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INTRODUCTION 

Despite improvements in vehicle emission control technology, the rapid growth of 

vehicle ownership and average trip length during past decades has created an unhealthy air 

quality in urbanized areas. Traffic emissions are known to be responsible for a substantial 

share of urban air pollution, such as nitrogen dioxide (NO2), carbon monoxide, volatile 

organic compounds (VOCs), and particulate matters. Pollutants emitted by motor vehicles 

influence the spatial and temporal patterns of ambient pollution concentrations. Generally, air 

pollution concentrations are determined by such factors as the formation and destruction of 

pollutants through chemical and physical reactions, the intensity and duration of emissions, 

the uptake and assimilation of pollutants by urban vegetation, and meteorological factors 

inducing chemical reactions and physical dispersion (Derwent & Hertel, 1998; Harrison, 2001; 

Seinfeld & Pandis, 2006; Takahashi et al., 2005; US EPA, 2000; WHO, 2006). Among these 

factors, vehicle emissions are considered a key factor to determine the air quality of urban 

regions. It is reasonable to expect that, as vehicle-kilometres-travelled (VKT) increase, 

ambient air pollution concentrations will also increase. Since transportation is responsible for 

a substantial share of urban air pollution emissions, VKT is considered as a better regressor 

to explain pollution concentrations than other transportation-related variables, such as traffic 

counts, area of road, distance to major roads, etc. (Jerrett et al., 2007; Kahyaoğlu-Koračin, 

Bassett, Mouat, & Gertler, 2009; Kim, 2007; Kim & Guldmann, 2008). 

Integrated air quality modelling systems have been developed in several countries for 

dense urban regions, where pollutants generated by road traffic tend to be present at high 

concentrations. These systems include both emission inventories and dispersion models. To 

enhance the credibility of emission inventories, it is necessary to develop up-to-date 

emission factors and data on actual traffic flows, vehicle speeds, fleet composition, and 

weather conditions. Dispersion models require significant computational resources to 

calculate high-resolution air pollution concentrations from both geographical and temporal 

perspectives. Other approaches to explain the relationships between air pollution 

concentrations and urban land uses have taken advantage of improvements in geographic 

information systems (GIS). To explain observed spatial variations in pollution concentrations, 

land uses identified and measured with GIS procedures are inputs into land-use regression 

(LUR) models. Pioneering LUR research was initiated in the EU-funded SAVIAH (Small Area 
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Variations in Air Quality and Health) project (Briggs et al., 1997). The pollution maps 

predicted with LUR models have been used for epidemiological studies, assessment of long-

term exposure to traffic-related pollution, and scenario-based land-use impacts on air quality. 

Since observed concentrations at air quality monitoring stations (AQMs) and measured land 

uses around AQMs are used as dependent and independent variables, LUR models are 

regarded as primarily empirical models. Despite developments in conventional air quality 

modelling systems and in recent LUR models, the complex interactions between pollution 

concentrations, traffic flows, land uses, meteorological factors, and chemical reactions have 

not been satisfactorily investigated. As the spatial and temporal variations in vehicle 

emissions are expected to significantly impact pollution concentrations, LUR models must be 

expanded to incorporate traffic flows over both space and time. 

The purpose of this research is to (1) understand the system of NO2 concentrations, 

specifically meteorological impacts on pollution concentrations and pollutants chemistry will 

be reviewed, (2) analyze the temporal variations of concentrations and compare the 

differences of concentrations between roadside and urban background AQM, (3) develop a 

LUR framework to build air quality panel models, accounting for VKT, land uses, and 

meteorological factors.  

LITERATURE REIVEW 

Chemistry of NO2 

When fossil fuels (coal, gasoline, diesel, and natural gas) are burned, nitrogen 

monoxide (NO) and NO2 gases are released into the atmosphere. Oxides of nitrogen (NOx) 

are defined as the sum of both NO and NO2. Due to the increase in fossil fuel use, such as 

road transport, power plants, combustion in industrial and commercial uses, and residential 

heating, NOx is a common pollutant (Air Quality Expert Group, 2004). The US EPA (2000) 

estimates that, in 1998, U.S. on-road and off-road sources contributed 53% of nitrogen 

oxides, and the EU reports that road transport and other mobile sources account for 57% of 

NOx, based on CORINAIR (The Core Inventory of Air Emissions in Europe) 1990 inventory 

(CORINAIR, 2003). In 2000, road transport in the United Kingdom was found to be the 

largest contributor of NOx emissions (Air Quality Expert Group, 2004). Because of NOx 

emissions, it is expected that urbanized regions are more vulnerable to vehicle emissions 

than rural ones. According to the Korea Ministry of Environment (2005), the contributions of 

on-road vehicles to both the national and Seoul Metropolitan region NO2 concentrations are 

42.2% and 61.1%, respectively. 

NO is derived from nitrogen (N2) in high-temperature combustion processes, such as 

internal combustion engines, and NOx emissions released from these engines contain over 

90% of NO, which is relatively unstable when compared to oxygen (O2) and N2. The main 

fate of NO is to react with ozone (O3) in the ambient atmosphere and to be converted into 

NO2 (Derwent & Hertel, 1998). Typically, directly emitted NO2 represents 5% of emissions by 

both gasoline and diesel vehicles. However, Carslaw and Beevers (2004) assert that diesel 

vehicles are responsible for higher primary NO2 emissions (12.7%) than gasoline vehicles 

(0.6%), based on monitoring results in London. Nonetheless, it is certain that the share of 
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primary NO2 is far smaller than that of directly emitted NO. In urban regions, relatively 

abundant O3 reacts rapidly with NO to generate NO2.  

 

                       (1) 

 

Another chemical reaction creating NO2 is the interaction of NO with organic peroxy 

radicals (RO2·) and hydroperoxyl radicals (HO2·), where R is an alkyl radical1. In these 

reactions (Eqs. 2 and 3), an abundance of radicals in the atmosphere stimulates the 

accumulation of O3, because radicals are more active for reactions than O3 (Seinfeld, 1989): 

 

                                      (2) 

                                       (3) 

 

The main fate of NO2 during daylight is photodissociation with ultraviolet (UV) 

radiations and reforming NO and a ground-state oxygen atom, O(3P). The oxygen atom 

produced in the photolysis of NO2 reacts with O2, generating O3 (National Research Council, 

1991). The range of UV wavelength in the NO2 photolysis process is known as around 200 to 

400 nm (nanometers, 10-9
 meters) (Derwent & Hertel, 1998; Seinfeld, 1989).  

 

                     
                          (4) 

 

The other chemical removal of NO2 is the reaction with OH·, forming nitric acid 

(HNO3). Since the hydroxyl radical is created with electronically excited oxygen atoms, O(1D), 

and water vapour, the presence of short wavelength UV (less than 320 nm) is required. 

Under usual daytime conditions, the reaction of NO2 and OH· converts around 5% of NO2 per 

hour (Derwent & Hertel, 1998). The produced HNO3 reacts with ammonia (NH3) to form 

particulate nitrate (NO3
-).  

 

                                              (5) 

 

Understanding the creation and removal processes of NO2 helps explain the temporal 

and locational variations of NO2 concentrations. 

Air Quality Modelling Approach: Land Use Regression (LUR) 

There is much empirical evidence regarding the positive association between traffic 

flows and air pollutant concentrations. It is reasonable to expect that the contribution of on-

road vehicles to the air pollution of urbanized regions is greater than to that of rural areas. In 

a spatial perspective, the areas adjacent to heavily travelled roads are more susceptible to 

vehicular emissions than remote areas. The spatial and temporal exceedances of air 

pollution standards must be examined and estimated, because these hotspots of 

                                                 
1
 Alkyl radicals are generally designated R·, where R represents the chemical formula for alkyl group (Seinfeld & 

Pandis, 1998).  
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spatiotemporal exceedances can lead to harmful impacts on human health and natural and 

man-made environments. There are many studies reviewing the consequences of air 

pollution, including hedonic models of housing values (Kim, Phipps, & Anselin, 2003), 

benefit-cost assessment of urban air pollution (Krupnick & Portney, 1991), spatial property 

assessment (Setton, Hystad, & Keller, 2005), valuing health benefits of clean air (Hall et al., 

1992), particulate matter and health outcomes (Dockery et al., 1993; Dominici & Burnett, 

2003), PM2.5 and mortality (Franklin, Zeka, & Schwartz, 2007), NO2 and human health (Kraft 

et al., 2005), air pollution and mortality (Schwartz & Zanobetti, 2000), and epidemiology of 

traffic-related pollution and asthma (Zmirou et al., 2002).  

Since air pollution in urban regions has induced considerable attention from scholars 

and public administrators, air quality models have been developed while considering the 

above-mentioned factors in modelling processes. Most of these studies have adopted 

dispersion methods as key modelling modules, with extensive emission inventories. 

Integrated modelling systems for air quality management have been developed in several 

countries, including AirGIS in Denmark (Jensen et al., 2001), Air Quality Information System 

in Norway (Bøhler et al., 2002), Integrated Model of Urban Land-use and Transportation for 

Environmental analysis in Canada (Potoglou & Kanaroglou, 2005), Danish Operational Street 

Pollution Model in Denmark (Berkowicz, Winther, & Ketzel, 2006), Traffic Emission 

Information System in Hong Kong (Xia & Shao, 2005), GIS based decision support system 

for estimation of air pollution in Turkey (Elbir & Muezzinoglu, 2004; Elbir, 2004), Urban 

Dispersion Modelling with road network dispersion in Finland (Karppinen et al., 2000; 

Karppinen, Kukkonen, Elolähde, Konttinen, & Koskentalo, 2000; Kukkonen, Härkönen, 

Walden, Karppinen, & Lusa, 2001), and Traffic Emission Modelling and Mapping Suite in 

England (Namdeo et al., 2002). Air quality models based on dispersion methods require 

many input data and much computing power to generate acceptable results over both space 

and time.  

As an alternative to these models, LUR models have been recently developed and 

applied to high-resolution pollution mapping. Generally, traffic related variables are 

considered as major and significant predictors in LUR equations. In addition, many land uses 

have been tested as explanatory variables for pollution concentrations. Generally, LUR 

studies present reliable coefficients of determination (R2), with a range of 0.5 to 0.8, using 

monitored data (Hoek et al., 2008). With the development of GIS technology, variables 

potentially related to air pollution concentrations can be obtained in much less time and at 

lower costs, as compared to dispersion-based approaches, including measures of traffic, 

land uses, density, and meteorological factors. These variables are assessed for various 

buffers and used as explanatory variables. Since the explanatory variables used in the 

regression model are obtained through GIS, it is possible to calculate the values of the 

explanatory variables for the entire study region. Therefore, the prediction of air qualities in 

unsampled areas and the mapping of air pollution have been implemented in several LUR 

studies. NO2 maps have been estimated in Huddersfield, UK, and Amsterdam, Netherlands 

(Briggs et al., 1997), Toronto, Canada (Kanaroglou et al., 2005), Hamilton, Canada 

(Sahsuvaroglu et al., 2006), San Diego, CA (Ross et al., 2006), and Oslo, Norway (Madsen 

et al., 2007). Air pollution maps for particulate matter are also been generated in several 

studies, including New York City and adjacent counties (Ross, Jerrett, Ito, Tempalski, & 

Thurston, 2007) and on the European continent (Beelen et al., 2009). Based on the predicted 
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pollution map, an epidemiological study has been implemented in Sadabell, Spain (Aguilera 

et al., 2008), and long-term exposure to traffic-related pollution has been assessed in the 

Netherlands (Beelen, Hoek, Fischer, Brandt, & Brunekreef, 2007). Since land uses in urban 

areas determine movements of freight and passengers, poorly designed urban development 

plans can increase the levels of vehicle emissions, resulting in temporal and spatial pollution 

hotspots. Scenario-based future land-use plans were introduced to evaluate impacts on air 

quality in Southwest California (Kahyaoğlu-Koračin et al., 2009). As expected, traffic-related 

variables, such as traffic density, traffic volume, VKT, distance from highway, and length of 

highway, high density residential areas (population density), commercial areas, and industrial 

land uses, are all positively correlated with NO2 concentrations (Aguilera et al., 2008; Beelen 

et al., 2007; Briggs et al., 1997; Gilbert, Goldberg, Beckerman, Brook, & Jerrett, 2005; 

Kahyaoğlu-Koračin et al., 2009; Ross et al., 2006; Sahsuvaroglu et al., 2006; Smith et al., 

2006). On the other hand, open space, including urban forests, parks, and water bodies, is 

negatively correlated with NO2 concentrations (Henderson, Beckerman, Jerrett, & Brauer, 

2007; Kanaroglou et al., 2005). 

 

METHOD 

Data 

Air pollution concentrations in 2003 have been measured at 34 AQMs and are 

reported in both the Seoul Metropolitan government website (Seoul Metropolitan 

Government, 2008) and in the Annual Report of Air Quality in Korea (National Institute of 

Environmental Research, 2004). As illustrated in Figure 1, AQMs are distributed over the 

Seoul Metropolitan area, with at least one AQM in each district. Out of the 34 AQMs, 27 are 

classified as urban background AQMs, monitoring the average air quality and assessing 

whether air quality standards are attained. The other 7 AQMs are located near crowded 

traffic links to measure the air quality of roadsides.  

The Seoul Development Institute (SDI) releases transportation network and OD 

matrix data for the Capital region of Korea every year. The network and OD data cover the 

Seoul, Incheon, and Gyeonggi regions. These OD and network data are used in traffic 

assignment models. The OD table and network involve 1,142 traffic zones, divided into 1,129 

internal and 13 external zones. The OD system includes auto, taxi, and bus OD tables. 

According to the report, ―The Standard Guideline of Pre-feasibility Study for Road and 

Railroad Sectors‖ (Korea Development Institute, 2004), the surveyed average numbers of 

people per vehicle are 1.46 and 14.99 for automobile and bus, respectively. These values 

are used to convert person trip to vehicle trip. As freight OD data are not available in 2003, 

freight flows are not included in the traffic assignment process. Therefore, the assigned 

volumes on each link can be expected to be less than the actual traffic flows. The distances 

between traffic emissions and receptors are important in determining the concentrations at 

receptors. To identify the impacts of traffic emissions on the concentrations at AQMs, several 

circular buffers with a radius varying from 500 meters to 5,500 meters are delineated around 

each AQM. The VKTs on the transportation links within the circular buffers are estimated as 
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follows: (1) the traffic flow of each transportation link is estimated with a traffic assignment 

model; (2) the buffers are intersected onto the traffic network; (3) the attributes of the 

intersected links are calculated using ArcGIS® and Python® scripts. To account for the wind-

direction (WD) effects on traffic emissions, the circular buffer is subdivided into eight sectors, 

each sector is overlaid onto the assigned network, and then the VKTs for each sector are 

computed using the above process, and then weighted by the WD frequency. WD-weighted 

VKT (WVKT) is calculated as the sum of the eight sectors’ VKT. Using available hourly traffic 

counts data, the estimated daily VKTs are divided into hourly VKTs. 

 

 

 
Figure 1 AQM location, traffic assigned network, and land-use classification 

 

Traffic counts data are more accurate for simulating vehicle emission than the results 

of traffic assignment method. Traffic counts data in the Seoul city have been collected at 4 

different road classifications, including the CBD (26 locations), Han River bridges (19 

locations), arterial roads (36 locations), and cordon line (38 locations). The number of traffic 

counts stations, however, is limited to calculate VKTs which can be used as the proxies of 

vehicle emissions in the LUR models. As seen in Figure 1, the locations of AQMs are 

distributed across the entire city and the links required calculating VKTs for each AQM are 

numerous, it is not possible to use traffic counts data in the LUR approaches. Since traffic 

assignment methods have been developed with diverse theoretical backgrounds, it is 

necessary to evaluate the results of assigned traffic volumes with the monitored traffic counts. 
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Diverse land-use patterns around AQMs have been measured with GIS techniques 

and used as input variables in the NO2 models to explain pollution concentrations varied over 

space and time. SDI has released the first biotope map of Seoul, Korea, in 2000 and an 

updated map was published five years later, including 24,847 land parcels.2 Each land parcel 

has been classified into urban or non-urban land uses, with 9 middle classes and 64 detailed 

classes. The middle-class land-uses classification is illustrated in Figure 1. The non-urban 

land uses include forest, open space, river, stream, and wetland. The urban land uses are 

sub-classified as residential, commercial, transportation, industrial, urban infrastructure, 

public facilities, industrial, denuded, and inaccessible areas.  

Model Specification 

Physical environments, such as VKTs and land use shares, around AQMs are 

calculated and used as explanatory variables in the NO2 LUR models. Pollution concentra-

tions monitored at each AQM are used as the dependent variables with these predictors. 

VKTs of all links in the Seoul transportation network are estimated based on the results of 

traffic assignment. Areas of five land uses, such as residential, commercial, industrial, 

transportation, and vegetative area, are calculated using a biotope map and satellite image. 

Land-use variables are applied WD frequency and then re-calculated as WD-weighted land 

uses (WLU). Meteorological factors induce chemical and physical reactions, consequently, 

leading to the creation, destruction, and dispersion of pollutants. Hourly measured solar 

radiation, temperature, humidity, and wind speed are included in panel regression models to 

investigate the meteorological impacts on concentrations. In order to compare the different 

impacts of explanatory variables on pollution concentrations across the four seasons, 

concentrations measured weekdays are averaged over for each season and then four 

seasonal hourly panel data sets are constructed. Interaction terms between the dummy 

variables and the other regressors are included in the models. VKTs vary over space (AQMs) 

and time (24 hours). In contrast, land uses are time-invariant and meteorological variables, 

such as solar radiation, temperature, wind speed, and humidity, are space-invariant. Hourly 

meteorological variables are averaged over each season. Four seasonal regression models 

are formulated and their estimates are compared. WVKT and WLU variables are recomputed 

for each season. The proposed panel regression model is expressed as: 

 

   
 
    ∑  

 

   

     ∑   

 

   

(       )   ∑   

 

   

(       )                                     

 

Since roadside AQMs tend to be more impacted by vehicle emission than 

background AQMs, the concentration at roadside AQMs are generally higher for directly 

emitted pollutants. The introduction of interaction terms between the basic explanatory 

variables and the locational dummy variable (DR) will allow for testing the effects of the 

original regressors under different locational conditions. In addition, the chemical reaction 

                                                 
2 http://www.seoul.go.kr/info/organ/subhomepage/urban_new/library/mode_8_04.html  

http://www.seoul.go.kr/info/organ/subhomepage/urban_new/library/mode_8_04.html
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rates are different in daytime and night-time. Including a daytime dummy variable (DD) and 

related interaction terms may help assess these temporal differences. 

If serial correlation is present in panel data, estimation without correcting for auto-

correlation is inefficient. If the error structure is assumed to be first-order autoregressive, the 

Parks method (Parks, 1967) can be considered for estimating the regression model. The 

specification of the first-order autoregressive error term is as follows: 

 
                                                                                                                                              

 

where    is the first order autoregressive parameter, which is estimated for each 

cross-section. Since there are fixed effects with regard to (w.r.t.) space (AQMs) and time 

(hours), the above error specification has limitations in differentiating these effects. According 

to Kmenta (1986), the use of dummy variables is a cover-up of the incomplete knowledge 

regarding the true model. However, the traffic emissions and solar radiation variables are 

expected to create different impacts between roadside and background areas. In addition, 

the impacts of the original regressors vary, depending on the intensity of solar radiation. 

Therefore, it is reasonable to assume that the two proposed dummy variables and their 

interactions with the regressors will help capture these locational and temporal differences. 

Panel data including hourly measured pollution concentrations can be expected to have 

strong positive autocorrelation, and therefore the estimation method should correct for 

autocorrelation. The error specification in Eq. (7) and the introduction of both cross-sectional 

and time-series dummy variables should produce a realistic model. Parks method is used to 

estimate the parameters of the NO2 seasonl panel regression models.3 

 

TEMPORAL VARIATIONS OF POLLUTION CONCENTRATIONS 

It is widely accepted that traffic emissions are the major source of NO2 concentrations 

in urban regions (Jo & Park, 2005; Carslaw & Beevers, 2004a; Fujita et al. 2003). Observed 

traffic counts and diurnal variations of NO2 concentrations are reviewed for the four seasons. 

As shown in Figure 2, the hourly patterns of NO2 concentrations for both roadside and 

background AQMs are similar in all four seasons. Roadside AQMs display a steep increase 

in the morning, commencing around 6 AM when morning traffic increases, then make a 

plateau at midday in Spring and Fall, continually increase in Summer, and slightly decline in 

Winter. In the case of background AQMs, the concentration patterns are similar across the 

four seasons; double peaks during the day, the highest after the evening traffic peak, and a 

deep trough during daytime are observed. 

 

                                                 
3 http://support.sas.com/documentation/cdl/en/etsug/60372/HTML/default/etsug_panel_sect033.htm 

If the number of time-series units is less than the number of cross-section units, then the Parks method 

produces an error message that the phi matrix is singular. To fix this problem, the number of cross-sectional 

observations is reduced to the number of time-series observations. In order to compare the different impacts of 

background AQMs and roadside AQMs, 17 out of the 27 background AQMs are randomly selected. In the case 

of roadside AQMs, all 7 AQMs are selected. Therefore, the number of observations for the estimation of the 

panel models in this research is 576 (24 AQMs × 24 hours). 

http://support.sas.com/documentation/cdl/en/etsug/60372/HTML/default/etsug_panel_sect033.htm
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Figure 2 Variations of hourly traffic volumes and hourly NO2 average concentrations at 

roadside and background AQMs in the four seasons 
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There are two notable phenomena in this seasonal comparison. One is that the depth 

of the trough is shallow in the roadside pattern, as compared to the background one. The 

reason may be that, during daytime, UV rays stimulate the photolysis of NO2, but near the 

roadside freshly emitted NO from the tail pipe is abundant, so that the effects of photolysis 

are alleviated. The other interesting phenomenon is that the hour of daily peak concentration 

at background AQMs is changing along with the season. With plenty of daylight, as in 

Summer and Fall, the peak occurs at 22:00; however, in Winter and Spring, the peak hour 

starts earlier, at 19:00 and 20:00 PM, respectively. The occurrence of the time lag for the 

NO2 peak concentration at background AQMs can also be explained by the photolysis of NO2. 

The evening highest NO2 concentration can be explained by the reaction between the 

accumulated ozone in daytime and the NO emission in evening traffic peak. 

 

RESULTS FOR NO2 PANEL MODELS 

The estimation results for the NO2 panel regression models are presented in Table 1. 

The results point to positive and very significant coefficient estimates for WVKT (buffer radius 

5000meter) across the four seasonal models. Emissions from traffic flows are the direct 

sources of NOx, and most of the NOx are emitted in the form of NO, which is quickly 

transformed into NO2 by reaction with O3 (Eq. 1), organic peroxy radicals (Eq. 2), and 

hydroperoxy radicals (Eq. 3). In the urban atmosphere, these two radicals are generated in 

the process of anthropogenic and biogenic VOCs oxidation. Solar radiation has a negative 

impact on NO2 concentrations, because NO2 is decomposed by UV radiation (Eq. 4) during 

daytime. The coefficient estimates for solar radiation are negative and significant in all 

models. Since the intensity of UV radiation is lower during the cold season, the coefficient 

estimate for Winter solar radiation is, as expected, the smallest in absolute term among the 

four models. 

Since NO gases emitted from vehicles are more likely to be converted into NO2 at 

roadside locations, higher NO2 concentrations are generally observed there. The NO2 

models include two significant interaction variables related to the roadside dummy variable. 

The coefficient estimates for the WVKT interaction term are positive, supporting the theory 

that roadside areas represent favourable conditions for high NO2 concentrations. In addition, 

a significant interaction variable related to the daytime dummy variable is also included in the 

NO2 models. During daytime, negative and positive impacts on NO2 concentrations occur 

simultaneously. The negative effects include NO2 photodissociation and decreased space 

heating during the warm season. In contrast, anthropogenic activities generally take place 

during daytime, leading to more NOx emissions. The coefficient estimates for the daytime 

interaction variable with WVKT are negative in Spring and Winter, and positive in Summer 

and Autumn, indicating that the negative effects are dominant in Spring and Winter, and the 

positive effects in Summer and Autumn. However, the effects in Spring and Winter are less 

significant. The coefficient estimates for the solar radiation interaction variables are also 

positive, indicating that the negative impact of solar radiation on NO2 concentrations is 

reduced at roadside areas. As background areas are more favourable for generating O3, the 

rate of NO2 photodissociation is greater in background areas than in roadside areas. 
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Since NOx gases are emitted from commercial, residential, and industrial land uses, 

the signs of coefficients for these land uses are expected to be positive. The estimate 

coefficients for commercial and industrial areas are positive, but those of residential areas 

are inconsistent across the seasons. During Summer season, fossil fuel consumption is 

small in residential areas, and therefore much reduced NOx emissions are expected, leading 

negative effect may occur in Summer. The negative estimate coefficients for Spring and 

Winter models are unexpected results, calling for further research. 

Generally, higher temperatures reduce the consumption of fossil fuels, leading to 

decreased NOx emissions, thus explaining the negative coefficient of temperature in Winter. 

However, the coefficient estimates for temperature are positive for the Spring, Summer, and 

Autumn models, possibly because of the coincidences of high traffic flows and high 

temperatures during daytime, and low traffic flows and low temperatures during night-time. 

Wind speed presents more complicated interactions compared to other meteorological 

factors, because strong wind expedite the dispersion of pollutants but light wind is known to 

facilitate the photochemistry of pollutants because of scattering effects. The threshold for 

differentiating these two effects, however, has not been clarified yet. As wind speed in Spring 

and Winter is generally higher than in the other seasons, dispersion effects are expected to 

be dominant for these two seasons. However, the coefficient estimates for Spring and Winter 

are positive. To explain the patterns of wind speed effects on pollution concentration, it is 

necessary to investigate in advance when the conditions for dispersion or scattering effects 

would occur. Finally, humidity has generally negative impact on pollution concentrations. This 

is only true in Winter, and the unexpected results of humidity effects also call for further 

research. The two dummy variables for roadside AQMs and daytime are not included in the 

final models, because the estimate coefficients are insignificant and the inclusion of these 

dummy variables causes the change of signs for the other regressors. 

 
Table 1 Results of NO2 panel regression models estimation 

 
 

Season

Explanatory Variables Parameter t Value Pr > | t | Parameter t Value Pr > | t | Parameter t Value Pr > | t | Parameter t Value Pr > | t |

Intercept -151.80 -32.05 <.0001 -323.25 -66.01 <.0001 -93.85 -12.77 <.0001 43.48 36.36 <.0001

WVKT_R5000 1.48 21.82 <.0001 1.31 16.73 <.0001 2.09 33.50 <.0001 2.02 48.21 <.0001

Commercial_R4500 5.91 20.86 <.0001 2.36 10.92 <.0001 3.65 9.68 <.0001 0.82 6.66 <.0001

Residential_R1000 -0.15 -0.60 0.550 -1.33 -10.56 <.0001 2.32 9.59 <.0001 -2.43 -17.26 <.0001

Industrial_R4500 2.70 11.84 <.0001 0.65 3.48 0.001 1.85 8.04 <.0001 1.32 27.29 <.0001

Solar Radiation -31.24 -49.16 <.0001 -19.24 -89.18 <.0001 -11.89 -29.32 <.0001 -8.83 -33.18 <.0001

Wind Speed 8.49 13.38 <.0001 6.18 43.08 <.0001 -3.36 -9.18 <.0001 2.34 9.91 <.0001

Temperature 8.95 42.04 <.0001 10.37 80.32 <.0001 5.30 21.31 <.0001 -0.03 -0.25 0.801

Humidity 1.19 27.75 <.0001 1.47 52.19 <.0001 0.71 13.73 <.0001 -0.15 -8.70 <.0001

WVKT × Roadside Dummy 0.20 2.40 0.017 0.56 9.32 <.0001 0.14 4.59 <.0001 0.72 21.11 <.0001

Solar × Roadside Dummy 8.89 29.20 <.0001 9.79 51.61 <.0001 6.24 31.47 <.0001 2.59 8.13 <.0001

WVKT × Daytime Dummy -0.07 -2.17 0.030 0.17 20.17 <.0001 0.17 7.46 <.0001 -0.06 -2.56 0.011

R2 0.980 0.995 0.983 0.981

Spring Summer Autumn Winter
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ELASTICITY ANALYSIS  

The original regressors and diverse interaction terms have been selected as 

significant explanatory variables across the four seasonal panel models. It is difficult, 

however, to directly interpret the impacts of these variables on NO2 concentrations, and 

therefore elasticities of the estimated model w.r.t. these variables are considered. Since 

WVKT and solar radiation are major factors to determine the NO2 concentrations, these two 

variables selected to be analyzed. The derivative functions of the NO2 models w.r.t. these 

two variables are calculated and then elasticities are computed across all input data. 

Summary statistics for the calculated elasticities w.r.t. the WVKT and solar radiation 

variables are presented in Table 2. The hourly elasticities for these two variables are 

compared across roadside AQMs and background AQMs, and across the four seasons. 

Traffic flows have positive impacts on NO2 concentrations at both locations and in all 

seasons. Higher elasticities are observed at roadside AQMs. A 1% increase in WVKT at 

background AQMs induces an average 0.13% to 0.23% increase in NO2 concentrations. In 

contrast, for roadside AQMs, a 1% increase in WVKT leads to an average 0.17% to 0.29% 

increase. Two reasons explain these differences in the elasticities w.r.t. WVKT: (1) roadside 

areas are directly influenced by traffic emissions, and (2) NO emissions from tail pipes 

immediately react with ambient O3, generating NO2. In addition, if radicals, such as RO2· and 

HO2·, are present in the atmosphere, NO reacts with these radicals instead of O3. Generally, 

these radicals are associated with VOCs oxidation, and anthropogenic and biogenic VOCs 

are abundant in the urban atmosphere. Therefore, NO emissions can be easily converted 

into NO2. 

 
Table 2 Summary statistics for the elasticities w.r.t. WVKT and solar radiation in the NO2 models 

 
 

Since ambient NO2 is decomposed by UV radiation, the elasticities of the NO2 

functions w.r.t. solar radiation are negative. During night-time, the photodissociation of NO2 

does not occur, providing a zero elasticity. Since the Summer season has the shortest night-

time, zero impacts are less frequently observed in the Summer than in the other seasons. 

Variable AQM Season Min
10th 

Pctl

Lower

Quartile
Median Mean

Upper

Quartile

90th 

Pctl
Max

Spring 0.01 0.04 0.06 0.12 0.13 0.18 0.23 0.31

Summer 0.01 0.05 0.08 0.15 0.16 0.24 0.29 0.37

Autumn 0.02 0.07 0.11 0.22 0.23 0.33 0.40 0.61

Winter 0.01 0.05 0.09 0.16 0.17 0.24 0.27 0.38

Spring 0.05 0.08 0.12 0.17 0.17 0.22 0.25 0.28

Summer 0.08 0.12 0.17 0.22 0.23 0.29 0.33 0.47

Autumn 0.07 0.14 0.20 0.27 0.29 0.39 0.47 0.61

Winter 0.10 0.14 0.20 0.28 0.28 0.36 0.41 0.51

Spring -2.58 -1.50 -0.95 -0.21 -0.52 0.00 0.00 0.00

Summer -1.24 -0.92 -0.62 -0.19 -0.33 -0.02 0.00 0.00

Autumn -0.65 -0.42 -0.26 -0.04 -0.14 0.00 0.00 0.00

Winter -0.33 -0.22 -0.14 -0.02 -0.07 0.00 0.00 0.00

Spring -0.97 -0.67 -0.46 -0.13 -0.24 0.00 0.00 0.00

Summer -0.30 -0.24 -0.19 -0.07 -0.10 -0.01 0.00 0.00

Autumn -0.21 -0.14 -0.09 -0.02 -0.05 0.00 0.00 0.00

Winter -0.19 -0.12 -0.07 -0.01 -0.04 0.00 0.00 0.00

Solar

Radiation

Background

Roadside

Background

Roadside

WVKT
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Background areas are more favourable conditions for generating O3, suggesting that UV 

impacts on NO2 solar decomposition are greater in background areas. In addition, the 

impacts of direct NOx emissions are smaller in background areas, leading to NO2 

concentrations that are more sensitive to solar radiations in background areas. Therefore, 

stronger negative elasticities are observed at background AQMs than at roadside AQMs. For 

example, a 1% change in solar radiation in Spring induces an average 0.52% decrease at 

background AQMs, but the same change at roadside AQMs leads to only an average 0.24% 

decrease. 

The patterns of average hourly elasticities w.r.t. the WVKT and solar radiation on NO2 

concentrations are illustrated in Figures 3 and 4. Since roadside areas are directly impacted 

by traffic emissions, the hourly elasticities w.r.t. WVKT are higher at roadside AQMs across 

the four seasons. The patterns of hourly elasticities match the hourly traffic flow patterns (see 

Figure 2). Traffic flow patterns are characterized by two peaks, in the morning and the 

evening, and sustaining volumes during daytime. The elasticities display similar patterns, 

except for the evening traffic peak. 

 

 

 
Figure 3 Average hourly-seasonal elasticities w.r.t. WVKT in the NO2 models 

 

The hourly elasticities w.r.t. solar radiation at background AQMs are lower than those 

at roadside AQMs across the four seasons. Since the intensity of solar radiation in Spring 

and Summer is higher than in the other seasons, the negative impacts of solar radiation on 

NO2 concentrations are greater during these seasons than during the other seasons in both 

the background and roadside cases. NOX emissions from space heating are added to traffic 

emissions in Spring, leading to higher NO2 concentrations in Spring than in Summer. Higher 

NO2 concentrations in Spring provide more opportunities for solar radiation to actively 

decompose NO2, which may explain the more sensitive elasticities w.r.t. solar radiation in 
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Spring. Weak solar radiation in Winter lead to lower NO2 decomposition both for roadside 

and background AQMs. 

As discussed, solar radiation has a negative impact on the concentrations of directly 

emitted pollutants during daytime. The OH· radical has a key role in initiating the oxidations 

of VOCs, leading to the formation of O3 and HNO3. HNO3 removes both OH· and NO2 from 

the atmosphere, and therefore increasing the generation of HNO3 limits the recycling of OH· 

and HO2·, resulting in decreasing NO2 concentrations. Since the chemical reactions of these 

pollutants are interrelated each other, a single regression equation has limitations to explain 

the correct relationships between pollution concentrations and explanatory variables. Since 

the creation and destruction reactions occur simultaneously and the concentrations of 

interrelated pollutants are jointly determined with to the influence of UV radiation and 

precursors concentrations, simultaneous equations model would be an appropriate approach 

to investigate these relationships. 

 

 
Figure 4 Average hourly-seasonal elasticities w.r.t. solar radiation in the NO2 models 

 

DISCUSSION 

In this research, NO2 air quality panel models have been formulated and estimated, 

accounting for the impacts of WVKT, land uses, and meteorological factors on hourly-

averaged concentrations across the four seasons. Advanced GIS techniques are widely 

applied to calculate explanatory variables, such as WVKT and land uses. Locational and 

daytime dummy variables are included in the panel models to assess the impacts of AQM 

general location and daytime variations on pollution concentrations. Traffic emissions, 

proxied by WVKT, have positive impacts in the NO2 panel models. The analyses of hourly-

seasonal elasticities show that the impacts of WVKT vary along the hours of the day, 

depending on the locations of the AQMs. Solar radiation has negative impacts on NO2 
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concentrations. These two effects are consistent to the estimation results across the four 

seasons. The emissions from tail pipes contain abundant NO gas, leading to O3 titration (Eq. 

1), and thus WVKT display positive effects on NO2 concentrations. However, NO2 is 

decomposed by UV radiation, and therefore solar radiation has strong negative impacts on 

NO2 concentration.  

Since NO2 is directly emitted vehicle flows and generated by chemical reactions (Eqs. 

1 to 3), roadside areas are favourable conditions to accumulated NO2 concentration than 

urban background areas. The OH· radicals produced under UV radiation react chemically 

with NO2, leading to a decrease in the concentration. Since background regions provide good 

conditions for the regenerations of OH· radicals, solar radiation have greater negative 

impacts on the concentrations of NO2 in background regions. The hourly elasticities w.r.t. 

solar radiation indicates that the negative impacts peak when the solar radiation also peak. 

The estimates of panel regression models support these theoretical assumptions.  

Fossil fuel combustion from commercial, industrial, and residential areas have 

generally a positive impact on NO2 concentration. However, these effects vary, depending on 

the seasons. It is reasonable to expect that the emission rates of urban land uses are 

different, depending on the intensity of anthropogenic activities across the hours of the day 

and the seasons. Land-use variables in this research, however, are time-invariant, and thus 

only spatial differences have been accounted for in the NO2 panel models. To investigate the 

temporal impacts of land uses, it is necessary to include the temporal profiles of human 

activities across land uses. Diverse proxy variables, such as hourly demand for electricity, 

LNG, and water, would be used to measure these temporal profiles. 

The air quality models based on emission inventories and dispersion processes have 

limitations for developing pollution maps for urban regions, because of large data and 

computational requirements. In contrast, since improvements in GIS techniques allow for the 

easy collection of land-use and transportation data needed for urban-scale air quality 

analysis, LUR approach presented in this research suggests that the potential to be 

developed as high-resolution air quality maps, which can then be used for the assessment of 

epidemiological impacts, the location/allocation of public facilities, and the evaluation of 

pollution mitigation policies.  
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