
Approximate Dynamic Programming Controller for Multiple Intersections
Cai, Chen; Le, Tung Mai

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

1

APPROXIMATE DYNAMIC PROGRAMMING
CONTROLLER FOR MULTIPLE

INTERSECTIONS

Cai, Chen

Le, Tung Mai

National ICT Australia

University of New South Wales

ABSTRACT

In this paper we propose a distributed control method based on approximate dynamic
programming for traffic networks. A closed-form linear function is used to map state to scalar
quantity as an approximation to the look-up table presentation of exact quantities used in
dynamic programming. This substantially reduces computational requirement and makes the
proposed method conforming to real-time operation. Temporal-difference learning is used to
improve approximation at real-time. A cellular automation model is used to describe traffic
dynamics in road networks. We show in numerical experiments that the proposed approach
significantly improves control performance from optimised fixed-time plans in a range of test
scenarios. Indicator for control performance is weighted sum of vehicle delays and stops.

Keywords: approximation, dynamic programming, distributed control

1. BACKGROUND

In typical urban traffic networks, control decision made at a single intersection affects traffic
both upstream and downstream of the site. A common objective for controlling traffic
networks is to ensure system-wide optimality in terms of performance measurements,
including vehicle delays, stops, CO2 emissions and travel reliability. Two approaches
emerged to address this problem: one is centralised that views the system as a single entity;
the other one is distributed and optimises local performance subject to upstream and
downstream conditions. The former usually enforces coordination among adjacent
intersections, and the latter relies on voluntary coordination. Examples of the former are
TRANSYT (Vincent et al., 1980), SCOOT (Hunt et al., 1982), SCATS (Lowrie, 1992) and

Approximate Dynamic Programming Controller for Multiple Intersections
Cai, Chen; Le, Tung Mai

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

2

UTOPIA (Mauro et al., 1989) systems, and those of the latter include OPAC (Gartner, 1982,
1983a, 1983b) and PRODYN (Henry et al., 1983). A hybrid system combining local dynamic
optimisation and higher-level intervention on signal coordination is RHODES (Mirchandani
and Head, 2001).

Due to the complexity associated with traffic network control, centralised systems usually do
not include system-wide performance measures in the objective function. In stead, they
identify key intersections of high degree of traffic saturation, and calculate optimised cycle
time for the key intersections. The optimisation techniques often set to equalise degrees of
saturation of all signal phases at the key intersection as an approximation to the optimal
solution. Cycle time of the adjacent intersections are synchronised and pre-set offset plans
are enforced to facilitate good propagation of flow from and to the key sites. SCOOT, SCATS
and UTOPIA are examples of this. Disadvantages of this approach are that synchronised
cycle time imposes constraints at local sites and pre-set offset usually does not take account
of distribution and dynamics of traffic density in links.

The distributed control approach orients from the assumption that necessary upstream
information for operating a local site is conveyed by the propagation of traffic flow. This is to
say that if local controller was able to facilitate good propagation of flow from upstream and
to downstream, then the local control policy is an approximation to optimal policy. Information
of traffic flow can be detected using traffic sensors, and traffic model is required to establish
sufficient presentation and projection of traffic state. The ideal optimisation technique for
distributed control is dynamic programming (Bellman, 1957). This approach is the only exact
solution to sequential decision-making of complex system so far. However, this technique
faces difficulties for real-time application because of the computational requirement and
demand of information (of traffic state, underlying model and vehicle arrivals). As the result,
OPAC and PRODYN developed heuristics respectively to approximate the sequential
decision-making process of dynamic programming (DP).

New development in approximating principle features of dynamic programming addresses
the origin of computational difficulty. This usually involves approximation of the value
function, state transition model or the policy of the DP so that computational demand can be
reduced. These approaches are within the concept of approximate dynamic programming
(ADP). Initial development of ADP for isolated intersection control was presented in Cai
(2007) and Heydecker et al. (2007), and improved ADP with machine learning features was
presented in Cai et al. (2009). These works were based function approximation. Policy
approximation approaches to traffic signal control were seen in Teodorovic et al. (2006) and
Li et al. (2008). A concept of using ADP controllers for distributed network control was
proposed in Xiang et al. (2007), but was not seen in complete formulation and application.
Their proposal is to use artificial neural network (ANN) to approximate the value function of
DP.

In this paper, we present the formulae and numerical experiment results of applying ADP to
distributed traffic network control. We propose a closed-form function that maps state to
scalar quantity to approximate the exact value function of DP. The approximation function is

Approximate Dynamic Programming Controller for Multiple Intersections
Cai, Chen; Le, Tung Mai

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

3

updated using real-time machine learning techniques. A cellular automaton model is used to
describe vehicle behaviour at intermediate level, from which the system interpret traffic
information and construct the traffic state. We apply the distributed ADP approach to a set a
numerical experiments, and compare results with benchmarking control systems.

The rest of this paper is organised as the followings. In Section 2 we introduce the concept
and formulae of ADP. The dynamics of traffic and control system at local intersection is
introduced in Section 3. The distributed control structure and control policy for local operation
are discussed in Section 4. Numerical experiments and results are presented in Section 5. A
summary of this study is presented in Section 6.

2. APPROXIMATE DYNAMIC PROGRAMMING

2.1. Notations

i is a vector of system state,
J (i) is the true value function associated with state i,

!J !,r() is an approximate function of J (i),

r is a vector of functional parameters,
Δr is a new estimate of r,
f (·) is a function that returns Δr,
u is a decision vector,
a is a column vector of traffic arrival information,
α is a discount factor
e-θt is the discount function,
θ is a discount rate for cost incurred in the future,
g (·) is a one-step cost function,
l is a vector of traffic state,
s is a vector of controller state,
W is a weighting factor for vehicle stops
y (.) is a function that returns a vector of vehicle departures,
z is a vector of vehicles stops
φ (·) is a feature-extraction function,
Φ is a vector of φ (·).

2.2. Dynamic programming and the approximation

Approximate dynamic programming is a derivative of dynamic programming (DP). It
particularly addreses application of the principles of DP to make sequential decisions to solve
complex problems. The principles of DP can be presented as the followings. Given the initial
state i0 and a sequence of decisions ut at discrete time t, a DP algorithm is to solve

()
1

1 0

0

min ,
t

m
t

t t
u U

t

E g i i i i!
"

+
#

=

$ %
=& '

()
* . (1)

Approximate Dynamic Programming Controller for Multiple Intersections
Cai, Chen; Le, Tung Mai

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

4

The backward dynamic programming solution recursively computes the Bellman equation

J i

t() = min
u

t
=U

E g i
t
, i

t+1() +! J i
i+1

i
t(){ } , for t = m"1,m" 2,...,0, (2)

where decision ut is selected from a finite set of U at each time step, and the expectation
operator is taken in respect to the probability in state transition from it to it+1 by implementing
decision ut.

Despite the elegant equations of DP, difficulties in computation rise sharply as the complexity
of the problem increases. To complete a single iteration of the algorithm, Eq.(2) needs to be
computed for all i in the state space X. Furthermore, a policy has to be associated with a
state and complete information of the underlying model is required to supervise state
transition after implementing the policy. Therefore, application of DP approach is limited by
three sources of constrains: dimensionality in state space, policy space and information
space. This is referred by Bellman and Dreyfus (1959) as the “curse of dimensionality”.

The principle of ADP is to use approximation techniques to overcome the computational
difficulties associated with DP, thus making it possible to apply sequential decision-making
as exemplified by DP to complex problems. Corresponding to the source of dimensionality,
ADP may approximate the value function, the policy or the underlying model. In this paper,
we focus on value function approximation.

We use a continuous approximation function

!J !,r() : X ""

K
" to replace the exact value

function

J !() : X " ! , where parametric vector r of J! is K-dimensional. At each time step t, we

calculate

Ĵ i

t() = min
u

t
!U

E
w

t

g i
t
, i

t+1() +" !J i
t+1

,r
t(){ } , for t = 0,1,...,T #1 (3)

and implement at each time step t

u
t

!
= arg min

u
t
"U

E
w

t

g i
t
, i

t+1() +# !J i
t+1

,r
t(){ } . (4)

The merit of using

!J !,r() is that a look-up table of J(.) values is replaced by a closed-form

function. Supposing that there are n states and each may take m possible attributes, we
reduce the dimension of state space from nm to K, where K is the dimension of parametric
vector r of

!J !,r() . This substantially reduces computational requirement, thus making solving

complex problems online possible.

A popular approach to construct

!J !,r() is to use artificial neural networks (ANN). This

approach was firstly introduced by Werbos (1994) and then generalised by Bertsekas and

Approximate Dynamic Programming Controller for Multiple Intersections
Cai, Chen; Le, Tung Mai

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

5

Tsitsiklis (1995) under the concept of Neural Dynamic Programming. In this approach vector
r is represented by the neural weights connecting neurons in the network. Advantages of this
approach include flexible function structure and availability of proven learning techniques.
Disadvantage of this is that the black-box effects make it difficult to comprehend and
generalise.

Alternatively, it is possible to identify a few basis functions (·) defined in state space i ∈ X
that capture the key features of the state, and form a linear separable approximation function
as

() () ()
1

,
N

n

n

J i r i r n!
=

="! . (5)

Once the basis functions are established, it is efficient to compute and simple to update r. In
this work, we only investigate approximation techniques based on Eq.(5).

2.3. Reinforcement learning

The ADP approach is closely associated with reinforcement learning. This is because we
usually do not know appropriate parametric structure and value of the approximation function
a priori. A learning technique is required to supervise the evolution of r to guarantee that it
converges to optimal value in static environment or reflex changing conditions in dynamic
environment. Without ideal response for the learning agent to match, a learning agent has to
learn from its own interaction with the environment and learn from “trail-and-error”. This
learning paradigm is denoted as reinforcement learning (Barto et al., 1983; Sutton and Barto,
1998).

A reinforcement learning agent generally consists of four basic components: a policy, a
reward function, a value function, and a model of the environment. In a problem defined by
(1) and (2), the policy is the Bellman’s equation shown in (2). The policy is the ultimate
determinant of behaviours and performance. The reward function is shown as g (·), which
returns the immediate and defining feature of the problem faced by the agent. The value
function is represented by J (i), which estimates the rewards in the long run. The model of
the environment can be the system that transfers state it to it+1. It is not difficult to find that the
DP formulas are the basis to formulate a reinforcement learning problem. Typical
reinforcement learning techniques include Q-learning (Watkins,1992) and temporal-
difference (TD) learning (Sutton, 1988). The former requires a look-up table to present the
set of (i, u), and therefore subject to the dimensionality of state space. The TD learning
directly updates parametric vector of the approximation function, thus being more conforming
to the task of overcoming computational difficulty.

The TD method constantly tracks the error between the estimated value and the observed
value, and propagates the error signal back to the parametric structure so that

Approximate Dynamic Programming Controller for Multiple Intersections
Cai, Chen; Le, Tung Mai

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

6

r
!
= arg min

r

J i()" !J i,r()#
$

%
&

2

i'S

(

Let the temporal difference dt be defined as:

() () ()1 1, , , .t t t t t t td g i i J i r J i r+ += + ! "! ! (6)

For t = 0,1, …, the TD method updates rt according to the formula

() ()1

0

, ,

t

t k

t t t t r k t

k

r r d J i r! "#
$

+

=

= + %& !

Applying (5) for approximation, we have

() ()
1

0

.

t

t k

t t t t k

k

r r d i! "# $
%

+

=

= + & (7)

where ηt is a sequence of scalar stepsizes that satisfy the following terms for convergence

0

,
t

t

!
"

=

="# and 2

0

.
t

t

!
"

=

<"# (8)

Parameter λ is known as trace eligibility factor, which takes value in [0,1]. Since temporal
difference learning is actually a continuum of algorithm parameterized by λ, it is often
referred as TD(λ). Furthermore, we may define a TD(λ) operator for λ ∈ (0,1) by

T
!()

J() i() = 1" !() !m

m=0

#

$ E %t

t=0

m

$ g i
t
, i

t+1() +%m+1
J i

m+1() | i
0
= i

&

'
(

)

*
+ . (9)

In the case where λ=1, we have

T
1()

J() i() = E !t

t=0

"

g i
t
, i

t+1() | i
0
= i

$

%
&

'

(
) = J i() , (10)

and for λ=0, we have

T

0()
J() i() = E g i

t
, i

t+1() +!J i
t+1

i()[] . (11)

TD(1) is a true and unbiased estimation of J (i), and TD(0) is an equivalent to single-pass
algorithm as all the calculations including the update of approximation are finished at the end
of each forward pass. Tsitsiklis and Van Roy (1997) proved the convergence of r with TD(λ)
algorithms for linear approximation function within the domain of infinite-horizon and finite-
state discounted dynamic programming problems.

Approximate Dynamic Programming Controller for Multiple Intersections
Cai, Chen; Le, Tung Mai

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

7

3. SYSTEM DYNAMICS AT AN ISOLATED TRAFFIC
INTERSECTION

In this section we formulate system dynamics for an isolated traffic intersection. A state i of
traffic control system is a combination of traffic state l and controller state s. We further
define that traffic state l by the number of vehicles queuing in each of the approaching links,
and controller state s by the state of signal (i.e. red or green, amber state is not considered in
this study) of each link. For an intersection having total N links, for n = 1, …, N, we define

()

()

1l

l

l N

! "
$

= # $
$% &

! ,
()

()

1s

s

s N

! "
$

= # $
$% &

! ,

where l(n) denotes the actual number of vehicles queuing in link n, and each element of s is
a binary variable depending on traffic signal indication such that

()
1 if signal is green for link

0 if signal is red for link

n
s n

n

!
= "
#

The system state i therefore can be expressed as i {l, s}. To construct the approximation
function, we employ the feature-extraction function φ (i) such that,

! i() =

! i 1()()
!

! i N()()

"

#

$
$
$
$

%

&

'
'
'
'

, where

! i n()() =

l n()
0

"

#
$
$

%

&
'
'

 if s n() = 1

0

l n()

"

#
$
$

%

&
'
'

 if s n() = 0.

(

)

*
*
*

+

*
*
*

The linear approximation function is formed by

!J i,r() = !
n

i()r n()
n=1

N

" , (12)

where

r n() =
r
!

n()
r
+

n()

"

#

$
$
$

%

&

'
'
'

. (13)

In such a way, we differentiate the signal status, and assign r- to queue length variable l (n) if
link n receives green signal, or assign r+ otherwise. We further denote random arriving traffic
by column vector a, where

Approximate Dynamic Programming Controller for Multiple Intersections
Cai, Chen; Le, Tung Mai

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

8

a =

a 1()
!

a N()

!

"

#
#
#
#

$

%

&
&
&
&

.

We use vector y to denote the departing traffic from the N-link intersection, so that

y =

y 1()
!

y n()

!

"

#
#
#
#

$

%

&
&
&
&

.

Finally, the transition of system state during time increment from t to t+1 can be described as

l
t+1

n() = l
t

n()! y
t

n() + a
t

n() , (14)

and signal vector s is transferred

s

t+1
n() = s

t
n() + u

t
n()()mod

2
, (15)

where decision variable ut takes

()
1 for signal switch

0 unchanged.
t
u n

!
= "
#

Equations (14) and (15) describe the state transitions of a single step. The number of steps
in a certain time period depends on the resolution of the discrete time system. Let Δt denote
the time increment of discrete step, we assume that there is a total number of M steps in the
planning period of the signal controller, and consequently the actual duration of the planning
period is MΔt seconds. In case where online information of vehicle arrivals at does not cover
the M steps, we use Monte Carlo simulation to realise sample arrivals for the rest planning
period.

For the M-step planning period, the ADP controller obtains

u
t

!
= arg min

u
t
"U

t

E
w

k

#k$t g i
k
, i

k+1() +#M !J
t$1

i
t+ M $1

,r
t$1()

k=t

t+ M $1

%
&

'
(

)

*
+ , i "X , (16)

and calculates

Ĵ
M

i
t() = min

u
t
!U

t

E
w

k

" k#t g i
k
, i

k+1() +" M !J
t#1

i
t+ M #1

,r
t#1()

k=t

t+ M #1

$
%

&
'

(

)
* , i !X , (17)

Approximate Dynamic Programming Controller for Multiple Intersections
Cai, Chen; Le, Tung Mai

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

9

Since we consider both vehicle delays and stops as performance indicator, the one-step cost
function g is given by

g i
t
, i

t+1() = l
t

n()! y
t

n() + a
t

n()"
#

$
%

n=1

N

& 't +Wz
t
. (18)

where zt is the number of vehicle stops during Δt period, and W is the weighting factor. A
greater W value shifts control priority to reduce vehicle stops, and vice versa.

The M-step temporal difference can be expressed as

() ()

()
1

1

ˆ ,

 , ,

M M t t t

t M

k t

k k k

k t

d J i J i r

d i i

+ !
!

+

=

= !

= "#

!

 (19)

and the parameters are updated by

() ()
1

1 1
, , 0,1,

t M

k t

t t t t k k k

k t

r r i d i i t! " #
+ $

$
+ +

=

= + =% . (20)

Equation (20) can be regarded as a special variant of (9). With a large M, Eq. (20) comes
closer to (9) with λ = 1, and a smaller M makes (20) closer to (11) with λ = 0.

4. CONTROL POLICY

In distributed control architecture, each controller receives local traffic information and
optimises performance according to local measurements. When a local controller plans
ahead, it is assumed that controller status of other sites is kept the same. Traffic signals at
an isolated intersection are grouped in to phases, which represent group of one or more
traffic or pedestrian links that receive identical signal indications. In this study, intergreen is
modelled as a phase. In this way, signal status moves immediately between any two phases.
Given the current phase p, our controller decides a set of phases to simulate in the next M
step. Figure 1 shows the possible paths to pick a set of phases to simulate. Terminal node 3
yields an empty set, which means the controller skips approximation steps because value
approximation will be done in the next immediate following phase. Terminal nodes 4 and 5
mean that there are now two valid set of phases, corresponding to two valid options under
the control policy: stay in this phase or move to next phase. Each terminal node represents
the set of optional decision at any give time, which is represented by Ut. Optimal decision at
any given time is obtained from (16), and implemented for a period of Δt.

Approximate Dynamic Programming Controller for Multiple Intersections
Cai, Chen; Le, Tung Mai

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

10

Figure 1: flow chart of deciding set of simulated phases

The traffic signal control algorithm using ADP can be summarised mathematically as the
following:

Step 0: Initialisation

0.1 Choose an initial system state i0;
0.2 Initialise functional parameter vector r0;
0.3 Initiate learning rate (or step size) η0;
0.4 Set time index t = 0.

Step 1: Receiving new information

1.1 Set time index t = t + 1;
1.2 Receive detected information at ;
1.3 Predict the information vector

t
w! for the extra part of the planning period,

if necessary.

Approximate Dynamic Programming Controller for Multiple Intersections
Cai, Chen; Le, Tung Mai

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

11

Step 2: Evaluate control decisions

2.1 If signal change is not admissible, set u*
t = 0;

2.2 If signal change is admissible, for the planning period of M-steps, find the
optimal decision u*

t using (16).

Step 3: Update approximation function

3.1 Calculate new observation ()ˆ
M t
J i using (17)

3.2 Calculate current approximation ()1 1
,

t t t
J i r

! !

! using (12);

3.3 Calculate M-step temporal difference using (19)
3.4 Update functional parameter vector rt-1 using (20).

Step 4: Implement optimal decision u*

t for the first Δt of the planning period

Step 5: Stopping Criteria

5.1 If t < T, then goes back to Step 1; Otherwise, stop.

If the system is implemented in real world, T is set as infinity since the controller must be
always on. In simulated environment, the value of T is preset; after that point, the simulation
program terminates.

5. EXPERIMENT AND RESULT ANALYSIS

In this section we present the numerical experiments that implement the distributed ADP
controller method to traffic network control, and provide result analysis. We begin with a few
important assumptions used in the experiments in Section 5.1, and then discuss the
configurations of numerical experiments in Section 5.2. Numerical results from a set of traffic
network scenarios are present and analysed in Section 5.3, and the evolution of
approximation function presented in Section 5.4.

5.1. Assumptions

We have the following assumptions for numerical experiments.

Assumption 5.1 Minimum greens and maximum reds:

Signal timings are subject to minimum green and maximum red time constraint. These
constraints are translated to minimum length and maximum length of a phase.

Approximate Dynamic Programming Controller for Multiple Intersections
Cai, Chen; Le, Tung Mai

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

12

Assumption 5.2 Positions of vehicles:

By putting a loop detector at the very upstream end of a link, we can record the time point
a vehicle passes by. From that point, the current time, and maximum speed allowed on
the road, we can calculate the approximate position of each vehicle on a link. We also
need to have a detector at D meters upstream of the stop line to detect the presence of
vehicle coming to the junction. The value of D is the maximum speed (measured in
meters/second) allowed. For example, in our network, the maximum speed is 22.5
meters/second, so D equals 22.5.

5.2. Experiment configuration

5.2.1. Traffic model

The controllers are tested on a modified version of the Green Light District simulator
(Wiering, van Veenen, & Koopan, 2004). The vehicle movement model used in this simulator
is a cellular-automata model (Nagel & Schreckenberg, 1992). To make the model more
realistic, we employed a higher resolution, in which cell size is 1.5 meters. The time step is 1
second per increment. With this configuration, each vehicle occupies 5 cells, and the
maximum increase in speed is 2 cells/second. Let the velocity of a vehicle be v, its maximum
velocity is vmax and the safety distance to the next vehicle ahead is d. The velocity update is
done through this procedure:

a) Acceleration: }}2,min{},1,max{min{ maxmax ++! vvvvv ;

b) Slowing down (avoid collision): },min{ dvv! ;

c) Randomisation: with probability P, }0,1max{ !" vv .

5.2.2. Network topologies

We test our controller on 2 different configurations of network. In both networks, each road is
two-way and has one link on each side. All vehicles go straight ahead at all junctions. The
maximum speed allowed on all roads is chosen as 81 km/h in order to make it more precisely
discretised into cells per second on the simulator. The value is translated into 15 cells per
second on simulator. The distance from each origin to its closest junction is 500 meters. The
link length between the 2 junctions is let varied between 200 meters and 330 meters. The
200-meter case is chosen because it is common in urban road networks. The reasons for
choosing the 330-meters case are later expanded with discussion on signal settings.

In the first network, 2 junctions are lined up on an arterial road, as shown in Figure 2. The
second road network is an extension of the first one, with 6 junctions lined up on an arterial
road, as shown in Figure 3.

Approximate Dynamic Programming Controller for Multiple Intersections
Cai, Chen; Le, Tung Mai

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

13

Figure 2: Simple network of 2 junctions at node-6 and node-7, other nodes are input sources

Figure 3: Network of 6 junctions at nodes 14 to 19, other nodes are input sources and absorbing places

5.2.3. Traffic demand scenarios

Vehicles are released into the system over 1 hour of simulation time with uniform probability,
and the simulation terminates when all vehicles arrive at their destinations. The demand on
all North-South links is 300 vehicles/hour, and is kept fixed during the simulation period in
any scenario. The demand on the arterial (named it main road) varies in scenarios. There are
three demand scenarios in total. In the first two scenarios, demand on the arterial links is
assigned a value and kept fixed during the whole simulation period (1hour). Those values are
500 vehicles/hour (medium demand), 900 vehicles/hour (peak demand). The first two
scenarios for the 2-intersection road network are summarised in Table 1, and that for the 6-
intersection network in Table2. In the third scenario, the simulation time is still an hour but
the demand varies every 20 minutes. It starts from 500 vehicles/hour, peaks at 900
vehicles/hour, and then reverts back to pre-peak flow. Using time-dependent demand, we

Approximate Dynamic Programming Controller for Multiple Intersections
Cai, Chen; Le, Tung Mai

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

14

can benchmark our controller’s performance with base-line controller in both fixed-demand
scenarios and time-dependent scenarios.

Scenario name Side road demand
(vehicle/hour/origin)

Main road demand
(vehicle/hour/origin)

Total demand
(vehicle/hour)

Moderate 300 500 2,200

Heavy 300 900 3,000

Table 1: traffic demand scenarios for the 2-intersection network

Scenario name
Side road demand

(vehicle/hour/origin)
Main road demand
(vehicle/hour/origin)

Total demand
(vehicle/hour)

Moderate 300 500 4,600

Heavy 300 900 5,400

Table 2: traffic demand scenarios for 6-intersection network

5.2.4. Traffic signal settings

For local intersection, signal schedule consists of 4 phases: North-South, intergreen, East-
West, integereen. Each phase, except for intergreen phase, has a minimum length of 10
seconds and a maximum length of 80 seconds. Intergreen phase has an exact length of 5
seconds. With this signal setting, the minimum period between two consecutive East-West
phases is 15 seconds, which we denote as “clear time”. Link length 330 meters is chosen to
exploit this “clear time” because the travel time (at aforementioned speed) for the link is
approximately 15 seconds. With the aforementioned configurations of the road network, we
explore the effect of each factor: traffic demand, link length, and the size of network. The tree
in Figure 4 shows the detailed configurations that are tested. Each configuration is simulated
20 times.

5.2.5. Benchmarking method: TRANSYT

TRANSYT is an offline controller, so in the scenarios of fixed demands, it offers good
benchmark for performance comparison. To make performance comparison consistent, we
manually transfer TRANSYT plans to our simulator. The version in use is TRANSYT 12.0.

Approximate Dynamic Programming Controller for Multiple Intersections
Cai, Chen; Le, Tung Mai

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

15

Figure 4: test scenarios, each leaf node is a scenario

5.3. Experimental results

Numerical results from applying moderate traffic demand to the 2-intersection network are
shown in tables 3-5. Throughout the experiments, the value of W, the weighting factor for
vehicle stops, is set at 20 according to (Sims, 1989).

5.3.1. Moderate demand

Link length TRANSYT ADP Percentage of

improvement

200 meters (scen. 1) 15.23 12.71 16.54%

330 meters (scen. 1) 14.18 8.25 41.78%

TABLE 3: average delay (seconds/vehicle), traffic demand scenario 1,
2-intersection network

Link length TRANSYT ADP Percentage of

improvement

200 meters (scen. 1) 0.96 1.01 -5.91%

330 meters (scen. 1) 1.03 0.69 33.12%

Table 4: average stops, traffic demand scenario 1,
2-intersection network

Approximate Dynamic Programming Controller for Multiple Intersections
Cai, Chen; Le, Tung Mai

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

16

Link length TRANSYT ADP Percentage of
improvement

200 meters (scen. 1) 34.34 32.95 4.05%

330 meters (scen. 1) 34.84 22.07 36.65%

Table 5: average objective value (with W = 20), traffic demand scenario 1,
2-intersection network

As Table 5 shows, the ADP approach improved performance significantly from the
TRANSYT plans in both cases of 200 and 330-meter. Both controllers work better when link
travel time equals “clear time” than otherwise. In 200-meter case, ADP controller trade stop
for delay to achieve a lower objective value. In 330-meter case, both methods discharged
vehicles in platoons, thus producing better results than in the 200-metre case. However,
TRANSYT optimised just one junction, sacrificing the other. When the platoon from node-6
reached node-7, corresponding traffic lights at node-7 turned green, producing a green wave,
but when the platoon from node-7 reaches node-6, it was stopped for a few seconds.
Although ADP controller did not require centralised policies, coordination was established
voluntarily between adjacent intersections. Voluntary coordination becomes possible when
vehicles released into the downstream link are detected by downstream sensors, and
downstream controller plans ahead according to detected information. An illustrated example
of voluntary coordination between adjacent intersections is shown in Figure 5.

In the 200-meter case, link travel time is around 9 seconds, much shorter than the “clear
time” 15 seconds. As the result, it was impossible to optimise offset in terms of platoon
dispersion. In such case, ADP controller extended the East-West phase and only gave red
light when the queue on North-South directions piled up to approximately 10 vehicles. In the
same process, TRANSYT plans stayed fixed, and consequently yielded poorer performance.
Table 6 shows average duration of East-West phases yielded by ADP and TRANSYT
respectively.

Phase duration produced
by TRANSYT (seconds) Link length
Node-6 Node-7

Phase duration produced by ADP
(seconds)

200 meters (scen. 1) 16 15 20.2

330 meters (scen. 1) 16 15 15.2

Table 6: Length of East-West phase (seconds), in moderate traffic, 2-intersection network

Approximate Dynamic Programming Controller for Multiple Intersections
Cai, Chen; Le, Tung Mai

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

17

5(a) Traffic and signal status at time 422

5(b) Traffic and signal status at time 431

5(c) Traffic and signal status at time 435

Figure 5 An illustration of voluntary coordination between adjacent intersections controlled by distributed ADP
controllers; 5(a): Inter-6 discharges vehicles while accommodating arriving platoon from inter-7; 5(b): Inter-6

changes signal after platoon arrival, departed vehicles travelling in link 6-7, inter-7 changes signal; 5(c): Iner-7
switches green to W-E phase just before the arrival of platoon.

5.3.2. Heavy traffic

For this scenario, we choose to test on the 200-meter case due to the small margin between
performance of ADP and TRANSYT in the previous case. Tables 7-9 show the performance
of two controllers in terms of averaged delay, averaged stops and averaged objective value
respectively. In this scenario, the overall performance of ADP is still better than TRANSYT,
with a wider margin than in previous scenario where traffic was light. ADP’s gain is attributed
to the reduced vehicle stops in comparison with the TRANSYT plans. On the other hand, the
margin in reduced vehicle delays shrank. This understandable since the demand on East-
West directions is high, and the best practice is to give longer green split to those, which can
be confirmed by the indicators in Table 10.

Approximate Dynamic Programming Controller for Multiple Intersections
Cai, Chen; Le, Tung Mai

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

18

Link length TRANSYT ADP Percentage of
improvement

200 meters (scen. 2) 16.8 15.67 6.76%

TABLE 7: average delay (seconds/vehicle), in heavy traffic, 2-intersection network

Link length TRANSYT ADP Percentage of

improvement

200 meters (scen. 2) 0.89 0.84 5.59%

Table 8: average stops (stops/vehicle), in heavy traffic, 2-intersection network

Link length TRANSYT ADP Percentage of
improvement

200 meters (scen. 2) 34.8 32.65 6.16%

Table 9: average objective value (with K=20), in heavy traffic, 2-intersection network

Phase duration produced by
TRANSYT (seconds) Traffic demand

Node-6 Node-7

Phase duration produced
by ADP (seconds)

Moderate (scen. 1) 16 15 20.2

Heavy (scen. 2) 30 30 32.3

Table 10: Length of East-West phase (seconds) in scenarios 1 and 2, 2-intersection network

5.3.3. Time-dependent demand

To test the ADP’s capabilities of adapting to variable traffic situations, a time-dependent
demand profile is generated as the following. Demand on North-South origins is kept fixed as
300 vehicles per hour. As of the East-West origins, in the first 20 minutes, only 100 vehicles
are released (which is equal to 300 vehicles/hour), in the next 20 minutes, 300 vehicles are
released (which is equal to 900 vehicles/hour), and in the last 20 minutes, 100 vehicles are
released. The demand profile is outlined in Table 11. In each 20-minute period, vehicles are
released according uniform distribution. In this way, the total number of vehicles released in
an hour from each East-West origin is 500 vehicles, which makes this scenario’s net demand
equal to that of moderate scenario. Two sets of TRANSYT plans were generated for peak
and off-peak respectively. TRANSYT plans are appended one after the other in the order:
off-peak, peak, off-peak. Performance comparison is shown in tables 12-14.

Approximate Dynamic Programming Controller for Multiple Intersections
Cai, Chen; Le, Tung Mai

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

19

Origin 1st period (off-
peak)

2nd period (peak
period)

3rd period (off-
peak)

Total number of
vehicles

On N-S direction 100 100 100 300

On arterial links 100 300 100 500

Table 11: Demand profile for the time-dependent scenario.

Traffic demand TRANSYT ADP
Percentage of
improvement

Varied (scen. 3) 17.01 15.1 11.22%

Table 12: average delay, time-dependent scenario, 2-intersection network.

Traffic demand TRANSYT ADP Percentage of
improvement

Varied (scen. 3) 0.98 0.71 27.65%

Table 13: average stops, time-dependent scenario, 2-intersection network.

Traffic demand TRANSYT ADP Percentage of
improvement

Varied (scen. 3) 36.7 29.3 20.03%

Table 14 Average objective value (with W=20), time-dependent scenario,
2-intersection network.

The ADP approach achieved 20% overall improvement from TRANSYT, with majority of the
benefits coming from reduction in vehicle stops. The reduction in vehicle delay is also
remarkable.

5.3.4. Large-scale network

On the large-scale network, the distance between any two intersections is 200 meters.
Demand scenarios 1 and 2 were used in the experiments. In all scenarios, ADP controllers
outperformed TRANSYT plans on a substantial scale, and particularly in the heavy demand
case, as shown in tables 15-17. The TRANSYT schedules again created green waves for
one direction at the expense of the opposite. In moderate traffic, it caused fewer stops than
ADP does, as shown in Table 16. With heavier traffic, queue of the eastbound vehicles at
Node-19 (Figure 3) spilled back to its upstream link and caused substantial degrade in
performance (in terms of both delay and stops). Meanwhile, ADP controller broke down the
platoon by using shorter cycles. As the result, vehicles were often let to have green wave at
2 intersections, then stopped at the following intersection.

Approximate Dynamic Programming Controller for Multiple Intersections
Cai, Chen; Le, Tung Mai

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

20

Traffic demand TRANSYT ADP Percentage of

improvement

Moderate (scen. 1) 29.12 13.66 53.1%

Heavy (scen. 2) 94.63 29.25 69.09%

Table 15: average delay (seconds/vehicle) comparison, demand scenarios 1 and 2,
6-intersection network

Traffic demand TRANSYT ADP Percentage of

improvement

Moderate (scen. 1) 0.94 1.31 -39.44

Heavy (scen. 2) 3.65 1.38 62.02

Table 16: average stops (stops/vehicle) comparison, demand scenarios 1 and 2,
6-intersection network

Traffic demand TRANSYT ADP Percentage of

improvement

Moderate (scen. 1) 48.01 39.99 16.7

Heavy (scen. 2) 167.64 56.98 66.01

Table 17: average objective value (with W=20) comparison, demand scenarios 1 and 2,
6-intersection network

5.4. Evolutions of approximation

Approximation function (12) of any ADP controller was initialised with arbitrary values in all
experiments. The arbitrary values are 1.0 for r-, and 2.0 for r+ for any traffic link. The update
of r is governed by (20), which is computed upon very new observation of M-step state
transition. Using TD learning, the parameters of (12) will converge to optimal value with
probability of one so long as a few assumptions specified in Tsitsiklis and Van Roy (1997)
are met. The ADP algorithm and the system dynamics formulated in this paper satisfy all of
the assumptions, with the proof provided in Cai (2009). In the experiments, however, we use
a constant stepsize ηt = 0.001, which does not satisfy the convergence assumption
presented by (8). There are two reasons for this. The first is that diminishing stepsize rules
like (8) assign most of weights to learning signals obtained in the first beginning of the
simulation programme, where noise is strong and system is transient. This may result in
over-shooting in parameter adjustment. Using a constant and cautious stepsize prevents
over-shooting, but departs from eventual convergence. The second is that with time-
dependent traffic, the system is dynamic and therefore will not arrive at steady-state.

Approximate Dynamic Programming Controller for Multiple Intersections
Cai, Chen; Le, Tung Mai

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

21

Parameters in the case of static traffic with constant stepsize exhibit constraint oscillation
around a statistical mean value, as shown in Figure 6.

 6(a) Parametric values for Link65 6(b) Parametric values for Link67

Figure 6 Evolutions of parametric value of the approximation functions, 2-intersection network, first digit of link
number as the destination of traffic and the second digit as origin, r- for green signal state, and r+ for red signal

state

6. CONCLUSION

In this paper we presented a study on applying approximate dynamic programming in
distributed traffic network control. We proposed a closed-form linear function to approximate
the exact value function of dynamic programming, thus reducing the computation
requirement to a level manageable by a microprocessor of PC. The approximation is
evolutionary and temporal-difference learning is used to provide learning signals. A cellular
automation model is used to describe traffic dynamics, from which the controller withdraws
information and constructs traffic state. The numerical results showed that in the 2-
intersection network, the ADP approach improved control performance by 4 – 6 % from
TRANSYT plans with time-invariant traffic and 20% with time-dependent traffic. In the case of
larger network, the ADP approach improved performance by 16.7% with moderate traffic and
66% with heavy traffic from TRANSYT plans. The results highlight the readiness of the ADP
approach to real-time urban traffic control, where traffic condition is constantly changing and
degrees of saturation are usually high. Nevertheless, this study is one of the preliminary
investigations in applying ADP to distributed network control. The approximation function is
simple in structure and network configuration straightforward. Further studies from this on will
investigate more accurate approximation functions, whose basis functions will capture the
fundamental features of a more general representation of traffic network.

REFERENCE

Barto, A. G., Sutton, R. S., Anderson, C. W. 1983. Neuronlike adaptive elements that can
solve difficult learning control problems, IEEE Transactions on Systems, Man, and
Cybernetics, SMC-13:834-846.

Bellman, R. 1957. Dynamic Programming, Princeton University Press.

Approximate Dynamic Programming Controller for Multiple Intersections
Cai, Chen; Le, Tung Mai

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

22

Bellman, R., Dreyfus, S. 1959. Functional approximations and dynamic programming,
Mathematic Tables and Other Aids to Computation, 13(68), 247-251.

Bertsekas, D.P., Tsitsiklis, J.N., 1995. Neuro-Dynamic programming, Belmont, MA: Athenas
Scientific.

Cai, C. 2007. An approximate dynamic programming strategy for responsive traffic signal
control, Proceedings of 2007 IEEE international Symposium on Approximate
Dynamic Programming and Reinforcement Learning, Hawaii, U.S., 303-310.

Cai, C. 2009. Adaptive traffic signal control using approximate dynamic programming, PhD
thesis, University College London.

Cai, C., Wong, C.K., Heydecker, B.G. 2009. Adaptive traffic signal control using
approximate dynamic programming, Transportation Research Part C, 17(5), 456-
474.

Gartner, N.H. 1982. Demand-responsive Decentralized Urban Traffic Control, Part 1: Single-
intersection Policies, DOT/RSPA/DPB-50/81/24, U.S. Department of Transportation.

Gartner, N.H. 1983a. Demand-responsive Decentralized Urban Traffic Control, Part 2:
Network Extensions, DOT/RSPA/P-34/85/009, U.S. Department of Transportation.

Gartner, N.H., 1983b. OPAC: A demand-responsive strategy for traffic signal control,
Transportation Research Record 906, 75-81.

Henry, J.J., Farges, J.L., Tuffal, J., 1983. The PRODYN real time traffic algorithm,
Proceedings of the 4th IFAC-IFIP-IFORS conference on Control in Transportation
Systems, 307-311.

Heydecker, B.G., Cai, C., Wong, C.K., 2007. Adaptive dynamic control for road traffic
signals, Proceedings of 2007 IEEE International Conference on Networking, Sensing
and Control, London, United Kingdom, 193-198.

Hunt, P.B., Robertson, D.I., Bretherton, R.D., 1982. The SCOOT on-line traffic signal
optimisation technique, Traffic Engineering and Control, 23, 190-92.

Li, T., Zhao, D.B., Yi, J.Q. 2008. Adaptive dynamic programming for multi-intersections
traffic signal intelligent control, Proceedings of the 11th International IEEE
Conference on Intelligent Transport Systems, Beijing, China, 286-291.

Lowrie, P.R. (1992). SCATS – A Traffic Responsive Method of Controlling Urban
Traffic.Roads and Traffic Authority, NSW, Australia.

Mauro, V., Di Taranto, C., 1989. UTOPIA, CCCT’89 ––– AFCET Proceedings, Paris.
Mirchandani, P., Head, L. 2001. RHODES: a real-time traffic signal control system:

architecture, algorithms, and analysis, Transportation Res. C, 9(6), 415-432.
Nagel, K., Schreckenberg, M. 1992. A cellular automaton model for freeway traffic. J. Phys. I

2 , 2221-2229.
Sims, A. 1989. SCATES user manual. Sydney: Roads and Traffic Authority of New South

Wales.
Sutton, R.S. 1988. Learning to predict by the method of temporal differences, Machine

Learning, 3, 9-44.
Sutton R.S., Barto, A.G. 1998. Reinforcement Learning: An Introduction. MIT Press,

Cambridge, MA.
Teodorovic, D., Varadarajan, V., Popovic, J., Chinnaswamy, M.R., Ramaraj, S. 2006.

Dynamic programming –– neural network real-time traffic adaptive signal control
algorithm, Annals of Operations Research, 143, 123-131.

Approximate Dynamic Programming Controller for Multiple Intersections
Cai, Chen; Le, Tung Mai

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

23

Tsitsiklis, J.N., Van Roy, B., 1997. An analysis of temporal difference learning with function
approximation, IEEE Transactions on Automatic Control, 42 (5), 674–690.

Vincent, R.A., Mitchell, A.I., Robertson, D.I., 1980. User guide to TRANSYT version 8.
Transport and Road Research Laboratory Report, LR888, Crowthorne, Berkshire,
U.K.

Watkins, C.J.C.H., Dayan, P. 1992. Q-learning, Machine Learning, 8, 279-292.
Werbos, P.J. 1994. Approximate dynamic programming for real-time control and neural

modeling, Handbook of Intelligent control: Neural, Fuzzy, and Adaptive Approaches,
493-515, Van Nostrand Reinhold, New York.

Wiering, M., van Veenen, J., & Koopan, A. 2004. Intelligent Traffic Light Control. Utrecht:
UU-CS-2004-029.

Xiang, Y., Yi, J., Zhao, D. 2007. Multiple Approximate Dynamic Programming Controllers
for Congestion Control, Lecture Notes on Computer Science, 4491, 368-373.

