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ABSTRACT 

In this paper we propose a distributed control method based on approximate dynamic 
programming for traffic networks. A closed-form linear function is used to map state to scalar 
quantity as an approximation to the look-up table presentation of exact quantities used in 
dynamic programming. This substantially reduces computational requirement and makes the 
proposed method conforming to real-time operation. Temporal-difference learning is used to 
improve approximation at real-time. A cellular automation model is used to describe traffic 
dynamics in road networks. We show in numerical experiments that the proposed approach 
significantly improves control performance from optimised fixed-time plans in a range of test 
scenarios. Indicator for control performance is weighted sum of vehicle delays and stops. 
 
Keywords: approximation, dynamic programming, distributed control 

1. BACKGROUND 

In typical urban traffic networks, control decision made at a single intersection affects traffic 
both upstream and downstream of the site. A common objective for controlling traffic 
networks is to ensure system-wide optimality in terms of performance measurements, 
including vehicle delays, stops, CO2 emissions and travel reliability. Two approaches 
emerged to address this problem: one is centralised that views the system as a single entity; 
the other one is distributed and optimises local performance subject to upstream and 
downstream conditions. The former usually enforces coordination among adjacent 
intersections, and the latter relies on voluntary coordination. Examples of the former are 
TRANSYT (Vincent et al., 1980), SCOOT (Hunt et al., 1982), SCATS (Lowrie, 1992) and 
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UTOPIA (Mauro et al., 1989) systems, and those of the latter include OPAC (Gartner, 1982, 
1983a, 1983b) and PRODYN (Henry et al., 1983). A hybrid system combining local dynamic 
optimisation and higher-level intervention on signal coordination is RHODES (Mirchandani 
and Head, 2001).  
 
Due to the complexity associated with traffic network control, centralised systems usually do 
not include system-wide performance measures in the objective function. In stead, they 
identify key intersections of high degree of traffic saturation, and calculate optimised cycle 
time for the key intersections. The optimisation techniques often set to equalise degrees of 
saturation of all signal phases at the key intersection as an approximation to the optimal 
solution. Cycle time of the adjacent intersections are synchronised and pre-set offset plans 
are enforced to facilitate good propagation of flow from and to the key sites. SCOOT, SCATS 
and UTOPIA are examples of this. Disadvantages of this approach are that synchronised 
cycle time imposes constraints at local sites and pre-set offset usually does not take account 
of distribution and dynamics of traffic density in links.  
 
The distributed control approach orients from the assumption that necessary upstream 
information for operating a local site is conveyed by the propagation of traffic flow. This is to 
say that if local controller was able to facilitate good propagation of flow from upstream and 
to downstream, then the local control policy is an approximation to optimal policy. Information 
of traffic flow can be detected using traffic sensors, and traffic model is required to establish 
sufficient presentation and projection of traffic state. The ideal optimisation technique for 
distributed control is dynamic programming (Bellman, 1957). This approach is the only exact 
solution to sequential decision-making of complex system so far. However, this technique 
faces difficulties for real-time application because of the computational requirement and 
demand of information (of traffic state, underlying model and vehicle arrivals). As the result, 
OPAC and PRODYN developed heuristics respectively to approximate the sequential 
decision-making process of dynamic programming (DP).  
 
New development in approximating principle features of dynamic programming addresses 
the origin of computational difficulty. This usually involves approximation of the value 
function, state transition model or the policy of the DP so that computational demand can be 
reduced. These approaches are within the concept of approximate dynamic programming 
(ADP). Initial development of ADP for isolated intersection control was presented in Cai 
(2007) and Heydecker et al. (2007), and improved ADP with machine learning features was 
presented in Cai et al. (2009). These works were based function approximation. Policy 
approximation approaches to traffic signal control were seen in Teodorovic et al. (2006) and 
Li et al. (2008). A concept of using ADP controllers for distributed network control was 
proposed in Xiang et al. (2007), but was not seen in complete formulation and application. 
Their proposal is to use artificial neural network (ANN) to approximate the value function of 
DP.   
 
In this paper, we present the formulae and numerical experiment results of applying ADP to 
distributed traffic network control. We propose a closed-form function that maps state to 
scalar quantity to approximate the exact value function of DP. The approximation function is 
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updated using real-time machine learning techniques. A cellular automaton model is used to 
describe vehicle behaviour at intermediate level, from which the system interpret traffic 
information and construct the traffic state. We apply the distributed ADP approach to a set a 
numerical experiments, and compare results with benchmarking control systems.  
 
The rest of this paper is organised as the followings. In Section 2 we introduce the concept 
and formulae of ADP. The dynamics of traffic and control system at local intersection is 
introduced in Section 3. The distributed control structure and control policy for local operation 
are discussed in Section 4. Numerical experiments and results are presented in Section 5. A 
summary of this study is presented in Section 6.  

2. APPROXIMATE DYNAMIC PROGRAMMING 

2.1. Notations 

i  is a vector of system state, 
J (i)  is the true value function associated with state i,  

   
!J !,r( )  is an approximate function of J (i), 

r  is a vector of functional parameters, 
Δr  is a new estimate of r, 
f (·)  is a function that returns Δr, 
u is a decision vector, 
a is a column vector of traffic arrival information,  
α  is a discount factor 
e-θt   is the discount function, 
θ   is a discount rate for cost incurred in the future, 
g (·)  is a one-step cost function, 
l  is a vector of traffic state, 
s is a vector of controller state, 
W is a weighting factor for vehicle stops 
y (.)  is a function that returns a vector of vehicle departures, 
z  is a vector of vehicles stops 
φ (·)  is a feature-extraction function, 
Φ  is a vector of φ (·).  

2.2. Dynamic programming and the approximation 

Approximate dynamic programming is a derivative of dynamic programming (DP). It 
particularly addreses application of the principles of DP to make sequential decisions to solve 
complex problems. The principles of DP can be presented as the followings. Given the initial 
state i0 and a sequence of decisions ut at discrete time t, a DP algorithm is to solve  
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The backward dynamic programming solution recursively computes the Bellman equation 
 

  
J i
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t( ){ } ,  for t = m"1,m" 2,...,0,    (2) 

 
where decision ut is selected from a finite set of U at each time step, and the expectation 
operator is taken in respect to the probability in state transition from it to it+1 by implementing 
decision ut. 
 
Despite the elegant equations of DP, difficulties in computation rise sharply as the complexity 
of the problem increases. To complete a single iteration of the algorithm, Eq.(2) needs to be 
computed for all i in the state space X. Furthermore, a policy has to be associated with a 
state and complete information of the underlying model is required to supervise state 
transition after implementing the policy. Therefore, application of DP approach is limited by 
three sources of constrains: dimensionality in state space, policy space and information 
space. This is referred by Bellman and Dreyfus (1959) as the “curse of dimensionality”.  
 
The principle of ADP is to use approximation techniques to overcome the computational 
difficulties associated with DP, thus making it possible to apply sequential decision-making 
as exemplified by DP to complex problems. Corresponding to the source of dimensionality, 
ADP may approximate the value function, the policy or the underlying model. In this paper, 
we focus on value function approximation.    
 
We use a continuous approximation function 

   
!J !,r( ) : X ""

K
# "  to replace the exact value 

function
   
J !( ) : X " ! , where parametric vector r of J! is K-dimensional. At each time step t, we 

calculate 
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and implement at each time step t 
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The merit of using 

   
!J !,r( )  is that a look-up table of J(.) values is replaced by a closed-form 

function. Supposing that there are n states and each may take m possible attributes, we 
reduce the dimension of state space from nm to K, where K is the dimension of parametric 
vector r of 

   
!J !,r( ) . This substantially reduces computational requirement, thus making solving 

complex problems online possible.  
 
A popular approach to construct 

   
!J !,r( )  is to use artificial neural networks (ANN). This 

approach was firstly introduced by Werbos (1994) and then generalised by Bertsekas and 
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Tsitsiklis (1995) under the concept of Neural Dynamic Programming. In this approach vector 
r is represented by the neural weights connecting neurons in the network. Advantages of this 
approach include flexible function structure and availability of proven learning techniques. 
Disadvantage of this is that the black-box effects make it difficult to comprehend and 
generalise.  
 
Alternatively, it is possible to identify a few basis functions  (·) defined in state space i ∈ X 
that capture the key features of the state, and form a linear separable approximation function 
as 
 

( ) ( ) ( )
1

,
N

n

n

J i r i r n!
=

="! .     (5) 

Once the basis functions are established, it is efficient to compute and simple to update r. In 
this work, we only investigate approximation techniques based on Eq.(5).  
 
2.3. Reinforcement learning 
 
The ADP approach is closely associated with reinforcement learning. This is because we 
usually do not know appropriate parametric structure and value of the approximation function 
a priori. A learning technique is required to supervise the evolution of r to guarantee that it 
converges to optimal value in static environment or reflex changing conditions in dynamic 
environment. Without ideal response for the learning agent to match, a learning agent has to 
learn from its own interaction with the environment and learn from “trail-and-error”. This 
learning paradigm is denoted as reinforcement learning (Barto et al., 1983; Sutton and Barto, 
1998). 
 
A reinforcement learning agent generally consists of four basic components: a policy, a 
reward function, a value function, and a model of the environment. In a problem defined by 
(1) and (2), the policy is the Bellman’s equation shown in (2). The policy is the ultimate 
determinant of behaviours and performance. The reward function is shown as g (·), which 
returns the immediate and defining feature of the problem faced by the agent. The value 
function is represented by J (i), which estimates the rewards in the long run. The model of 
the environment can be the system that transfers state it to it+1. It is not difficult to find that the 
DP formulas are the basis to formulate a reinforcement learning problem. Typical 
reinforcement learning techniques include Q-learning (Watkins,1992) and temporal-
difference (TD) learning (Sutton, 1988). The former requires a look-up table to present the 
set of (i, u), and therefore subject to the dimensionality of state space. The TD learning 
directly updates parametric vector of the approximation function, thus being more conforming 
to the task of overcoming computational difficulty.  
 
The TD method constantly tracks the error between the estimated value and the observed 
value, and propagates the error signal back to the parametric structure so that 
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Let the temporal difference dt  be defined as: 
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For t = 0,1, …, the TD method updates rt according to the formula 
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Applying (5) for approximation, we have 
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where ηt is a sequence of scalar stepsizes that satisfy the following terms for convergence 
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Parameter λ is known as trace eligibility factor, which takes value in [0,1]. Since temporal 
difference learning is actually a continuum of algorithm parameterized by λ, it is often 
referred as TD(λ). Furthermore, we may define a TD(λ) operator for λ ∈ (0,1) by 
 

  

T
!( )

J( ) i( ) = 1" !( ) !m

m=0

#

$ E %t

t=0

m

$ g i
t
, i

t+1( ) +%m+1
J i

m+1( ) | i
0
= i

&

'
(

)

*
+ .  (9) 

 
In the case where λ=1, we have 
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and for λ=0, we have 
 

  
T

0( )
J( ) i( ) = E g i

t
, i
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i( )[ ] .    (11) 

 
TD(1) is a true and unbiased estimation of J (i), and TD(0) is an equivalent to single-pass 
algorithm as all the calculations including the update of approximation are finished at the end 
of each forward pass. Tsitsiklis and Van Roy (1997) proved the convergence of r with TD(λ) 
algorithms for linear approximation function within the domain of infinite-horizon and finite-
state discounted dynamic programming problems.  
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3. SYSTEM DYNAMICS AT AN ISOLATED TRAFFIC 
INTERSECTION 

In this section we formulate system dynamics for an isolated traffic intersection. A state i of 
traffic control system is a combination of traffic state l and controller state s. We further 
define that traffic state l by the number of vehicles queuing in each of the approaching links, 
and controller state s by the state of signal (i.e. red or green, amber state is not considered in 
this study) of each link.  For an intersection having total N links, for n = 1, …, N, we define 
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where l(n) denotes the actual number of vehicles queuing in link n, and each element of s is 
a binary variable depending on traffic signal indication such that 
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1  if signal is green for link  

0  if signal is red for link      
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The system state i therefore can be expressed as i {l, s}. To construct the approximation 
function, we employ the feature-extraction function φ (i) such that,  
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The linear approximation function is formed by 
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In such a way, we differentiate the signal status, and assign r- to queue length variable l (n) if 
link n receives green signal, or assign r+ otherwise. We further denote random arriving traffic 
by column vector a, where 
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We use vector y to denote the departing traffic from the N-link intersection, so that  
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Finally, the transition of system state during time increment from t to t+1 can be described as  
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and signal vector s is transferred 
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where decision variable ut takes 
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Equations (14) and (15) describe the state transitions of a single step. The number of steps 
in a certain time period depends on the resolution of the discrete time system. Let Δt denote 
the time increment of discrete step, we assume that there is a total number of M steps in the 
planning period of the signal controller, and consequently the actual duration of the planning 
period is MΔt seconds. In case where online information of vehicle arrivals at does not cover 
the M steps, we use Monte Carlo simulation to realise sample arrivals for the rest planning 
period.  
 
For the M-step planning period, the ADP controller obtains 
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and calculates 
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Since we consider both vehicle delays and stops as performance indicator, the one-step cost 
function g is given by  
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where zt is the number of vehicle stops during Δt period, and W is the weighting factor. A 
greater W value shifts control priority to reduce vehicle stops, and vice versa.  
 
The M-step temporal difference can be expressed as  
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and the parameters are updated by 
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Equation (20) can be regarded as a special variant of (9). With a large M, Eq. (20) comes 
closer to (9) with λ = 1, and a smaller M makes (20) closer to (11) with λ = 0.  

4. CONTROL POLICY 

In distributed control architecture, each controller receives local traffic information and 
optimises performance according to local measurements. When a local controller plans 
ahead, it is assumed that controller status of other sites is kept the same. Traffic signals at 
an isolated intersection are grouped in to phases, which represent group of one or more 
traffic or pedestrian links that receive identical signal indications. In this study, intergreen is 
modelled as a phase. In this way, signal status moves immediately between any two phases. 
Given the current phase p, our controller decides a set of phases to simulate in the next M 
step. Figure 1 shows the possible paths to pick a set of phases to simulate. Terminal node 3 
yields an empty set, which means the controller skips approximation steps because value 
approximation will be done in the next immediate following phase. Terminal nodes 4 and 5 
mean that there are now two valid set of phases, corresponding to two valid options under 
the control policy: stay in this phase or move to next phase. Each terminal node represents 
the set of optional decision at any give time, which is represented by Ut. Optimal decision at 
any given time is obtained from (16), and implemented for a period of Δt.  
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Figure 1: flow chart of deciding set of simulated phases 

The traffic signal control algorithm using ADP can be summarised mathematically as the 
following: 
 
Step 0: Initialisation 
 

0.1  Choose an initial system state i0; 
0.2  Initialise functional parameter vector r0; 
0.3  Initiate learning rate (or step size) η0; 
0.4  Set time index t = 0. 
 

Step 1: Receiving new information 
 

1.1  Set time index t = t + 1; 
1.2  Receive detected information at ; 
1.3  Predict the information vector 

t
w! for the extra part of the planning period, 

if necessary. 
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Step 2: Evaluate control decisions 
 

2.1  If signal change is not admissible, set u*
t = 0; 

2.2  If signal change is admissible, for the planning period of M-steps, find the 
optimal decision u*

t using (16). 
 

Step 3: Update approximation function 
 

3.1 Calculate new observation ( )ˆ
M t
J i  using (17) 

3.2 Calculate current approximation ( )1 1
,

t t t
J i r

! !

! using (12); 

3.3 Calculate M-step temporal difference using (19) 
3.4 Update functional parameter vector rt-1 using (20). 

 
Step 4: Implement optimal decision u*

t for the first Δt of the planning period 
 

Step 5: Stopping Criteria 
 

5.1 If t < T, then goes back to Step 1; Otherwise, stop. 
 
If the system is implemented in real world, T is set as infinity since the controller must be 
always on. In simulated environment, the value of T is preset; after that point, the simulation 
program terminates. 

5. EXPERIMENT AND RESULT ANALYSIS 

In this section we present the numerical experiments that implement the distributed ADP 
controller method to traffic network control, and provide result analysis. We begin with a few 
important assumptions used in the experiments in Section 5.1, and then discuss the 
configurations of numerical experiments in Section 5.2. Numerical results from a set of traffic 
network scenarios are present and analysed in Section 5.3, and the evolution of 
approximation function presented in Section 5.4.   

5.1. Assumptions 

We have the following assumptions for numerical experiments.  
 
Assumption 5.1 Minimum greens and maximum reds:  

Signal timings are subject to minimum green and maximum red time constraint. These 
constraints are translated to minimum length and maximum length of a phase. 
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Assumption 5.2 Positions of vehicles:  

By putting a loop detector at the very upstream end of a link, we can record the time point 
a vehicle passes by. From that point, the current time, and maximum speed allowed on 
the road, we can calculate the approximate position of each vehicle on a link. We also 
need to have a detector at D meters upstream of the stop line to detect the presence of 
vehicle coming to the junction. The value of D is the maximum speed (measured in 
meters/second) allowed. For example, in our network, the maximum speed is 22.5 
meters/second, so D equals 22.5.  

5.2. Experiment configuration 

5.2.1. Traffic model 

The controllers are tested on a modified version of the Green Light District simulator 
(Wiering, van Veenen, & Koopan, 2004). The vehicle movement model used in this simulator 
is a cellular-automata model (Nagel & Schreckenberg, 1992). To make the model more 
realistic, we employed a higher resolution, in which cell size is 1.5 meters. The time step is 1 
second per increment. With this configuration, each vehicle occupies 5 cells, and the 
maximum increase in speed is 2 cells/second. Let the velocity of a vehicle be v, its maximum 
velocity is vmax and the safety distance to the next vehicle ahead is d. The velocity update is 
done through this procedure: 
 

a) Acceleration: }}2,min{},1,max{min{ maxmax ++! vvvvv ;  

b) Slowing down (avoid collision):  },min{ dvv! ;  

c) Randomisation: with probability P, }0,1max{ !" vv . 

5.2.2. Network topologies 

 
We test our controller on 2 different configurations of network. In both networks, each road is 
two-way and has one link on each side. All vehicles go straight ahead at all junctions. The 
maximum speed allowed on all roads is chosen as 81 km/h in order to make it more precisely 
discretised into cells per second on the simulator. The value is translated into 15 cells per 
second on simulator. The distance from each origin to its closest junction is 500 meters. The 
link length between the 2 junctions is let varied between 200 meters and 330 meters. The 
200-meter case is chosen because it is common in urban road networks. The reasons for 
choosing the 330-meters case are later expanded with discussion on signal settings. 
 
In the first network, 2 junctions are lined up on an arterial road, as shown in Figure 2. The 
second road network is an extension of the first one, with 6 junctions lined up on an arterial 
road, as shown in Figure 3.  
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Figure 2: Simple network of 2 junctions at node-6 and node-7, other nodes are input sources 

 

 
Figure 3: Network of 6 junctions at nodes 14 to 19, other nodes are input sources and absorbing places 

5.2.3. Traffic demand scenarios 

Vehicles are released into the system over 1 hour of simulation time with uniform probability, 
and the simulation terminates when all vehicles arrive at their destinations. The demand on 
all North-South links is 300 vehicles/hour, and is kept fixed during the simulation period in 
any scenario. The demand on the arterial (named it main road) varies in scenarios. There are 
three demand scenarios in total. In the first two scenarios, demand on the arterial links is 
assigned a value and kept fixed during the whole simulation period (1hour). Those values are 
500 vehicles/hour (medium demand), 900 vehicles/hour (peak demand). The first two 
scenarios for the 2-intersection road network are summarised in Table 1, and that for the 6-
intersection network in Table2. In the third scenario, the simulation time is still an hour but 
the demand varies every 20 minutes. It starts from 500 vehicles/hour, peaks at 900 
vehicles/hour, and then reverts back to pre-peak flow. Using time-dependent demand, we 
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can benchmark our controller’s performance with base-line controller in both fixed-demand 
scenarios and time-dependent scenarios.  
 
 

Scenario name Side road demand 
(vehicle/hour/origin) 

Main road demand 
(vehicle/hour/origin) 

Total demand 
(vehicle/hour) 

Moderate 300 500 2,200 

Heavy 300 900 3,000 

Table 1: traffic demand scenarios for the 2-intersection network  
 
 

Scenario name 
Side road demand 

(vehicle/hour/origin) 
Main road demand 
(vehicle/hour/origin) 

Total demand 
(vehicle/hour) 

Moderate 300 500 4,600 

Heavy 300 900 5,400 

Table 2: traffic demand scenarios for 6-intersection network 

5.2.4. Traffic signal settings 

For local intersection, signal schedule consists of 4 phases: North-South, intergreen, East-
West, integereen. Each phase, except for intergreen phase, has a minimum length of 10 
seconds and a maximum length of 80 seconds. Intergreen phase has an exact length of 5 
seconds. With this signal setting, the minimum period between two consecutive East-West 
phases is 15 seconds, which we denote as “clear time”. Link length 330 meters is chosen to 
exploit this “clear time” because the travel time (at aforementioned speed) for the link is 
approximately 15 seconds. With the aforementioned configurations of the road network, we 
explore the effect of each factor: traffic demand, link length, and the size of network. The tree 
in Figure 4 shows the detailed configurations that are tested. Each configuration is simulated 
20 times. 

5.2.5. Benchmarking method: TRANSYT 

TRANSYT is an offline controller, so in the scenarios of fixed demands, it offers good 
benchmark for performance comparison. To make performance comparison consistent, we 
manually transfer TRANSYT plans to our simulator. The version in use is TRANSYT 12.0.  
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Figure 4: test scenarios, each leaf node is a scenario 

5.3. Experimental results 

Numerical results from applying moderate traffic demand to the 2-intersection network are 
shown in tables 3-5. Throughout the experiments, the value of W, the weighting factor for 
vehicle stops, is set at 20 according to (Sims, 1989). 

5.3.1. Moderate demand  

 
Link length TRANSYT ADP Percentage of 

improvement 

200 meters (scen. 1) 15.23 12.71 16.54% 

330 meters (scen. 1) 14.18 8.25 41.78% 

TABLE 3: average delay (seconds/vehicle), traffic demand scenario 1,  
2-intersection network 

 
Link length TRANSYT ADP Percentage of 

improvement 

200 meters (scen. 1) 0.96 1.01 -5.91% 

330 meters (scen. 1) 1.03 0.69 33.12% 

Table 4: average stops, traffic demand scenario 1,  
2-intersection network 
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Link length TRANSYT ADP Percentage of 
improvement 

200 meters (scen. 1) 34.34 32.95 4.05% 

330 meters (scen. 1) 34.84 22.07 36.65% 

Table 5: average objective value (with W = 20), traffic demand scenario 1,  
2-intersection network 

 
As Table 5 shows, the ADP approach improved performance significantly from the 
TRANSYT plans in both cases of 200 and 330-meter. Both controllers work better when link 
travel time equals “clear time” than otherwise. In 200-meter case, ADP controller trade stop 
for delay to achieve a lower objective value. In 330-meter case, both methods discharged 
vehicles in platoons, thus producing better results than in the 200-metre case. However, 
TRANSYT optimised just one junction, sacrificing the other. When the platoon from node-6 
reached node-7, corresponding traffic lights at node-7 turned green, producing a green wave, 
but when the platoon from node-7 reaches node-6, it was stopped for a few seconds. 
Although ADP controller did not require centralised policies, coordination was established 
voluntarily between adjacent intersections. Voluntary coordination becomes possible when 
vehicles released into the downstream link are detected by downstream sensors, and 
downstream controller plans ahead according to detected information. An illustrated example 
of voluntary coordination between adjacent intersections is shown in Figure 5.  
 
In the 200-meter case, link travel time is around 9 seconds, much shorter than the “clear 
time” 15 seconds. As the result, it was impossible to optimise offset in terms of platoon 
dispersion. In such case, ADP controller extended the East-West phase and only gave red 
light when the queue on North-South directions piled up to approximately 10 vehicles. In the 
same process, TRANSYT plans stayed fixed, and consequently yielded poorer performance. 
Table 6 shows average duration of East-West phases yielded by ADP and TRANSYT 
respectively.  
 

Phase duration produced 
by TRANSYT (seconds) Link length 
Node-6 Node-7 

Phase duration produced by ADP 
(seconds) 

200 meters (scen. 1) 16 15 20.2 

330 meters (scen. 1) 16 15 15.2 

Table 6: Length of East-West phase (seconds), in moderate traffic, 2-intersection network 
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5(a) Traffic and signal status at time 422 

 
5(b) Traffic and signal status at time 431 

 
5(c) Traffic and signal status at time 435 

Figure 5 An illustration of voluntary coordination between adjacent intersections controlled by distributed ADP 
controllers; 5(a): Inter-6 discharges vehicles while accommodating arriving platoon from inter-7; 5(b): Inter-6 

changes signal after platoon arrival, departed vehicles travelling in link 6-7, inter-7 changes signal; 5(c): Iner-7 
switches green to W-E phase just before the arrival of platoon. 

5.3.2. Heavy traffic 

For this scenario, we choose to test on the 200-meter case due to the small margin between 
performance of ADP and TRANSYT in the previous case. Tables 7-9 show the performance 
of two controllers in terms of averaged delay, averaged stops and averaged objective value 
respectively. In this scenario, the overall performance of ADP is still better than TRANSYT, 
with a wider margin than in previous scenario where traffic was light. ADP’s gain is attributed 
to the reduced vehicle stops in comparison with the TRANSYT plans. On the other hand, the 
margin in reduced vehicle delays shrank. This understandable since the demand on East-
West directions is high, and the best practice is to give longer green split to those, which can 
be confirmed by the indicators in Table 10. 
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Link length TRANSYT ADP Percentage of 
improvement 

200 meters (scen. 2) 16.8 15.67 6.76% 

TABLE 7: average delay (seconds/vehicle), in heavy traffic, 2-intersection network 
 

 
Link length TRANSYT ADP Percentage of 

improvement 

200 meters (scen. 2) 0.89 0.84 5.59% 

Table 8: average stops (stops/vehicle), in heavy traffic, 2-intersection network 
 

Link length TRANSYT ADP Percentage of 
improvement 

200 meters (scen. 2) 34.8 32.65 6.16% 

Table 9: average objective value (with K=20), in heavy traffic, 2-intersection network 
 

Phase duration produced by 
TRANSYT (seconds) Traffic demand 

Node-6 Node-7 

Phase duration produced 
by ADP (seconds) 

Moderate (scen. 1) 16 15 20.2 

Heavy (scen. 2) 30 30 32.3 

Table 10: Length of East-West phase (seconds) in scenarios 1 and 2, 2-intersection network 

5.3.3. Time-dependent demand 

To test the ADP’s capabilities of adapting to variable traffic situations, a time-dependent 
demand profile is generated as the following. Demand on North-South origins is kept fixed as 
300 vehicles per hour. As of the East-West origins, in the first 20 minutes, only 100 vehicles 
are released (which is equal to 300 vehicles/hour), in the next 20 minutes, 300 vehicles are 
released (which is equal to 900 vehicles/hour), and in the last 20 minutes, 100 vehicles are 
released. The demand profile is outlined in Table 11. In each 20-minute period, vehicles are 
released according uniform distribution. In this way, the total number of vehicles released in 
an hour from each East-West origin is 500 vehicles, which makes this scenario’s net demand 
equal to that of moderate scenario. Two sets of TRANSYT plans were generated for peak 
and off-peak respectively. TRANSYT plans are appended one after the other in the order: 
off-peak, peak, off-peak. Performance comparison is shown in tables 12-14. 
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Origin 1st period (off-
peak) 

2nd period (peak 
period) 

3rd period (off-
peak) 

Total number of 
vehicles 

On N-S direction 100 100 100 300 

On arterial links 100 300 100 500 

Table 11: Demand profile for the time-dependent scenario. 
 

Traffic demand TRANSYT ADP 
Percentage of 
improvement 

Varied (scen. 3) 17.01 15.1 11.22% 

Table 12: average delay, time-dependent scenario, 2-intersection network. 
 

Traffic demand TRANSYT ADP Percentage of 
improvement 

Varied (scen. 3) 0.98 0.71 27.65% 

Table 13: average stops, time-dependent scenario, 2-intersection network. 
 

Traffic demand TRANSYT ADP Percentage of 
improvement 

Varied (scen. 3) 36.7 29.3 20.03% 

Table 14 Average objective value (with W=20), time-dependent scenario,  
2-intersection network. 

 
The ADP approach achieved 20% overall improvement from TRANSYT, with majority of the 
benefits coming from reduction in vehicle stops. The reduction in vehicle delay is also 
remarkable.  

5.3.4. Large-scale network 

On the large-scale network, the distance between any two intersections is 200 meters. 
Demand scenarios 1 and 2 were used in the experiments. In all scenarios, ADP controllers 
outperformed TRANSYT plans on a substantial scale, and particularly in the heavy demand 
case, as shown in tables 15-17. The TRANSYT schedules again created green waves for 
one direction at the expense of the opposite. In moderate traffic, it caused fewer stops than 
ADP does, as shown in Table 16.  With heavier traffic, queue of the eastbound vehicles at 
Node-19 (Figure 3) spilled back to its upstream link and caused substantial degrade in 
performance (in terms of both delay and stops). Meanwhile, ADP controller broke down the 
platoon by using shorter cycles. As the result, vehicles were often let to have green wave at 
2 intersections, then stopped at the following intersection. 
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Traffic demand TRANSYT ADP Percentage of 

improvement 

Moderate (scen. 1) 29.12 13.66 53.1% 

Heavy (scen. 2) 94.63 29.25 69.09% 

Table 15: average delay (seconds/vehicle) comparison, demand scenarios 1 and 2,  
6-intersection network 

 
Traffic demand TRANSYT ADP Percentage of 

improvement 

Moderate (scen. 1) 0.94 1.31 -39.44 

Heavy (scen. 2) 3.65 1.38 62.02 

Table 16: average stops (stops/vehicle) comparison, demand scenarios 1 and 2,  
6-intersection network 

 
Traffic demand TRANSYT ADP Percentage of 

improvement 

Moderate (scen. 1) 48.01 39.99 16.7 

Heavy (scen. 2) 167.64 56.98 66.01 

Table 17: average objective value (with W=20) comparison, demand scenarios 1 and 2,  
6-intersection network 

5.4. Evolutions of approximation 

Approximation function (12) of any ADP controller was initialised with arbitrary values in all 
experiments. The arbitrary values are 1.0 for r-, and 2.0 for r+ for any traffic link. The update 
of r is governed by (20), which is computed upon very new observation of M-step state 
transition. Using TD learning, the parameters of (12) will converge to optimal value with 
probability of one so long as a few assumptions specified in Tsitsiklis and Van Roy (1997) 
are met. The ADP algorithm and the system dynamics formulated in this paper satisfy all of 
the assumptions, with the proof provided in Cai (2009). In the experiments, however, we use 
a constant stepsize ηt = 0.001, which does not satisfy the convergence assumption 
presented by (8). There are two reasons for this. The first is that diminishing stepsize rules 
like (8) assign most of weights to learning signals obtained in the first beginning of the 
simulation programme, where noise is strong and system is transient. This may result in 
over-shooting in parameter adjustment. Using a constant and cautious stepsize prevents 
over-shooting, but departs from eventual convergence. The second is that with time-
dependent traffic, the system is dynamic and therefore will not arrive at steady-state. 
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Parameters in the case of static traffic with constant stepsize exhibit constraint oscillation 
around a statistical mean value, as shown in Figure 6.     
 

 
 6(a) Parametric values for Link65   6(b) Parametric values for Link67 

Figure 6 Evolutions of parametric value of the approximation functions, 2-intersection network, first digit of link 
number as the destination of traffic and the second digit as origin, r- for green signal state, and r+ for red signal 

state 

6. CONCLUSION 

In this paper we presented a study on applying approximate dynamic programming in 
distributed traffic network control. We proposed a closed-form linear function to approximate 
the exact value function of dynamic programming, thus reducing the computation 
requirement to a level manageable by a microprocessor of PC. The approximation is 
evolutionary and temporal-difference learning is used to provide learning signals. A cellular 
automation model is used to describe traffic dynamics, from which the controller withdraws 
information and constructs traffic state. The numerical results showed that in the 2-
intersection network, the ADP approach improved control performance by 4 – 6 % from 
TRANSYT plans with time-invariant traffic and 20% with time-dependent traffic. In the case of 
larger network, the ADP approach improved performance by 16.7% with moderate traffic and 
66% with heavy traffic from TRANSYT plans. The results highlight the readiness of the ADP 
approach to real-time urban traffic control, where traffic condition is constantly changing and 
degrees of saturation are usually high. Nevertheless, this study is one of the preliminary 
investigations in applying ADP to distributed network control. The approximation function is 
simple in structure and network configuration straightforward. Further studies from this on will 
investigate more accurate approximation functions, whose basis functions will capture the 
fundamental features of a more general representation of traffic network.    
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