 
parameters. The expectation maximization (EM) is the most popular numerical technique which is used to estimate 
maximum likelihood. As it is mentioned, there are two clusters in the travel time distribution; a two-kernel mixture 
is needed to cluster travel times. Fig.8 shows the result of clustering after the parameters of the Gaussian mixture 
model are obtained (see Table 3). 

 
 

Fig. 8.  Clustered travel time 

The estimated  parameters of two components Gaussian mixture are in Table 3. The Akiak’s Information 
Criterion (AIC) and Bayesian Information Criterion (BIC) are minimized to estimate the number of Gaussian 
mixture components. 
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Table 3. Estimated parameters of the two components Gaussian mixture 
Number of components µ 𝜎𝜎 

1 654 2.12 

2 742 6.27 

AIC:   19532,16   

BIC: 19559.76   

Log-likelihood 9.761e+03   

 
 
The center of clusters µ1 and µ2 are 446,9622s and 359,7014s respectively. This means there are two average 

travel time between two selected sensors “507” and “508”. The cluster with higher average travel times are more 
likely to include trucks. However, we cannot label them truck by certainty because, one passenger car may drive 
with the speed of a truck; in this case many passenger cars that drive slowly could be included in the cluster with 
higher average travel time. 

 To increase the certainty of truck identification, more features should be used as indicators. The proposed 
approach in this paper is to do the same process as mentioned above for multiple locations and for a duration of one 
month (the October 2017) to create a historical data set for clustered travel times. The historical data set consists of 
28213 Vehicle IDs that was labeled as passengers and 101275 vehicle IDs that was labeled as Truck. Some of these 
vehicles belong to one category and some of them belong to both categories but with different frequency. For 
example one vehicle might be labeled as truck at some certain times and locations but also be labeled as passenger  
at different times and locations. The frequency of vehicles being labeled as truck (ft) and passenger (fp) for each class 
is presented in fig. 9.  

Fig. 9 the frequency of labels in each class for every vehicle 

 
 To increase the certainty, We only accept the labels with high frequency (let say more than 5 depending on the 

level of certainty needed) in each class. For those vehicles which have high frequency and they are in both classes 
we only accept the vehicles which their frequency proportion are higher than a certain level of certainty (𝛾𝛾). In this 
research we set the value of  𝛾𝛾 = 2 which means the vehicles should have been labeled as truck at least twice more 
than as passenger in order to be accepted as truck and the other way around. Of course the more level of certainty 
we choose, the fewer labeled data we have. It is because we remove many of those vehicles we are not certain about 
considering the rules below. 

 
𝑓𝑓𝑡𝑡 ≥ 5 and 𝑓𝑓𝑡𝑡

𝑓𝑓𝑝𝑝
≥ 𝛾𝛾 → 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (8) 
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𝑓𝑓𝑝𝑝 ≥ 5 and 

𝑓𝑓𝑝𝑝
𝑓𝑓𝑡𝑡
≥ 𝛾𝛾 → 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 (9) 

 
Given the labeled data set, we can train a classifier to predict the label of other vehicles which we could not 

labeled through the previous process. To do so, we use a support vector machine to model the vehicle type 
identification.  

4.2. Vehicle type Identification  

In order to identify vehicle types even in fuzzy location and time ( e.g. peak periods), we have to train a classifier. 
Therefore, the labeled vehicles (whether Trucks or Passengers) data are selected for a specific day (25th of October 
2017) matching  BT database and Labelled database. To train a classifier, we need to have more features beside 
travel time that can distinguishes between truck and passenger cars.  

4.3. Feature matrix  

Having trajectory data of labelled data, we consider number of activities and activity duration next to the travel 
time as predictor features. Because the distribution of number of activities and average activity duration for truck 
and passenger cars can be quite different.  The process of calculating travel time from BT dataset has been described 
in section 2.1. However, the process of calculating number of activities and average activity duration is a bit more 
complicated because prior to that we have to understand when an activity happens.  

4.3.1. Number of activity 
 
In order to find out when an activity happens, we need to track every vehicles’ trajectory. The activity is assumed 

that has happened when a vehicle passed two sequential sensors with a large delay in between. There could be two 
reasons for such delays. (1) the vehicle stuck in the congestion or (2) the vehicle stopped for doing an activity (e.g. 
gas station, rest , loading and unloading, work, etc. ). The last one can be considered as an actual activity. we use the 
Inter Quartile Range (IQR) of travel times to detect activities in every vehicle trajectories. The IQR is a measure of 
variability, based on dividing distribution of a data set into quartiles. The values that separate each part are called the 
first (Q1), second (Q2), and third (Q3) quartiles. every vehicle’s trajectory consists of at least one pair of sequential 
O/D. for all O/Ds in all trajectories, activity for a vehicle happens if the travel time of that vehicle exceeds Tukey 
upper bound in box-and-whisker plot (Q3+1.5×IQR). As peak periods in travel time may shift the IQR 
inappropriately, we divided the time of day into 5 peak and off peak periods ( 00:00 to 6:00, 6:01 to 9:00, 9:01 to 
16:00, 16:01 to 19:00, 19:01 to 24:00).  

4.3.2. Average activity duration 
 
The activity duration is the amount of delay which happens between two sequential O/D. this delay can be 

calculated by subtracting passage time of vehicles doing some activity from upper bound of expected travel time. 
The upper bound of travel time is the Tukey upper bound in box-and-whisker plot (Q3+1.5×IQR) of travel time. The 
average activity duration is the mean of activity durations through every vehicle’s trajectory.  
 
Having the travel time, number of intermediate activities, and average activity duration for every vehicle and for 
every O/D, we can form the feature matrix of vehicle identification model (see Table 4).   
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Table 4 a sample of feature matrix including labels and Users ID for  506 to 507 sensor ID 
Users Label Travel Time Number of activities Average activity Duration 

11 0 373 0 0 
29 1 516 0 0 
37 1 473 2 13106.75 
39 0 415 2 15776.48 
67 1 530 2 312.57 
76 1 522 0 0 
83 1 515 1 8033.63 
85 0 446 1 44 
90 1 480 0 0 

 
To see if there is a difference in means of average activity duration and Number of activities  between Truck and 
Passenger in the population, we perform independent samples t-test for these variables. The null hypothesis for 
average activity duration is that there is no difference in means of average activity duration of Passengers and 
Trucks and the null hypothesis for number of activities is that there is no difference in means of number activity 
duration of Passengers and Trucks. 
 

Table 5 independent samples t-test for number of stop and average stop duration 
 t-test for Equality of Means 

 t 

D
egree of freedom

 

Sig. (2-tailed) 

M
ean D

ifference 

Std. Error 
D

ifference 

95%
 

C
onfidence 

Interval of the 
D

ifference 

Lower Upper 

Average activity 
duration 9.26 1360 0.0 4163.56 449.68 3281.42 5045.70 

Number of activities -2.40 1360 0.02 -0.25 0.10 -0.454 -0.46 

  
 
The t-test result reject the null hypothesis and proves that Passenger’s average activity duration is significantly 
longer than Trucks with a confidence of 95% in the population. The t-test results also reject the null hypothesis and 
proves that Truck’s number of activities is significantly more than passengers with a confidence of 95% in the 
population. It make sense because passengers usually have direct trip to work and home with limited intermediate 
activities. The duration of activities for passengers is also long as they have specific working duration of 8-9 hours. 
On the other hand, trucks usually have more frequent activities like (un)loading and their activity duration is limited 
compared to that of  the passenger’s activities.  

4.4. Support vector machine  

Give a set of training dataset I={𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖} where 𝑥𝑥𝑖𝑖 ∈ ℝ𝑑𝑑 and 𝑦𝑦𝑖𝑖 ∈ {−1,1} , the support vector machine is to find a 
classifier  function  as follow.  
 
𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏 = 0 10 
 
As our data is not linear, the SVM should find a nonlinear function to classify data  by mapping 𝑥𝑥𝑖𝑖  to a higher space 
using a transfer function ∅(𝑥𝑥). 
  
𝑤𝑤𝑇𝑇∅(𝑥𝑥𝑖𝑖) + 𝑏𝑏 = 0 11 
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The SVM considers a margin around this hyperplane to find the best classifier with least operational risk. Therefore 
the aim is to label 𝑦𝑦𝑖𝑖   as:   
 
𝑦𝑦𝑖𝑖 = 1 ⟹ 𝑤𝑤𝑇𝑇∅(𝑥𝑥𝑖𝑖) + 𝑏𝑏 > 1 
 

12 

 
𝑦𝑦𝑖𝑖 = −1 ⟹ 𝑤𝑤𝑇𝑇∅(𝑥𝑥𝑖𝑖) + 𝑏𝑏 < −1 13 
Therefore the objective function to find the best classifier in SVM is to maximize the distance between two above 
mentioned hyperplane.  Considering the constraints and relaxing the problem by Lagrange multiplier, The problem 
that SVM tries to solve is an optimization problem as below:  
 

𝑚𝑚𝑚𝑚𝑃𝑃
1
2
��𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗

𝑗𝑗

𝐾𝐾�𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑗𝑗�
𝑖𝑖

−�𝛼𝛼𝑖𝑖
𝑖𝑖

 
14 

 
S.t. 
�𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖 = 0
𝑖𝑖

 14 

0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶 
 

15 

𝐾𝐾�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = ∅(𝑥𝑥𝑖𝑖)𝑇𝑇∅�𝑥𝑥𝑗𝑗� 16 
 
 
 
Where α is Lagrange Multiplier , C is the penalty factor which is the upper bound of the box constraint and 𝐾𝐾�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� 
is the kernel function. This optimization problem can be re-written as a quadratic programming problem :  
 

min
1
2
𝛼𝛼𝑇𝑇𝐻𝐻𝛼𝛼 + 𝑓𝑓𝑇𝑇𝛼𝛼 

17 

�𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖 = 0
𝑖𝑖

 18 

0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶 
 

19 

ℎ𝑖𝑖𝑗𝑗 = 𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝐾𝐾�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� 
 

20 

𝐻𝐻 = [ℎ𝑖𝑖𝑗𝑗]𝑛𝑛×𝑛𝑛 
 

21 

𝑓𝑓 = [−1]𝑛𝑛×1 22 
 
 
Solving this quadratic programing will give us a set of solution α which can classify our data as follow: 
 
𝑆𝑆𝑆𝑆 = {𝑚𝑚|0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶} 
 

23 

𝑏𝑏 = 1
|𝑆𝑆𝑆𝑆|

∑ (𝑦𝑦𝑖𝑖 − ∑ 𝛼𝛼𝑗𝑗𝑦𝑦𝑗𝑗𝐾𝐾�𝑥𝑥𝑗𝑗, 𝑥𝑥𝑖𝑖�𝑗𝑗𝑖𝑖∈𝑆𝑆𝑆𝑆 )  
 

24 

𝑦𝑦 = 𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃(�𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖
𝑖𝑖

𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥) + 𝑏𝑏) 25 

 



 Author name / Transportation Research Procedia 00 (2018) 000–000  13 

Where Sv is the set of support vectors and b is the bias term. There are various type of kernels that can be used for 
SVM binary classification. the most famous one for nonlinear space is Gaussian kernel which is also an radial based 
function (RBF).   
 

𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥) = exp (−
1

2𝜎𝜎2
��𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗��

2
) 

26 

 
Where 𝜎𝜎 is standard deviation of kernel function which defines the kernel scale. To train the SVM classifier for 
truck identification, we select the sensors 506 and 507 as a candidate OD. There are 1362 labelled vehicles passing 
these two sensor during 25th of October 2017. We partitioned data into two train and test datasets. The test datasets 
consists of  a sample of 100 vehicles which are randomly drawn from labelled dataset  and  the rest of the data ( 
1262 vehicles) are kept in train dataset.  The train data set will be used to train SVM and the test dataset will be used 
to evaluate classifier after being trained. We centre and scale each predictor variable by the corresponding weighted 
column mean and standard deviation. 

4.4.1. SVM hyper parameter 
As we can see C and kernel scale and kernel type are hyper parameters of SVM which should be set for binary 
classification. These hyper parameters should be optimized to get the best classification results. We used Bayesian 
optimization for this purpose.   
  

Fig. 10 objective function value per iteration during hyper parameter optimization 

 
The results shown in table 6 indicates the best box constraint , kernel scale and kernel type. The Fig. 10 also shows 
that the optimization process minimized after evaluating the objective function for 30 times.   
 

Table 6. Best estimated feasible point 
Box Constraint Kernel Scale Kernel function  Observed objective Estimated objective 
2.1928 1.3411  RBF 0.029412 0.032597 

4.4.2. Cross validation 
 

To have an insight on how this model will generalize  to an unlabelled dataset, we use 10-fold cross validation 
during training process. In 10-fold cross-validation, the original dataset is randomly partitioned into 10 subsamples 
with equal size. One of these 10 subsamples is used as the validation data for testing the model, and the remaining 9 
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subsamples are used as training data. The cross-validation process is then repeated 10 times in a way that each of the 
10 subsamples used exactly once as the validation data. The average of 10 results can then be used to produce a 
single estimation. In our model, we hold out  10% of data for validation and the remaining 90 % for training process. 
The result of the cross validation show that the out of sample misclassification rate is 0.0423.  In other words the 
generalization rate of this model is approximately 96 %.   

4.4.3. Vehicle type identifier  
The optimized SVM has been trained with the train data set using above hyper parameters. The parameters of the 
trained vehicle type identifier are in the table  7.    
 

Table 7 shows the parameters of the trained vehicle type identification 
Variables  𝜎𝜎 µ 
Travel Time  73.7059 494.6268 
Number of Stop 1.6062 1.5593 
Average Stop duration 6661.3 4371.8 
Bias  -0.1438 
Misclassification rate 0.0423 
C 2.1928 
Kernel Scale  1.3411 
MSE 0.01 
Score 
transform Sigmoid A=-2.145 

B=0.236 
 
where the parameters A and B in score transform function are the slope and intercept parameters, respectively. 

4.4.4. Classifier evaluation 
To evaluate the accuracy of the model, we used the test data to predict their labels using vehicle type identifier 
model. In this section we compare the true label of the test data with the predicted labels using mean square error.  
 

𝑀𝑀𝑆𝑆𝑀𝑀 =  
1
𝑁𝑁
� ||𝑡𝑡 − 𝑙𝑙||2
𝑁𝑁

𝑖𝑖=1

 27 

 
Where, N is the number of observation, t is the true labels of input test data and the l is the predicted labels. As the 
number of observation in the test data is 100 and as MSE value is 0.01, it means that the model only misclassified 1 
out of 100 samples which is a high accuracy for the model. For the test data the distribution of estimated posterior 
probability for both Truck and Passenger class is shown in Fig 11. To have a better insight the table 8 shows the first 
10 row of the tests data as an example 
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Fig. 11 (a) the distribution of posterior probability for passenger class (b) the posterior probability distribution for truck class   

 
The results show that the average posterior probability for Truck class is 96% and the average posterior probability 
for passenger class is 91%. It means that the average probability of a truck being labelled as truck is 96 % and the 
average probability of a passenger car being labelled as passenger car is 91% which it proves the high accuracy of 
vehicle identifier model.  
 

  Table 8 shows the predicted labels verses true labels and their corresponding class score and posterior probability 
True Labels  Predicted labels  scores Passenger  class posterior  

probability 
Truck class posterior  
probability 

0 0 0.027 0.54 0.455 
1 1 3.24 0.001 0.998 
0 0 -1.70 0.98 0.019 
1 1 1.48 0.049 0.950 
1 1 1.31 0.070 0.929 
1 1 3.11 0.001 0.998 
1 1 3.33 0.001 0.998 
1 1 1.50 0.047 0.952 
1 1 2.81 0.003 0.996 
0 1 2.02 0.016 0.983 

Number of observation:                                              100       
Average posterior  probability for Truck class:          0.96            
Average posterior  probability for Passenger class:    0.91 

 

5. Conclusions and recommendations 

Our paper presents a robust method for vehicle classification based on BT data. It allows to separate trucks and 
passenger cars with high accuracy. This is especially important in cases where (1) flows are heterogeneous, such as 
around industrialized areas and (2) where predictions are needed that are customized towards a specific vehicle 
class. Our paper adds to recent work that uses BT data for other purposes, such as travel time estimation and O/D 
estimation. Next steps for research may include  

• Testing the effect of classification on travel time predictions and O/D matrix estimation. 
• Testing the effect of classification on estimation of freight travel time variability. 
• Predicting the activity-travel sequences for trucks  
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