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ABSTRACT 

Traditionally, to implement the first-best road pricing scheme in a traffic network requires the 

information on the exact demand function or true origin-destination demand, which, however, 

is rarely available in practice. To overcome this dilemma, the trial-and-error method has been 

proposed to find the first-best pricing through an iterative process using the observed traffic 

volumes. This method guarantees the convergence of tolls and flows to the system optimal 

state based on the assumption of deterministic traffic conditions. However, in reality, it is very 

commonly seen that the travel demand and supply change from day to day that induces the 

variability of link flow and travel time. This paper aims to tackle the question that whether one 

can use the stochastic flow information to define the first-best marginal-cost toll. Meanwhile, 

an evolutionary implementation method that iteratively finds the optimal toll pattern according 

to the observed stochastic link flows is proposed. This algorithm only requests the statistical 

information of the observed link flows and travel time functions. The proof of the convergence 

of the iterative algorithm is given. The paper also analyzes the effect of the sampling error of 

the link flow data on the convergence of the algorithm and theoretically shows that the biases 

from the flow observation will not affect the convergence of the optimal toll and flow pattern. 

The numerical tests are provided for the illustration of the algorithm.  

 

Keywords: road pricing, network uncertainties, stochastic network, traffic assignment, system 

optimum 
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INTRODUCTION 

The fundamental principle of road pricing, based on the concept of marginal social cost, is to 

impose the tolls equivalent to the externality incurred by road users to realize the socially 

optimal flow pattern. For a single road, the optimal toll is shown to be equal to  v d t v dv , 

where v  is the link flow and  d t v dv  is the derivative of the link travel time function. This 

principle is also proven to be applicable to the network case in which it is often referred to as 

the „first-best‟ road pricing. To implement this ideal pricing scheme in a traffic network, the 

information on the exact demand function or true origin-destination (O-D) demand must be 

obtained. However, this is rarely available in practice in which most of the information on the 

demand function and O-D demand are often based on statistical estimations. In practice, on 

the other hand, the traffic volume data are observable and available in most cities. Li (1999, 

2002) verified that the road pricing could go ahead on a trial-and-error basis without demand 

functions, which was first conjectured by Vickery (1993) and Downs (1993). The toll updating 

method developed by Li (2002) is just for a single road link, and it was soon extended to a 

general network by Yang et al. (2004), which proposed an efficient trial-and-error method to 

find the first-best pricing through an iterative process using the observed traffic volumes. The 

approach can guarantee the convergence of the tolls and flows to the system optimal state 

and successfully avoid the difficulty to acquire demand information. However, the method is 

based on the assumption of deterministic traffic environment. In reality, the travel demand 

and supply change from day to day that induces the variability of link flow and travel time. For 

instance, if one observe the link flow on a section of highway between a certain time of day 

and over a time period (e.g. one month), it is obvious that the link count data obtained will be 

random. In fact, the toll updating scheme for the ERP system in Singapore has recently been 

revised to consider the 85th percentile speed reflecting the need to include the flow and 

speed variability into the toll update scheme. To this end, the question is whether one can 

use this stochastic flow information to define the first-best toll.  

 

The paper tackles this research question in which a trial-and-error method is again proposed 

to iteratively calculate the first-best marginal-cost toll based on the observable stochastic link 

flows. This paper postulates that the network uncertainty is caused by the stochastic day-to-

day travel demand (e.g. Walting, 2002, Shao et al., 2006, Zhou and Chen, 2008). Hence the 

link flow and link travel time are both stochastic, too. Under this stochastic network (SN), the 

travelers‟ route choice decisions are assumed to follow the user equilibrium (UE) principle 

aiming to minimize their expected travel time. On the other hand, the system optimum (SO) 

is assumed to minimize the expected total travel time (for the fixed demand case). In order to 

distinguish them from those under the deterministic network, in this paper, they are referred 

to as SN-UE and SN-SO, respectively. The paper investigates the relationship between the 

SN-UE and SN-SO to establish the first-best marginal-cost pricing for SN (SN-MCP), which 

is different from the original MCP in deterministic network. In other words, we cannot obtain 

the SN-MCP by using the expected values to do substitution. In the newly proposed trial-and-

error algorithm, each trial toll is determined by the SN-MCP expression. That algorithm only 

requires the information on the statistics of the observed link flows and travel time functions. 

The distribution parameters of stochastic O-D demand are not needed. The paper proves the 
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convergence of the iterative algorithm and also analyzes the effect of the sampling error of 

the link flow data on the convergence of the algorithm, in which the observation period may 

not be sufficiently long to deduce the true mean and variance of the link flow. We show that 

the biases from the flow observation will not affect the convergence of the optimal toll and 

flow pattern.  

 

The outline of the paper is as follows. First, we derive the general formulation of the SN-MCP 

and show a closed-form formulation/calculation of the SN-MCP for a special case. Then, the 

trial-and-error algorithm for evolutionary implementation of the first-best road pricing based 

on stochastic link traffic volumes is developed. The convergence properties are analyzed and 

proved. Following this, two numerical examples are examined to demonstrate the validity of 

the proposed algorithm and exhibit the difference of the SN-MCP and original MCP. Finally, 

some conclusions are given.  

MARGINAL COST PRICING UNDER STOCHASTIC NETWORK 

The MCP principle states that travelers using congested roads should pay a toll equal to the 

difference between the marginal social and private cost in order to minimize the total system 

cost if demands are fixed, or maximize the social welfare if demands are variable. In previous 

literatures, when all link flows, and thereby all link travel times, are deterministic, the MCP is 

expressed as below.  

 

 
 

 
MCP

a a a

a A a a

a a a

a a

v t v
dt v

t v v
v dv



 
  
    




 (1) 

where av  is the amount of traffic flow on link a ,  a at v  is the private cost for traversing link 

a , and the derivative of the total system cost,  a a a

a A

v t v


 , with respect to av  is the marginal 

social cost. All the costs here are in time unit. 

 

In this paper, travel demand uncertainty is fully taken into account. The stochastic demands 

give rise to stochastic link flows and stochastic link travel times. In this situation, it is obvious 

that we need to modify the expression of the MCP in Eq. (1) to make it well defined. If using 

capital aV  to represent the stochastic link flow, one argument is that we can simply substitute 

the expected value of aV  (i.e.  aE V ) into the original MCP,  a a a av dt v dv . In this way, the 

expression of the original MCP changes to       a a a aE V dt E V dE V . However, noted that 

  a at E V  is not equal to  a aE t V    (the mean link travel time) with any nonlinear link travel 

time function, such a substitution generally cannot provide us the real difference between the 

marginal social and private cost. In the following analysis, it will be further seen that even we 

take  a aE t V    to replace  a at v  rather than   a at E V , that is, the original MCP changes 

to      a a a aE V dE t V dE V    , it is not the real MCP under stochastic network. To obtain the 
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SN-MCP, we next develop the SN-UE and SN-SO models, respectively, and then explore the 

gap between them.  

Equilibrium models under stochastic network 

Notations and assumptions 

Consider a road network  ,G N A  with N  being the set of nodes and A  being the set of 

links, respectively. Let W  be the set of all O-D pairs and wP  the set of all paths for O-D pair 

wW . In the following, for consistency, random variables are expressed in upper-case 

letters and lower-case letters are used for the mean values.  

 

wQ  travel demand between O-D pair wW ; 

wq  mean travel demand between O-D pair wW ; 

q

w  variance of demand between O-D pair wW ; 

w

kF  traffic flow on path wkP ; 

w

kf  mean traffic flow on path wkP ; 

f  vector of mean path flow,  w

kff ; 

,w f

k  variance of traffic flow on path wkP ; 

aV  traffic flow on link aA ; 

av  mean traffic flow on link aA ; 

v  vector of mean link flow,  avv ; 

v

a  variance of traffic flow on link aA ; 

aT  travel time on link aA ; 

at  mean travel time on link aA ; 

t  vector of mean link travel time,  att ; 

w

kC  travel time on path wkP ; 

w

kc  mean travel time on path wkP ; 

c  vector of mean path travel time,  w

kcc ; 

w  minimum mean travel time between O-D pair wW ; 

,

w

k a  indicator variable, 1 if path wkP  contains link aA , 0 otherwise;  

TT  total travel time, a a

a

TT V T



A

. 

 

The following basic assumptions are made throughout the paper, which are common in the 

literature of traffic equilibrium assignment with stochastic demand.  

 



EVOLUTIONARY FIRST-BEST ROAD PRICING SCHEME IMPLEMENTATION BASED ON 
STOCHASTIC TRAFFIC FLOW INFORMATION 

XU, Wei; SUMALEE, Agachai; YANG, Hai  

 

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal 

 
5 

A1. The O-D travel demands are assumed independently distributed. wVMR  is referred to as 

the variance to mean ratio of the stochastic demand in which 
q

w w wVMR q  .  

A2. The path flow is assumed to be the product of path choice proportion and the O-D travel 

demand, i.e., 
w w

k k wF p Q , where 
w w

k k wp f q  that can be obtained from the model‟s output 

(Lam et al., 2008). Then, it follows from A1 that 
w

kF
 
is also an independent random variable 

and follows the same statistical distribution as the O-D demand.  

 

A3. The VMRs of path flows are assumed equal to that of the corresponding O-D demand 

(Zhou and Chen, 2008).  

SN-UE model  

Due to the uncertainty of travel time travelers may consider the trade-off between the mean 

and variance of travel time when making their route choice decision (Bell and Cassir, 2002). 

Different travelers with different risk-taking attitude will consider different weight between the 

mean and variance. If the weight on variance is positive (negative), it indicates that travelers 

are “risk-averse” (“risk-prone”). If travelers are concerned with the mean travel time only, i.e., 

the weight on variance is zero, they are regarded as “risk-neutral”. In this study, we consider 

the case with the risk-neutral traveler only. The case with the risk prone/averse traveler can 

be extended in future.  

 

The SN-UE proposed here is analogous to the Wardropian principle. That is, the equilibrium 

reaches when no risk-neutral traveler can change his/her route unilaterally to reduce his/her 

average travel time which he/she experiences from day to day. This SN-UE condition can be 

mathematically stated as: 

 
, if  0

   ,  
, if  0

w w

k w k

ww w

k w k

c f
k w

c f

   
  

  
P W  (2) 

Such complementary conditions can be further reformulated as a Variational Inequality (VI) 

problem: for any ff , find 
* ff  such that  

  
T

* * 0 f f c  (3) 

where f  is the feasible set of mean path flows defined as below:  

 ; ,
w

w

k w

k

f q w


  
      

  
f

P

f f 0 W  

 

Note that the link flow is the sum of the flows on all paths using the link, which gives  

   , , ,

w w w

w w w w w w

a a k a k k a k k a k

w k w k w k

v E V E F E F f
     

 
          

 
     

W P W P W P

 (4) 

In addition, the path travel time is the sum of the travel times on all links comprising the path, 

which gives   
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  , , ,= =w w w w w

k k k a a k a a k a a

a A a A a A

c E C E T E T t
  

 
       

 
    (5) 

More compactly, Eqs. (4) and (5) can be written as v = Δf  and 
Tc Δ t , respectively, where 

 ,

w

k a Δ  is the link-path incidence matrix. Substituting them into Eq. (3) we have  

  
T

* * 0 v v t  (6) 

where the feasible region changes to v  as well.  

 , ; ,
w

w

k w

k

f q w


  
      

  
v

P

v v = Δf f 0 W  

SN-SO model  

For consistency, we also consider a risk-neutral system manager here first. Let the expected 

total travel time be the measure of system performance. To achieve the best state, the SN-

SO targets to minimize the expected total travel time. Based on the Beckmann‟s formulation 

(Beckmann et al., 1956), the following mathematical program (MP) for SN-SO is defined:  

  min  a a

a

E TT E V T




 
  

 


vv
A

 (7) 

The optimality conditions of a MP can also be written as a VI problem if the objective function 

is continuously differentiable and the feasible region is closed and convex (Nagurney, 1999). 

These two conditions are obviously satisfied by MP (7). Therefore, it can be reformulated as 

a VI problem: for any vv , find 
* vv  such that  

  
T

* * 0TT    vv v E  (8) 

where  * * *

aTT E TT v         vE .  

The SN-MCP and its calculation 

Derivation of the SN-MCP  

Comparing Eqs. (6) and (8), if travelers can realize that their travel cost is   aE TT v   but 

not at , the traffic flow pattern of SN-UE and SN-SO will be the same. However, the marginal 

external cost, i.e., the gap between   aE TT v   and at , is often ignored by travelers. Thus, 

as in the deterministic network, to force travelers to notice such a cost, a toll that equates the 

gap on each link is charged.  

 

Now we specifically focus on the link travel time function in a polynomial form:  

  
0

,    
m

j

a a a ja a

j

T t V b V a


    A  (9) 
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where jab  is the coefficient associated with 
j

aV . The power-law form of the commonly used 

Bureau of Public Roads (BPR) functions are a special case of Eq. (9). For other functional 

forms, a polynomial Taylor series approximation may be used to obtain the link travel time 

function in the form of Eq. (9).  

 

Based on Eq. (9), the mean travel time on link aA  is  

  
0 0

m m
j j

a ja a ja a

j j

E T E b V b E V
 

 
     

 
   (10) 

and the expected total travel time is 

   1 1

0 0

m m
j j

ja a ja a

a j a j

E TT E b V b E V 

   

 
     

 
 

A A

 (11) 

Therefore, the SN-MCP can be given as below.  

 
 

 
1

0

SN-MCP

j
m

a j

a ja a

ja a

E VE TT
E T b E V

v v





             
 

  (12) 

Note that  

 
  

 
j j

a a aj

a a

a a

E V E V E V
E V E V

v v

            
 (13) 

Then replacing the term j

aE V    in Eq. (12) with (13), we have  

 

  
 

    

 

1

0

1

0

0

SN-MCP

Cov ,

jj j
m

a aa a

ja a

j a a a

jj
m

a aaa

a ja

ja a a

j
m

a aa

a ja

ja a

E V E VE V E V
b E V

v v v

E V E VE VE T
v b

v v v

V VE T
v b

v v











             
   
 

         
   
 

    
 





  (14) 

where the first term of the right-hand-side of Eq. (14) is referred to as the average MCP and 

the second term is what the average MCP ignores. Obviously, as long as the covariance of 
j

aV  and aV  is a strictly monotone function of av , that is, Cov , 0j

a a aV V v     , the average 

MCP underestimates the real SN-MCP.  

Calculation of the SN-MCP for a special case 

To specifically quantify the SN-MCP, the exact value of each derivative in Eq. (14) should be 

calculated. In this subsection, we show how to derive the closed-form formulation of Eq. (14) 

for a special case with log-normal demands and an assumption of constant VMR across all 

O-D pairs.  

 

The log-normal distribution is a positive and asymmetric distribution. The assumption that O-

D demands follow log-normal distribution was adopted in many studies (see e.g., Zhao and 
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Kockelman, 2002; Zhou and Chen, 2008). Moreover, Uno et al. (2009) used the empirical 

travel time data to validate that the path travel times in their specific case study follow the 

log-normal distribution. To obtain the log-normal stochastic travel time in the proposed SN, 

the assumption of the log-normal O-D demands is required.  

 

Note that according to A2, the path flows follow the log-normal distribution as well. Following 

Fenton (1960), the summation of the log-normal random variables can be still estimated by a 

log-normal distribution. It shows that the link flow, which is the sum of related path flows, also 

follows the log-normal distribution, i.e.,  ~ ,v v

a a aV LN   , where the distribution parameters 

v

a  and 
v

a  are as below.  

  
 

 
 

2

2 2

1
ln ln 1   and  ln 1

2

v v
v va a
a a a

a a

v
v v

    
         

   
   

 (15) 

Any j-th moment of the log-normal link flow aV  exists and can be calculated via the moment 

generating function. The general expression is given by  

 
 

2
2

exp
2

v

aj v

a a

j
E V j

 
        
 

 (16) 

In addition to the assumption on statistical distribution of demands, the other assumption that 

the VMR of demands are the same for all O-D pairs is required to allow for the closed-form 

calculation of the proposed SN-MCP, in which j

aE V    and Cov ,j

a aV V    can be derived as 

a function of the mean link flow av .  

 

Again utilizing the relationship between the link and path flows, we have  

    
2

,

, , ,Var Var Var
w w w

v w w w w w w f

a a k a k k a k k a k

w k w k w k

V F F
     

 
            

 
     

W P W P W P

 (17) 

With A3 and the constant VMR assumption, 
,w f w

k kVMR f   . Therefore, it follows from Eqs. 

(17) and (4) that the variance of link flow can be further reduced to  

 
,

w

v w w

a k a k a

w k

VMR f VMR v
 

      
W P

 (18) 

Now let us combine Eqs. (15), (16) and (18) together, and perform some manipulations, then 

it yields that  

  
2

1
j j

j j

a a aE V v VMR v


      (19) 

and  

 

 

   
2 2

1

1 1

Cov ,

1 1

j j j

a a a a a

j j j j
j j

a a a a

V V E V E V E V

v VMR v v VMR v



 
 

           

   

 (20) 

Using notation 1a as VMR v   to simplify the formulation, we have  

      
2 2 2 2

2
2 2

2

Cov , 1
1

2

j

a a j j j j j j j j j ja
a a a a a a

a a

V V s
j v s s v j j s j j s

v s

   
                    

 (21) 
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Furthermore,  

 
 

 
2

2
1 2

2
0 0

1

2

j
m m

aa j j j a
ja ja a a

j ja a a

E VE T s
b b v s j j j

v v s

 

 

         
   

   (22) 

By substituting Eqs. (21) and (22) into Eq. (14), the value of the SN-MCP can be determined 

as long as the mean link flows under the SN-SO are known. The closed-form formulation can 

also be derived from other statistical distributions of travel demand. In the numerical test part, 

the case with normal distribution will be checked.  

TRIAL-AND-ERROR IMPLEMENTATION OF SN-MCP 

As mentioned, the trial-and-error methods developed before are all based on the assumption 

of deterministic traffic state. The precise deterministic UE link flows are assumed observable 

and are used to adjust the toll levels in each trial. However, only considering the observation 

errors, such an assumption cannot be truly realized in practice, not to mention the variability 

of link flows and travel times due to stochastic demand. If one observe the link flow on a 

section of highway between a certain time of day and over a time period (e.g., one month), it 

is obvious that the link count data obtained will be random.  

 

Due to the uncertainty of traffic flow information, we, of course, cannot arbitrarily pick up one 

day‟s observation data to refer to in the toll updating scheme. Instead the average of the data 

collected over a time period is preferred to be utilized. From the collected data, the mean of 

UE link flows could be obtained approximately by applying some suitable data fitting method. 

However, it should be noted that when the average values (or say mean values) are used in 

the toll updating scheme, the MCP determination formula as shown in Eq. (14) (i.e. SN-MCP) 

is different with the original MCP replaced by the mean value. Therefore, in this section, we 

are intent to revise the trial-and-error procedure presented by Yang et al. (2004) to allow it to 

proceed in the studied SN case as well.  

 

Here assume that the stochastic travel demand follows some statistical distribution, but the 

distribution parameters are unknown and not easy to be estimated. In other words, the mean 

and variance of each O-D demand are not available. Under this situation, it is impossible to 

find the equilibrium flow pattern and thereby obtain the marginal-cost tolls by directly solving 

the related mathematical problem. The obstacle that we meet now is the same as that in the 

case of deterministic network. To remove the influence of the limited information, we turn to 

the trial-and-error idea again to propose a method that iteratively calculates the marginal-cost 

tolls based on the observable stochastic link flows. The detailed implementation procedure is 

presented below.  

 

Step 0. (Initialization) Let 
  0

,av aA  be an initial set of feasible mean link flows. Set 0k  . 

Step 1. (Estimate link tolls) For each link aA , calculate the current link toll 
 k

a  by 

 
   

 

 

    

 
0

Cov ,
j

k k
k

m a a
ak k

a a jak k
ja a

V VE T
v b

v v

         
 

  (23) 
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Step 2. (Observe link flows) After imposition of the link tolls given by Eq. (23) on a network, 

observe and collect the link count data over a period of time. Then, compute the mean of the 

collected link flows via data fitting. Let 
  ,
k

av aA  denote the estimated mean value. 

Step 3. (Check convergence) If 
( ) ( ) ( )k k k  v v v , then stop. Otherwise, go to Step 4. 

Step 4. (Update link flows) Set 

 
          1

,    
k k k k k

a a a av v v v a

   A  (24) 

and : 1k k  , go to Step 1. 

 

In above procedure, „  ‟ denotes the Euclidean norm;   is a positive number of convergence 

tolerance; 
  k

  is a sequence of predetermined step sizes and it must satisfy the following 

three conditions: 

 
      

2

1 1

0 1,   ,   
k k k

k k

 

 

           (25) 

A typical sequence of 
 k

  is 
 

1
k

k  .  

Convergence of the trail-and-error implementation  

In order to prove the convergence of the above presented trial-and-error method, we provide 

the following two important propositions, which are similar as that in Yang et al. (2004).  

 

Proposition 1. If 
( ) ( ) 0k k v v  at the convergent point, then 

  ,
k

av aA  is the mean SN-

UE link flow pattern and 
  ,
k

a a A  is the corresponding optimal link toll pattern.  

 

Proof. According to above algorithm, after the toll pattern 
  ( ) ,
kk

a a  τ A  as shown in Eq. 

(23) is implemented, the revealed mean link flow pattern, 
  ( ) ,
kk

av a v A , is the solution 

of the following VI problem:  

    
T

( ) ( ) ( ) 0,    k k k    v v t τ v  (26) 

If 
( ) ( ) 0k k v v , then 

   k k

a av v  for all link a . Hence 

 ( ) ( ) ( ) ( ) ( )k k k k kTT      vt τ t τ E   

which means 
( )kv , or say 

( )kv , is already the optimal solution of VI problem (8). That is, the 

toll pattern 
( )kτ  now is the optimal one in the sense of first-best pricing.  

 

Proposition 2. If the mean link travel cost t  is strongly monotone with respect to the mean 

link flow v , i.e., there exists a positive constant   such that, for any distinct 1vv  and 

2 vv , we have 

    
2T

1 2 1 2 1 2    t t v v v v  (27) 
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then the vector  ( ) ( )k kv v  is a feasible descent direction of the objective function of MP (7) 

at 
( )kv .  

 

Proof. Note that the gradient of objective function (7) is given as below 

 
( ) ( ) ( )k k kTT    vE t τ  (28) 

Therefore, 

 

     

       

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T T
k k k k k k k

T T
k k k k k k k k

TT      

     

vv v E v v t τ

v v t t v v t τ  (29) 

From Eq. (27), the first term of Eq. (29) is less than or equal to 
2

( ) ( )k k v v . From Eq. 

(26), the second term of Eq. (29) is non-positive. Thus,  

  
2

( ) ( ) ( ) ( ) ( )
T

k k k k kTT      vv v E v v  (30) 

It is obvious that as long as 
( ) ( )k kv v ,  ( ) ( ) ( ) 0

T
k k kTT    vv v E , which indicates that 

the vector  ( ) ( )k kv v  is a descent direction.  

 

Now let us illustrate that the proposed iterative procedure does converge, i.e., 
( ) *k v v  and 

( ) *k τ τ  when k  . Since the separable link travel time function  a at V  is assumed, the 

Hessian matrix of objective function (7) must be a diagonal matrix. Let  aE TT  represent its 

diagonal element, then  

            
2

( ) ( ) 2 ( ) ( )
T k kk k k k

a a a

a

TT E TT v v


    v

A

v v E v v  (31) 

The right-hand-side of Eq. (31) is always bounded for the bounded link travel time functions. 

Combining this conclusion with Proposition 2 and the conditions for choosing the step size 

sequence, all convergence requirements regarding the method of successive averages 

(MSA) are satisfied (Powell and Sheffi, 1982). Thus, the convergence of the proposed trial-

and-error algorithm is followed.  

Analysis the sampling error on the trail-and-error implementation 

In above, we present a theoretical proof on the convergence of the proposed trial-and-error 

procedure. All the propositions are shown to hold with the true mean link flows under SN-UE. 

In real application, however, the true mean link flows also cannot be exactly obtained. When 

the trial-and-error procedure is to be implemented in practice, what we can do is just observe 

and collect the link flow data over a limited period of time (e.g. one month). Hence, the mean 

link flows calculated from the limited sampling data are generally not equal to their actual true 

values. In other words, at each iteration, only an approximate mean link flow pattern can be 

used to update the trial tolls. Then a question emerges: will such an approximation affect the 

convergence of the trial-and-error procedure or the correctness of the convergent result?  
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Fortunately, the iterative algorithm here is in essential the method of successive averages. 

The convergence requirements of such a method can guarantee the sequence of solutions to 

converge to the minimum even if the search direction is a descent vector only on the 

average. For example, when the MSA is applied to solve the SUE problem, it sometimes 

requires a probit stochastic network loading via using Monte-Carlo simulation to determine 

the descent direction. If such a technique is resorted to, then no matter how many times the 

simulation procedure is repeated, the resulting average link flows are not the actual ones. 

The direction vectors that are produced by such simulations are thereby random direction. 

However, even in this case, the MSA algorithm still can converge as long as an unbiased 

estimate of the direction is utilized.  

 

Now we encounter the same situation when simulating the mean values of the link flows. As 

mentioned before, regardless of how long the observation period is allowed and how many 

the sampling data are collected, the true mean value cannot be accurately computed but an 

estimate. Therefore, each time after the trial toll charge being imposed on the network, the 

estimated mean SN-UE link flow pattern 
( )kv  is in fact a random variable. That is to say, the 

descent direction vector  ( ) ( )k kv v  is random as well.  

 

Using the simplest step size sequence that satisfies conditions (25), 
  1
k

k  , then  

  ( 1) ( ) ( ) ( )1k k k k

k

   v v v v  (32) 

This relation can be rewritten as follows as its name, the method of successive averages, 

that is  

 ( 1) ( )

1

1 k
k l

lk





 v v  (33) 

Thus the variance of each component of 
( 1)k

v  is given by  

 
     1

2
1

1
Var Var

k
k l

a a

l

v v
k





   (34) 

At each iteration, since the revealed link flow 
 l
av  is always below the sum of all O-D flows, 

the variance of 
 l
av  is bounded by some value, i.e., 

   2Var ,  
l

av l     . Therefore,  

 
  1 2

2
1

1
Var

k
k

a

l

v
k





   (35) 

Obviously, the right-hand-side of Eq. (35) approaches zero as k grows, meaning that the 

variance of 
 1k

av


 approaches zero as the algorithm progresses. This further indicates that the 

variance of trial toll pattern 
( 1)k
τ  updated by using 

( 1)k
v  approaches zero, too. In terms of 

these properties, it can be ensured that the convergence of the proposed iterative procedure 

will not be affected no matter how accurate the simulation is at each iteration.  
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NUMERICAL TESTS 

Example 1 

The test network for Example 1 is taken from Yang et al. (2004) as shown in Figure 2, which 

has 7 nodes, 11 links and 4 O-D pairs. 

 
Figure 1 – Road network used for Example 1  

In this example, the BPR-type link travel time function, that is,  

   0

an

a
a a a a

a

V
t V t b

c

 
   

 
 (36) 

is adopted with 4an   for all link a . The other link cost parameters (e.g., the free-flow travel 

time 
0

at  and the capacity ac  of each link) are given in Table 1.  

 
Table 1 – Link cost parameters for Example 1  

Link 
0

at  ab  ac  

1 6 0.90 200 

2 5 0.75 200 

3 6 0.90 200 

4 7 1.05 200 

5 6 0.90 100 

6 1 0.15 100 

7 5 0.75 150 

8 10 1.50 150 

9 11 1.65 200 

10 11 1.65 200 

11 15 2.25 200 

 

For each O-D pair, the mean of the log-normal demand is shown in Table 2. It is worth noting 

that the reason we give the mean values here is that, in numerical experiments, the SN-UE 

flow pattern cannot be observed. Thus, the mean values are purely used for generating the 

observed link flows, which is not necessary for updating link tolls in the real implementation 

of trial-and-error method.  
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Table 2 – Mean of the log-normal demand for Example 1 

O-D Pair wq  

1  7 420 

2  7 350 

3  7 350 

6  7 280 

 

In this example, we examine three VMR levels, i.e., VMR=0, 20 and 40. When VMR=0, it 

means no uncertainty on the network, that is, deterministic network. The true mean link flows 

and tolls calculated by the MSA at different VMR levels are summarized in Table 3. Table 4 

further shows the expected total travel time at different VMR levels and under different toll 

schemes (i.e., toll free, SN-MCP, Average-MCP and Original-MCP). From these two tables, it 

is seen that the link tolls and the expected total travel time both increase with the increase of 

VMR, which means the higher the uncertainty, the more the travelers will spend. Moreover, 

in Table 4, the “Improv.” column shows the percentage of improvement in the expected total 

travel time from the SN-UE compared to the SN-SO case, i.e.,  

  
   

   
Improv. = 100%

SN UE case

SN UE SN SO

E TT E TT
case

E TT E TT



 





 (37) 

Figure 2 plots the percentage improvements shown in Table 4. From the figure, it is clear that 

the improvement of the expected total travel time made by the average MCP and the original 

MCP schemes are lower than that of the SN-MCP scheme. In particular, when the network is 

highly uncertain (e.g. VMR=40 in this example), the origin MCP schemes instead increases 

the expected total travel time compared to the no toll case.  

 
Table 3 – True mean link flows and tolls under SN-SO  

Link 

VMR = 0 VMR = 20 VMR = 40 

Mean Flow 

av  

Toll 

a  

Mean Flow 

av  

Toll 

a  

Mean Flow 

av  

Toll 

a  

1 212.2 4.6 207.9 9.0 204.8 16.9 

2 119.7 0.4 121.9 1.4 123.6 4.0 

3 301.7 18.6 300.7 31.6 299.3 50.9 

4 305.4 22.8 306.0 39.1 306.1 63.6 

5 158.5 22.7 153.4 54.9 147.7 117.0 

6 185.7 7.1 184.0 16.2 182.6 33.2 

7 89.5 0.4 92.8 2.1 94.5 7.2 

8 191.5 16.0 196.6 39.6 202.3 86.3 

9 285.8 27.5 292.6 52.6 299.7 93.7 

10 260.5 19.0 257.2 33.7 255.5 58.1 

11 246.6 20.8 243.5 38.2 239.4 65.6 

 
Table 4 – Comparison of the expected total time under different VMR levels  

VMR 
SN-UE (Toll Free) SN-SO (SN-MCP) Average-MCP Original-MCP 

 E TT  Improv.  E TT  Improv.  E TT  Improv.  E TT  Improv. 

0 29098 0.0% 28919 100.0% 28919 100.0% 28919 100.0% 
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20 40994 0.0% 40838 100.0% 40848 93.8% 40873 78.0% 

40 65752 0.0% 65593 100.0% 65666 53.6% 65793 -25.8% 
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Figure 2 – Improvement of system performance by different MCP schemes 

The estimated mean link flows and SN-SO tolls obtained through the trial-and-error algorithm 

are summarized in Table 5. The iterative procedure initially starts from a uniform toll scheme, 

i.e., 15a   for all link a . The step size: 
 

1
k

k   and convergence tolerance: 0.001   

are utilized in the trial-and-error algorithm. For different VMR levels, Figure 3 illustrates the 

nice convergence of the iterative procedure.  

 
Table 5 – Estimated mean link flows and tolls under SN-SO  

Link 

VMR = 0 VMR = 20 VMR = 40 

Mean Flow 

av  

Toll 

a  

Mean Flow 

av  

Toll 

a  

Mean Flow 

av  

Toll 

a  

1 213.4 4.5 207.9 9.0 203.8 16.9 

2 117.7 0.4 121.2 1.4 123.3 4.0 

3 301.9 18.7 299.7 31.5 299.1 51.1 

4 303.8 22.8 306.0 39.1 307.1 63.9 

5 158.2 22.7 154.7 54.9 147.8 116.7 

6 185.4 7.1 184.6 16.2 183.9 33.3 

7 88.3 0.4 91.7 2.2 95.3 7.2 

8 192.1 15.9 195.4 39.7 202.4 86.4 

9 286.5 27.7 291.0 52.6 298.6 93.3 

10 261.3 19.0 258.1 33.6 254.4 57.8 

11 246.7 20.8 245.4 38.4 240.3 65.4 
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Figure 3 – Convergence of the trial-and-error procedure for SN-MCP with different VMR levels 

If we do not use the SN-MCP formula to calculate the trial tolls in Step 1 as shown in Eq. (23) 

but refer to the average MCP or the original MCP, then the trial-and-error procedure cannot 

converge to the true optimal tolls that achieves SN-SO. Figure 4 shows this phenomena for 

VMR=20.  
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Figure 4 – Convergence of the trial-and-error procedure by different MCP schemes 

Example 2 

The test network for Example 2 is taken from Sumalee et al. (2006) as shown in Figure 5, 

which has 7 nodes, 18 links and 6 O-D pairs. This example again takes the BPR-type link 

travel time function (36) with 4an   for all link a . Table 6 gives the other link cost 

parameters adopted in this example. The mean value of each stochastic O-D demand is 

shown in Table 7.  
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Figure 5 – Road network used for Example 2 

 
Table 6 – Link cost parameters for Example 2  

Link 
0

at  ab  ac  

1 1.2500 0.0253 1800 

2 1.2500 0.0253 1800 

3 9.1667 6.2610 1100 

4 9.1667 6.2610 1100 

5 9.1667 6.2610 1100 

6 2.5000 1.7075 1100 

7 7.5000 1.0866 1100 

8 9.1667 6.2610 1100 

9 2.5000 1.7075 1100 

10 7.5000 1.0866 1100 

11 2.5000 1.7075 1100 

12 2.5000 1.7075 1100 

13 2.0000 1.3660 1100 

14 7.5000 1.0866 1100 

15 7.5000 1.0866 1100 

16 2.0000 1.3660 1100 

17 1.2500 0.0253 1800 

18 1.2500 0.0253 1800 

 
Table 7 – Mean of the normal demand for Example 2  

Origin 
Destination 

1 5 7 

1 - 600 400 

5 500 - 600 

7 375 800 - 

 

Here the numerical test is based on another statistical distribution of travel demand, normal 

distribution, which is also widely adopted in the literature (e.g. Waller et al., 2001; Chen et al., 

2003; Lam et al., 2008). From this example, it is found that some of mean link flows could be 

zero when arriving at the equilibrium, for example, the SN-UE flow pattern with no toll. The 

log-normal distribution however excludes this instance. Under the assumptions that the travel 
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demand follows a normal distribution and the path flow has the same kind of distribution as 

the demand, the link flow, which is the sum of path flows, also follows normal distribution, 

i.e.,  ~ , v

a a aV N v  .  

 

Using the method of moment generating function, the mean link travel time can be expressed 

explicitly in terms of the mean and variance of the stochastic link flow. And further noting the 

relationship between the mean and variance as shown in Eq. (18), we have  

 

   
2

0 4 0 4 2

4 4

4 3 2 2

0

4

6 3

6 3

v va a
a a a a a a a a

a a

a a a a

a

a

b b
E T t E V t v v

c c

b v VMRv VMR v
t

c

             

    

 (38) 

Similarly, we can compute  E TT , which is 

  
5 4 2 3

0

4

10 15a a a a

a a

a

b v VMRv VMR v
E TT t v

c

      (39) 

Therefore, 

 
 

4 3 2 2

0

4

5 40 45a a a a

a

a a

b v VMRv VMR vE TT
t

v c

     


 (40) 

Then,  

 
 

 
4 3 2 2

4

4 34 42
SN-MCP

a a a a

a

a a

b v VMRv VMR vE TT
E T

v c

      


 (41) 

 

Again, in this test, we use a uniform toll scheme, i.e., 15a   for all link a  to initiate the trial-

and-error procedure, and take the step size: 
 

1
k

k   and convergence tolerance: 

0.001   in the algorithm. The optimal toll charges under stochastic demands with 

VMR=100 are now estimated. The VMR value used here is some larger than the previous 

example is due to the higher mean value of the total travel demand in this test. The 

estimated results as well as the true results are both shown in Table 8 for comparison. Figure 

6 again exhibits the convergence of the iterative procedure.   
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Figure 6 – Convergence of the trial-and-error procedure for SN-MCP 

 
Table 8 – Comparison between the true and estimated mean link flows and tolls under SN-SO  

Link 

True Results Estimated Results 

Mean Flow 

av  

Toll 

a  

Mean Flow 

av  

Toll 

a  

1 875.0 0.01 875.0 0.01 

2 1000.0 0.02 1000.0 0.02 

3 437.5 2.19 437.5 2.19 

4 437.5 2.19 437.5 2.19 

5 500.0 3.34 500.1 3.34 

6 250.0 0.11 250.0 0.11 

7 187.5 0.03 187.5 0.03 

8 500.0 3.34 500.0 3.34 

9 250.0 0.11 250.0 0.11 

10 187.5 0.03 187.5 0.03 

11 352.2 0.31 352.2 0.31 

12 352.2 0.31 352.1 0.31 

13 800.0 3.40 800.0 3.40 

14 147.9 0.02 147.8 0.02 

15 147.9 0.02 147.8 0.02 

16 704.3 2.22 704.3 2.22 

17 1175.0 0.03 1175.0 0.03 

18 1000.0 0.02 1000.0 0.02 

 

CONCLUSIONS 

This study discussed the first-best marginal-cost pricing and its trial-and-error implementation 

under a stochastic network that explicitly considers the demand uncertainty. In the paper, we 

derived the SN-MCP by re-investigating the real gap between the marginal social and private 
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costs in terms of stochastic traffic flows. There are two terms involved in the SN-MCP when 

travelers are assumed risk-neutral. The first term can be regarded as the simple modification 

of the original MCP, i.e., the originally deterministic link flows and travel times are substituted 

by their mean values. The second term is the additional term related to the variability of travel 

demand, which is often ignored.   

 

Given the specific statistical distribution of random demands and the assumption of constant 

VMR across all O-D pairs, the closed-form formulation of SN-MCP can be calculated with the 

information of true mean values of demands. In reality, when this information is not available, 

a revised trial-and-error method was proposed for practical implementation. The trial tolls are 

computed based on the formula of SN-MCP at each step, but not the original MCP. Though 

the mean link flows cannot be precisely obtained due to the limited sample size, it has been 

shown that the sampling error won‟t affect the convergence of the proposed trial-and-error 

procedure. The convergence and effectiveness of this evolutionary implementation was not 

only proved theoretically, but also examined by two numerical tests. The first one was carried 

out under the assumption of log-normal demand, while the second one assumed the normal 

demand.  

 

This paper only investigated the traffic assignment and road pricing with the case of inelastic 

demand noting that the mean of stochastic demand is fixed. If the level of average demand is 

influenced by the travel cost of the trip, i.e., with the case of elastic demand, the SN-MCP we 

derived in this study is still applicable to drive the link flow pattern towards a SN-SO, where 

the SN-SO aims to maximize the expected social welfare. At the same time, the convergence 

of the revised trial-and-error algorithm can be guaranteed as well. The proof analysis is very 

similar as that given in this study if assuming the demand function incorporates the 

uncertainty in an additive fashion. The other possible extensions are to also include the 

stochastic link capacity degradation in the analysis of the SN-MCP and to relax the strict 

assumption about constant VMR across all O-D pairs.  
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