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Abstract:

Traffic distributions of air traffic and their concentration have been measured through Gini, an index that contrasts in many ways with other more established ones, such as Herfindahl’s. This research is extended in the sense that it perceives spatial concentration in air transport as an aggregate of complex networks that are subject to multiple constraints, such as geopolitics or technology. We propose a multi-layered analytic approach where network operators are economic agents that behave in strategic ways. It allows for comparing air traffic between airports in Europe with that of the US and, in particular, introduces a normative component by isolating patterns in airlines’ strategies that coincide with more or less welfare-oriented degrees of spatial concentration in light of the above constraints. 
INTRODUCTION
Leading to our research problem, the first part of this paper presents the classic economic measures for concentration and discusses their application to air traffic.
(insert Figure 1 about here)
The Lorenz curve is a graphical representation of the cumulative distribution function of a probability distribution; it is a graph showing the proportion of the distribution assumed by the bottom y% of the values. It is often used to represent income distribution, where it shows for the bottom x% of households, what percentage y% of the total income they have. The percentage of households is plotted on the x-axis, the percentage of income on the y-axis. The Lorenz curve can be seen as a graphical depiction of the Gini index that is commonly used as a measure of concentration.
Measuring concentration in air traffic: Gini index or Herfindahl ?
The most common measures for economic concentration include the coefficient of variance, the Herfindahl-index, Theil’s entropy measure, the C-4 firm concentration ratio, and the Gini index. Reynolds-Feighan recommends the Gini-index as the most appropriate concentration measure for airline networks (Reynolds-Feighan, 2001) or airline traffic distributions at airports (Reynolds-Feighan, 1998). Allison (1978) and Sen (1976) examined the properties of income inequality measures and proposed a series of characteristics that indices should possess. The C-4 index only reacts to changes in the traffic distribution in an airport population when the 4 biggest airports are involved. Moreover, the Herfindahl-index is only sensitive to changes in the extremes of the population. The coefficient of variance, on the other hand, reacts well to changes in the population, but is extremely sensitive to the underlying distribution. 
The Gini-index was the only index to satisfy all the criteria (see Burghouwt, 2006, pp.65-66). The Gini-index is not sensitive to the distribution of the population and reacts quite well to changes in all parts of a given population (see Reynolds-Feighan 1998; Sen 1976), i.e. it is sensitive to inequalities at medium and smaller sized airports as well. Another critical advantage of Gini is its scale independence (Reynolds-Feighan, 2001, p.265). Bourghouwt (2006) puts forward these properties of Gini in terms of spatial concentration, rather than economic concentration, and applies them with regards to airports and airlines. The following presents a definition of Gini and its application to air traffic (see Burghouwt, 2006).
Definition:
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where y is the air traffic at airport i or j, defined as the total number of supplied seats per week, and n is the number of airports in the airline network. The Gini index is based on the absolute difference in seat capacity between every possible airport pair in the airline network scaled to the number of airports in that network and the average seat capacity par airport. If the airport share is always equal to a share in overall traffic (seat capacity), then there is a situation of perfect equality (Gini = 0), fitting a 45° line on a Lorenz curve. On the other hand, if all seat capacity (for outgoing traffic, for example) would be concentrated at one airport only, with no traffic leaving from the remaining airports, a Gini score of 1 would be the result. 
In the following, we shall use the advantageous properties of Gini to move our analysis from spatial concentration to economic concentration in a more normative sense to assist policy makers in their assessment of market structure and effective competition policy in air traffic. In order to do so, different layers for analysis will be used: First, the distribution of traffic (in units of available seats; available seat miles) between airports will be measured with Gini and these Gini indices will be compared on similar, geopolitically determined routes between Western Europe and the US. Secondly, all airlines that operate scheduled flights within the described zones (and have their home base within) shall be classified in clusters along critical multi-dimensional scales that relate to their network features, such as: Number of airports being served by the given airline, number of links per airport for each airline, maximum frequency of flights at airline’s main airport, and number of intercontinental links for each airline. Since the later analysis also takes account of a ranked order distribution of flight frequencies among all airports that an airline serves, this too could be interpreted as a form of concentration or equality measure. However, we did not choose to employ Gini for the clustering of airline networks at this point. The results of the first analysis that employed the measure for traffic concentration at airports can then be decomposed along the identified clusters of airline networks. This third layer of analysis will allow providing a summary description on how different types of airlines’ network structures allocate capacity (in terms of available seats and available seat miles) between the airports that they serve. This summary description at the last stage of our analysis will allow for making inferences as to which airlines networks shape market structure in distinctive manners and thus determine economic concentration, not only spatial concentration.
Towards a more normative approach
It is our intention to evolve from graph theory and its idiosyncratic typologies for network structures, and to help develop a practical tool for policy makers. There are many legitimate caveats when applying measures for spatial concentration to policy making. In order to highlight potential problems of such a graph based approach, it is useful to go back to the article of Reynolds-Feighan (2001). For measuring the distribution for air traffic inside the US with Gini, Reynolds-Feighan used a comprehensive measure for air traffic that was composed of passengers and/or number of movements, which may appear close to the measure for seat capacity as presented by Burghouwt in the above, but risk to obscure other fundamental dimensions that matter in this respect: for example, distance. In order to describe available capacity in air traffic, the unit of analysis of available-seat-miles (ASM) is at least as important as seat capacity (AS). Indeed, the economies for airline operators that can be gained through the utilization of aircraft on appropriate distances go beyond spatial concentration measures and relate directly to the notion of efficiency.
Reynolds-Feighan’s approach was non-exhaustive in its selection of airlines (7 major ones and 11 low cost ones, following the official classification of the Department of Transportation (DoT)). Although instructive in terms of understanding capacity allocation inside the operating agent’s network, it does not allow to draw a comprehensive picture of market structure or to compare between distinct geopolitical constituencies, such as Europe and the US. In its conclusion, Reynolds-Feighan stresses frequent difficulties to distinguish hub-and-spoke structures from point-to-point ones. Among a wave of new entrants to the industry, the Gini index often suggested little homogeneity within the same strategic group of “low cost airlines”: some carriers showed Gini values of <0.5, suggesting point-to-point traffic. Another group of “low cost” carriers showed Gini indices of at least 0.6, which was interpreted as an increased propensity towards hubbing. Apparently, the dependency on airline classifications from a regulating body (the DoT in occurrence) apparently did not fully match the paper’s research purpose. This motivated us to classify economic agents along their intrinsic network characteristics, before assessing their respective impact on overall market structure at a later stage of our analysis.

Finally, Lijesen (2004) addresses two weaknesses of Herfindahl, which we cannot ignore when looking for a normative validity in terms of Gini: (a) its robustness with respect to the definition of the market and (b) the questioning of the relationship between concentration and market power. When comparing concentration between Europe and the US, we would expect to find important structural differences, rather than perfect symmetry: the different geopolitical environments in which airlines have evolved and are operating can be considered an important factor that helps define the boundaries for both markets. In particular, the domestic market inside EU member states may be more effectively compared to that inside states of the US, rather than the total US domestic market. In turn, intra-European traffic, i.e. between member states, may be compared with US domestic traffic that crosses state borders, but not with intercontinental traffic, etc. Measuring traffic concentration on the most appropriate geopolitical scale is likely to provide adequate definitions for the limits of a common market. 
The historical dimension must also enter into a valid and nuanced assessment of concentration and its likely dynamics in the future: if one were to consider, for example, all European airlines and airports that served as the relevant actors defining our market, a strong bias due to domestic traffic would enter into Gini, but its influence on concentration over the long run may be questioned due to the advancing integration of European air traffic and a possible reallocation of routes towards trans-European connections over time. As of today, such trans-European routes are still under-developed: airlines that would enable such new linkages, including low-cost carriers, have not attained their full potential before many years. Similarly, intercontinental traffic is concentrated at major airport hubs that are dominated by legacy carriers. The alliances that have been formed among these industry incumbents may tend to re-allocate these intercontinental routes on to even less mega-hubs in Europe. In comparison to the US, European air traffic is still at an early stage of liberalization and its degree of concentration risks to be subjected to significant changes in the foreseeable future. 

On the relationship between network concentration and market power
Applying a Gini measure for approximating market power in air traffic is problematic, although establishing such a relationship through Herfindahl is not obvious neither (see Lijesen, 2004). In order to minimize confusion in this respect, we need to acknowledge that individual agents or groups of agents (i.e. airline operators) behave in a way that creates more or less concentration, or inequality, in air traffic between airports for specified geopolitical zones. We must not confuse networks that are operated by airlines, which may chose to have very unequal traffic distributions inside their network, and the overall effect this may have on connections between airports as an aggregate. The higher the number of individually highly concentrated airlines (operating, for example, on hubs and spokes each), the less we can say about market power or the beneficial effect they have on air traffic as a whole. In particular, it may be that less concentrated airline networks (point to point, for example) may be less beneficial for contributing to the operation and growth of air traffic inside given geopolitical zones. Although “hubbing” and increased concentration among airports (in the Gini sense of creating inequalities) may be related, our methodology will not address the issue whether one airline or airport wields excessive market power or not. Instead, we seek to determine the strategic groups of airlines along their network patterns and infer about distinct market structures for air traffic on certain geopolitically identified routes that result from them. 
ANALYSIS
The following three-step analysis will avoid such confusion and allow for a comprehensive, though nuanced way of assessing market structure and the impact that types of airline networks have on overall traffic distribution. In the first section, we will present our data set. The following part will compute Gini values for defined geopolitical zones and compare results from Europe with that of the US. This part will allow differentiating for Gini scores that take account of distance in their distribution of air traffic. A third section classifies the constituent agents that operate in the given geopolitical areas according to their individual network features. This classification will cluster airlines inside strategic groups which will allow a comparison of typical network features of the agents that operate in Europe against that of the US. This step allows for a somewhat atomistic view of overall market structure due to the exhaustive classification of its constituent components of operating firms. Finally, a summary decomposition of market structure according to the classified groups of airlines is conducted for each geopolitical area. This final step in our analysis will provide summary information on characteristics of market structure as they have been shaped by the distinct strategic groups of airline operators. In particular, these sub-market structures can be compared between Europe and the US. It will highlight developments that may be in line or not with objectives of regulatory policy and pinpoint those types of airline networks that are more likely to contribute to achieving these goals against those that don’t. In the end, rather than deciding on the question if it is the biggest airlines that exert market power or not, our approach shifts attention to the role of those airlines that, due to their smaller size, often remain outside the scope of regulatory attention. However, as a strategic group, their collective impact on traffic distribution and equitable access to air transportation may be at least as beneficial as that of major airlines. Beyond concentration and market power, our objective is to assist regulators in identifying airlines where intervention may help to develop competitive market structures that become more evenly distributed and provide prospects of sustainable growth for this industry.
Data sources
Data was collected for the month of November 2005 and comes from two sources: European carriers that operated scheduled flights during that period are listed in the Official Airline Guide (OAG) database. This database is highly restricted and independent researchers or academics cannot easily have access to it. Data covering scheduled air traffic in the US for the same period is made available as public information in an unrestricted manner through the Department of Transportation’s statistics web-site. US data is organised in two separate databases: one that regroups domestic (national) non-stop service between airports, and a second that lists all international flights from and into the US. From this data we extracted variables such as: airline operators, departure airport, destination airport, geographic location of the airports concerned, frequency of departures, aircraft type and flight distance. The data was based for a representative month in the recent past, which we decided to be November 2005. 
From this comprehensive data, information of over 12,000 flights in Europe and, in total, over 18,000 flights for the US was recorded. In an iterative approach of filtering and aggregating data, we condensed all individual flights into origin-destination (OD) links for each airline. The variables that were extracted from our data base could be organized to provide information of seat capacity and available seat miles per airline and per origin airport. Separate matrices accounted for the three distinct geographic scopes (domestic, intra-continental or intercontinental) of these OD links. This condensed organisation into 6 distinct matrices (3 for OD links origination from European airports, 3 for US airports) provided us with all components needed to perform our subsequent analyses.
Finding a Gini score within geopolitical borders 
A Gini index can be attributed to overall traffic distribution, depending on the geopolitical scope of the routes that are served. In principle, by comparing the Gini-indices of geopolitical areas and comparing the respective scores found in Europe with those of US airports, important asymmetries of more or less inequality in their respective traffic distribution are likely to appear. This first, comprehensive approach, takes into account all airline networks that operate scheduled flights that depart from the listed airports. Also, apart from finding values for Gini and comparing them across geographical scope and origin, another distinction needs to be made to account for the role of distance. We therefore seek to compare scores of Gini for separate benchmarks, i.e. ones that include distance parameters and other ones that do not. 
The following results calculated the Gini (G) coefficient of inequality with bootstrap confidence intervals. G is a measure of inequality, defined as the mean of absolute differences between all pairs of individuals for some measure.  The minimum value is 0 when all measurements are equal and the theoretical maximum is 1 for an infinitely large set of observations where all measurements but one has a value of 0, which is the ultimate inequality (Stuart and Ord, 1994). The small sample variance properties of G are not known, and large sample approximations to the variance of G are poor, therefore confidence intervals are calculated via bootstrap re-sampling methods (Efron and Tibshirani, 1993). We calculated two types of bootstrap confidence intervals, which are percentile and bias-corrected (Efron and Tibshirani, 1997).  As the bias-corrected intervals are more appropriate, only the later shall be reproduced in the following results. In order for G to be an unbiased estimate of the true population value, it should be multiplied by n/(n-1).  This corrected form of G does not appear in most of the literature, but there are few situations when it is not the most appropriate form to use.
(insert Table 1 about here)
For domestic routes inside the European member states and US intra-state routes, capacity allocation at airports (available seats) are very similarly distributed. A Gini score below 0.8 in both cases indicates relatively low concentration, although in absolute terms a value of 0.8 may be considered a very uneven distribution of traffic among airports. Geopolitical differences between (Western) Europe and the US do not suggest differential inequalities in domestic/ intra-state route allocation from an available seat (AS) perspective.
On the other side, when taking into account the role of flight distance (factored into ASM), a clear increase in concentration is observed for US intra-state traffic. A comparison of the ranges of 95% confidence intervals (CI) inside the US shows that these differences in concentration are significant. Clearly, US operators tend to concentrate intra-state traffic on longer distances, a finding that can be considered intuitive. The smaller geographical dimensions of many European nation states may help explain why economies of distance may play no significant role in explaining inequalities in the distribution of domestic air traffic.
(insert table 2 here)
A first remark to make is the small number of airports that offer intra-European connections, as compared to the US. Clearly, the cohesion in air traffic across states in the US is much more advanced than pan-European air traffic, which continues to privilege domestic connections (448 airports within the same geopolitical zones). This finding is not incompatible with high scores of Gini, quite to the contrary: a comparison of both 95% confidence intervals for available seats in Europe and the US shows that such higher spread on inter-state traffic coincides with higher traffic concentration (higher inequalities) among airports in the form of available seats offered through airport departures.
When taking into account flight distance, we find that the gap between pan-European and US traffic concentration (inequalities) in terms of ASM even increases. Inter-state inequalities in terms of ASM for the US show significantly higher scores for Gini. Again, this suggests that US carriers tend to deploy aircraft on longer distance connections from more traffic intensive airports (significant at >90% confidence interval). Our analysis shows that the opposite is the case for European airports, i.e. carriers do not seek to serve longer distances inside the European Union from bigger (and potentially more congested) airports. US operators clearly take advantage of distance economies which yields more unequal traffic distributions between airports. Their European counterparts do not follow this example, although there is no indication that such higher concentration would mean less airports being served.
(insert table 3 about here)
For traffic that is intercontinental or that otherwise transcends the geopolitical borders of (Western) Europe or the US, a completely different picture emerges. Such longer-distance flights are offered from a much higher number of European airports (104 versus 64). The concentration of such traffic is significantly higher (but just below a 95% confidence interval) for European airports in terms of available seats compared to those of the US. It is noteworthy to find a relatively moderate Gini score of below 0.75 for US airports, whereas this figure is extremely high at >0.85 for intercontinental air traffic originating from European airports. 
When looking at inequalities in traffic distribution in terms of ASM, we find that the found patterns are confirmed, showing again significantly higher (>90% confidence interval) concentration for European airports. On the other side, flight distance as such shows little explanatory power with regards to such long-distance flights.
In short, distance considerations appear to influence the distribution of air traffic among airports to a very strong extent for routes within the US, whereas this is not the case for (Western) Europe. More unequal distributions in air traffic (in terms of available seats) among airports are found with inter-state traffic in the US and long-distance, i.e. intercontinental, traffic from Europe. It is noteworthy that high Gini scores (about 0.85) do not appear incompatible with a higher number of airports in the network system. Again, our findings suggest that both distance and geopolitical considerations are likely to contribute to explaining asymmetries in concentration between Europe and the US. The next step in our analysis would be to isolate and classify the operating airlines that constitute the found market structure and shape it through their strategic behaviour as economic agents.
CLUSTERING OF AIRLINE NETWORKS INTO STRATEGIC GROUPS
Rather than following “official” classifications and selection of a priori interesting airlines for analysis, we emphasize advantages of a more exhaustive method: cluster analysis by multiple-scaling allows forming strategic groups among all airlines in our database. These strategic groups are therefore formed along intrinsic characteristics of the networks, without relying on outside (from DoT, for example) more general classification. The extent to which these airlines differ in their operational characteristics are key for distinguishing clusters of strategic groups (for a definition of strategic groups, see Caves & Porter (1977)). Critical scales for hierarchical cluster analysis will for example be the size of the airlines’ networks and the number of connections at airports served. Such criteria can be considered structural, with each group impacting on the overall market structure of air traffic in a more or less distinct way. For a similar exercise of airport classification, Burghouwt et al. (2001) proposes cluster analysis based on Ward’s method: “multi-dimensional scaling is appealing because capacity alone does not capture the hub structure of an airport fully. It only measures the size but not connectivity (Burghouwt et Hakfoort, p. 313). Our population of airline networks can be classified into clusters of strategic groups along multiple scales. Extending on this definition of “connectivity”, we can for example distinguish between the size of an airline’s network in Europe, the average number of city pairs originating from a given airport, traffic distribution inside the airline’s network and their degree of intercontinental connections. These different measures, although all of them may be related to “connectivity”, operationalize the following dimensions to cluster our population of airline networks: 
· Size, i.e. the number of airports that are being served within the airline’s European network. 

· The average number of routes that an airline serves from each airport: We constrain this variable to airports and routes inside the geopolitically distinct home markets (i.e. the EU and the US). This variable accounts for average connectivity offered inside an airline’s network.
· Traffic distribution among airports inside the airline network can be approximated by a log-linear relationship of monthly departures by decreasing airport rank order. Two variables allow defining this traffic distribution: the most heavily travelled airport inside the airline network (log-value of monthly departures of carrier) present a y-intercept; whereas the log-linear plot of its rank-ordered distribution provides the slope variable.
· The number of intercontinental links of an airline at its best connected airport is important for two reasons: a) it exemplifies the feeder-hub logic of many airline networks, and b) it may be an element of market power that transcends the geopolitical scope within a liberalized and/ or unified market in the EU and the US.

In the following we are going to present results for groups of airline networks as they were derived from the above methodology.
Multi-dimensional scaling of airline networks
Our data was collected for a representative month (November) in 2005 (source OAG). Proximities were computed using Euclidean distance and the hierarchical classification followed increases in sums of squares. An upper tail significance test yielded the following results: 

(insert table 4 about here)
We chose to truncate our classification for Europe (US) at the 8 (6) cluster-level with a realised deviates of 0.24 (0.25) and a t-statistic of 3.63 (2.08). No meaningful insight was expected from partitioning our population into more clusters. 

Results for EU airlines
The resulting clusters are shown in the following tree diagram:
(insert figure 2 about here)
In all, some 107 airlines were grouped inside Cluster 1. Typical examples were such airlines as Aerocondor, Swedjet, Itali Airlines, Inter Airlines, Avitrans Nordic, My Travel, Blue Panorama, etc. The cluster represents very small airline networks that in general operate one connection between very few airports (three, on average; see subsequent table for details).

Cluster 2 regroups some 45 airline networks, such as TEA Basel, flyniki, Airlinair, LGW Walter, Alitalia Express, Golden Air, Virgin Express, etc. These airlines typically connect some 11 airports with each other, of which each airport provides, on average, some 2 connections.
Cluster 3 grouped some 21 airlines within the same network characteristics: very small presence at European airports and few links at first glance suggested small operators. Upon closer inspection we found that the identified airlines were mostly constituted of national carriers from outside the EU: Malaysia, Korean, Royal Jordanian, Saudi, Singapore Airlines, etc. Indeed these carriers had a very small presence inside the European Union, but could not be considered actors in the context of liberalisation of European air traffic. We decided therefore to drop this cluster from subsequent analysis.
Cluster 4 grouped 25 airlines such as: Helvetic, Norwegian Air Shuttle, Sterling Airlines, Cirrus, Air One, Spanair, British Midland, etc. These airlines typically small to medium sized networks, with a typical presence at some 25 airports in Europe, providing – on average – some 3 links from each airport served (for details, see the subsequent table).
Cluster 5 is constituted of 10 airlines, such as: Air Berlin, Air Lingus, Finnair, Olympic, Hapag Lloyd, Air Portugal, easyJet, etc. These airlines operate on medium-sized networks inside the EU (41 airports per network, on average), where the average number of links per airport is between 4 and 5, i.e. these medium networks are already more connected between each other. 
The largest airline networks are grouped inside Cluster 6: they are made up of Air France, British Airways and Lufthansa (see subsequent table for network details). 
Cluster 7 groups 7 airlines that operate medium-sized networks in Europe. They consist both of some former incumbents as well as of larger charter airlines: Alitalia, KLM, Austrian, Turkish, ThomsonFly, Condor, LTU

Cluster 8 regroups another three airlines that operate on large and well connected networks inside the European Union.: Ryanair, Iberia, Scandinavian. Although these characteristics are somewhat similar to that found with Cluster 6, important differences exist as with regards to intercontinental scope of both Clusters (see subsequent table for details). 
Results for US airlines
17 airlines operate on medium-sized networks inside the US. They are grouped inside Cluster 1. Examples are: American Connection, Air Midwest, Air Tran, Colgan Air, Frontier, Horizon Air, JetBlue, etc. 

Another 8 airlines operate smaller networks (between typically some 23 airports), which are grouped inside Cluster 2. Their member airlines are: Gulfstream International, North American, Executive Airlines, USA 3000, America West, ATA, etc.

Cluster 3 represents those carriers that operate the smallest networks within the US, where typically only 7 to 8 airports are being served. They provide, on average, some 2.7 links from each airport node. 29 carriers are part of this cluster. Members include Smokey Bay Air, Bemidji, Salmon Air, Baker Aviation, Chicago Express, Pacific Wings, etc. 
(insert figure 3 about here)

Cluster 4 represents the biggest regional and low-cost carriers inside the US: Pinnacle Airlines, Mesaba, Atlantic Southeast, SkyWest, Comair, Mesa Airlines, Southwest Airlines, etc. These airlines are national focussed, and display high average connectivity between each of their airports (see subsequent table for details).
Cluster 5 regroups American and Continental airlines. These large and extremely well connected network operators distinguish themselves especially by their very high intercontinental scope.
Cluster 6: Delta, Northwest, United Airlines, ExpressJet, US Airways also are part of the “majors” inside the US. Their characteristics are very close to those of Cluster 5, except for lower, although very significant intercontinental scope. This distinction made between Clusters 5 and 6, however, may be due to the distinct airline code of ExpressJet, also known as Continental Express. The company acts as a sub-contractor for Continental with a mostly regional and national scope. If ExpressJet were grouped with Continental Airlines, it is likely that the distinction between Clusters 5 and 6 would be blurred considerably. 
Summary results for clustered airline networks
After having grouped all airlines inside clusters, we shall now evaluate some of their structural distinctions. “APcount” stands for the (average) number of airports that are being served through an airline. “AvLink” counts the average number of city-pairs for each airport that is served within the airline’s network. “MaxDep” is in logarithmic scale and takes into account an airline’s maximum frequency of monthly departures from its main airport. “LnSlop” takes account of the regularly found log-linear relationship of such flight frequencies for airlines when airports are ordered by rank. Finally, “IntScop” presents the number of links that go beyond the flight connections inside geopolitically delimited areas (and that were not acknowledged by the previous scales). For further explanations, the reader shall refer back to page 13. Each cluster shows the number of airlines that belong to it as within brackets, following the airline code of one typical member airline of that same cluster. Clustering along these scales achieved a confidence interval of >95%.
(insert table 5 about here)
One notable difference between European and US market structure is their degree of concentration/ fragmentation among airline networks. Our cluster analysis in the above showed that very large networks are more numerous in the US (compare clusters AA[2], UA[5] and XJ[12] with clusters AF[3] and IB[3] in Europe). In that respect, European traffic is more concentrated for the biggest operators of airline networks. For the smaller networks, many more operators can be found inside Europe as compared to the US. As far as the smallest airlines are concerned (see GN[107]), no equivalent exists in the US. For the range of small to medium networks, the degree of fragmentation seems subject to certain critical thresholds (see threshold of size from AP[25] to SN[10] and BY[7] in Europe or from TZ[8] to YX[17] in the US). 

A comparison of the results for the clustered networks between EU and the US reveals strikingly different patterns for the dominant network configurations. In the EU, the majority of airlines (107) operate very small networks with limited (scheduled) service between only 3 airports. Such types of airline operations are practically non existent in the US. Airlines that operate traffic in the range of 7 to 25 airports are more numerous in the EU compared to the US (45+25 > 29+8). The average number of routes originating from airports in these clusters tends to be slightly lower among European airlines (2-3 versus 3-4). The number of monthly departures from their biggest airports tends to be higher for the US, suggesting a higher tendency towards hub operations. 
Another threshold in network classification appears for airlines that operate between 40-50 airports. For this range the number of airlines operating is exactly the same inside Europe and the US (10+7 = 17). These groups of airlines operate moderate to high frequencies of flights from their main airport on both continents, where EU networks tend to spread their capacity over more OD links (on average per airport) compared to their US counterparts (4.5 versus 3.2). On the other side, airlines inside this cluster within the US show almost no links to airports outside of their “home” market, whereas European airlines significantly rely on such long-distance links.
The remaining airlines are clustered within groups that serve, on average, >80 airports inside their respective networks, whereas the size of US airline networks in this category typically is significantly greater. The number of such large network carriers in the US also outnumbers that of carriers inside the EU at a ratio >3 to 1. The largest 7 US carriers easily outperform their largest 6 European counterparts in terms of monthly departures from their most important airports by a wide margin, respectively. Also, the number of average routes per airport is significantly higher for these US carriers: they US provide significantly more average links to other airports for each origin airport than their biggest competitors in Europe (9.72 to 11.6 versus some 4.5 only). In terms of traffic distribution within these operators of very large networks, we find significantly steeper slopes for XJ[12] and AA[2] compared to IB[3] and AF[3], despite comparable network size within the US or EU market. Only UA[5] shows a comparable slope of -0.037. Without surprise, it is these largest carriers that concentrate most of the long distance, i.e. intercontinental routes in the US. Their European counterparts show a high degree of intercontinental scope as well, although it is the largest three carriers only that somewhat approach an equivalent long-distance, extra domestic, scope of the 7 largest US carriers.
Having classified distinctive structures for airline networks acting as economic agents, we can now analyze their respective impact to a more or less even distribution of air traffic from airports inside the EU or the US.
SUMMARY DECOMPOSITION OF TRAFFIC DISTRIBUTION
In the following, we are going to present results that compare key figures for the allocation of capacity between airports for the various airline clusters in Europe and the US. As for our previous comparison of Gini, we have chosen to compare traffic flows that originate at geopolitically separate airport levels, i.e. comparing national-domestic flows in Europe against intra-State in the US, intra-European against US inter-state, and, finally, long-distance (i.e. intercontinental) traffic originating from European airports against that of the US. 
EU domestic versus US intra-state
(insert table 6 about here)
For national-domestic traffic inside the EU, airlines grouped around clusters HG and AP represent almost 40% each of all airports that account for such service. Both clusters show a high percentage of airports that are not served by any airline outside their own cluster (35.1% for HG; 30.9% for AP). Clusters that group much bigger network operators, such as clusters AF, BY or IB, cover only 20% or less of European airports for such domestic service each. However, the percentage of airports that would not be covered for domestic service from any other airline outside this strategic group is relatively high for clusters AF and BY, less so for IB.
It is the biggest network operators grouped inside clusters AF and IB that deploy very high capacity on domestic routes per airport that they serve. On the other side of the spectrum, highly fragmented operators of very small networks (see HG) deploy very little capacity per airport served, despite the fact that as a cluster they collectively provide domestic service to almost 40% of our airport total, in 35.1% of the cases being the sole provider of domestic air service there.
These results suggest that Europe’s biggest airlines cannot longer assure alone this task of domestic air traffic, in particular for less frequented airports. Particularly with regards to large networks clustered around IB[3] or medium sized networks of SN[10], relatively few airports are found where these airlines provide domestic service that would not be otherwise provided by airlines outside their clusters.
(insert table 7 about here)
By comparison, intra-state service in the US has become somewhat marginalized within the range of services of the biggest airline networks (AA[2] and UA[5]): not only does their share of airports represent a small fraction of the airport total (9.9% + 19.8% respectively); almost all airports that are covered by these two clusters receive domestic traffic from other airlines as well. In contrast, clusters such as YX[17] and XJ[12] not only cover many more airports (41% and 51.5% of the total respectively), but their airport presence also much less overlaps with that of other clusters. This indispensable contribution to domestic air service applies both for heavy investment in capacity per airport (see seat average for XJ) and much lighter investment (see seat average of YX per airport). Comparing with domestic service inside the European nation states, one finds that much less overlap of airports exists inside the US between clusters, apart from the two clusters around AA and UA. It is noteworthy to see that clusters of smaller to medium size airline networks (YX and TZ) deploy little capacity on domestic routes on average for each airport served. Compared to Europe, the biggest operators (clusters AA and UA) deploy significantly less capacity on domestic service. 

The most interesting pattern can be found with cluster XJ[12]: a high number (177) of airports are used for intra-state service, with 45% of them being exclusively served by airlines inside this cluster. The capacity that is being deployed by such large or very large airline networks is very important per airport. Their service tends to operate longer distances on intra-State routes, whereas airlines in cluster C8 tend to operate on shorter routes.
Intra-EU versus US inter-state
(insert table 8 about here)
Coverage of airports for intra-European traffic is spread relatively evenly across groups of airlines, with each cluster representing between 32% and 58% of the airports total for such service. The overlap of airports, served by different clusters is significantly higher than with domestic traffic. Industry incumbents (former flag carriers) operate from airports that are practically all covered by other clusters (see AF[3] and BY[7]). Cluster IB[3] seems to contradict this finding, with 16% of non-overlap. However, since low-cost entrant Ryanair (RY) is part of this cluster, and is known to operate mostly intra-European routes between secondary airports, it can be inferred that this figure would drop to levels of below 5% for the remaining incumbents Iberia (IB) and Scandinavian (SK) as well.
In contrast, clusters of smaller airline networks show higher values of between 9-10% for non-overlap. Strikingly AP[25], that covers about 57% of all intra-European airports, shows a relatively high value of 13.4% for airports that are not being served by any other cluster. In that respect, it can be said that cluster AP[25] plus Ryanair show the highest impact on intra-European traffic coverage and diversity to otherwise underserved airports.
Looking at the magnitude of capacity investment at single airports, we see that it is very low for cluster GN[107], low for clusters HG[45] and AP[25], moderate for BY[7] and IB[3]. Clusters SN[10] and even more so AF[3] show, on average, the highest capacity investments per airport served for intra-European air traffic. However, in terms of capacity as put in ASM, we see that this capacity allocation translates through longer distances, on average, for traffic inside cluster SN[10] as compared to traffic performed through cluster AF[3] that concentrates on shorter intra-European routes.
(insert table 9 about here)
By comparison, traffic between states inside the US shows distinctly different structural patterns in many respects: Clusters YX[17] and XJ[12] cover 58% and 74% respectively of all airports. Along with cluster C8[29], they comprise over 97% of all airports providing for air traffic between states inside the US. In particular, those established majors that operate the largest networks, i.e. AA[2] and UA[5], deploy capacity at only 7 airports where there is no overlap with any other airline outside their group. Also, these alternative networks are more numerous, without being necessarily fragmented to an extent that they would be considered atomised. 
The pivotal role that can be attributed to XJ[12] for inter-state traffic inside the US is underlined by the fact that, on average, the number of seat capacity allocated per airport is high, with a clear tendency to serve shorter routes. By comparison, cluster UA[5] provides extremely high capacity per airports served, for average length routes. AA[2], by comparison, allocates not much more seat capacity beyond the already high level of XJ[12] to each airport, but operates flight distances that are, on average, significantly longer than those inside UA[5] and even much longer compared to those of XJ[12]. An obvious explanation for these differences is technology choices in terms of aircraft used between the distinct clusters.
Long-distance and intercontinental routes
(insert table 10 about here)
Most European airports with long-distance (i.e. inter-continental) routes are operated through airlines grouped inside cluster GN[104], that represents very small airline networks: they operate long-distance routes from some 54 European airports, of which 14 do not overlap with other clusters. GN[104] also serves domestic and intra-European routes. The average seat capacity that they allocate on such airports is relatively small, i.e. they would tend to operate smaller aircraft. 
This is in stark contrast with the largest European networks that are grouped inside AF[3] and IB[3]. Excluding European-focused Ryanair from this later group, the remaining 5 airlines operate such long-distance routes from a cumulative some 15 airports only. Strikingly, airlines LH, BA and AF inside cluster AF[3] concentrate 43% of all available seats (of European based airlines) for total intercontinental capacity originating in (Western) Europe. Other large networks IB and SK operate from a comparable number of intercontinental bases (10% of airport total), but provide only some 7% of total seat capacity. 
Other medium-sized airline networks grouped around BY[7] can be contrasted with AF[3] and IB[3]: 7 airlines versus 3+3 (minus Ryanair). BY[7] provides long-distance operations from 24 airports compared to 15. BY’s seat capacity makes up 23.1% of the total compared to 21% for clusters IB and AF together. Although BY deploys significantly more seats at airports than IB, this number remains far below that observed for AF[3]. As for intercontinental routes, one may infer that BY[7] and IB[3-1] are structurally very similar, operating medium to high density traffic from a wider, less concentrated, airport base compared to AF[3] that excel in what may be called spatial hyper-concentration.
(insert table 11 about here)

Again, the profile of long-distance routes from the US is different from the one found in Europe: the largest 7 US airline networks (UA[5] and AA[2]) operate such routes from significantly more airports (some 39). Cluster AA[2] which is known to show by far the greatest intercontinental scope, provides some 40% of total seat capacity for such routes. Here, seat capacity on long-distance is controlled by only 2 airlines, compared to Europe’s big three (see AF[3]), but this capacity is spread over 18 airports that represent 28% of all airports that offer such services in the US. 
UA[5] makes up another 40% of total seat capacity, and these links are distributed across a very wide base of 36 airports. Taking into account the significantly longer average flight distances flown by the five member airlines of cluster UA, we end up with a very high share of 54% of all available-seat-miles for intercontinental traffic being comprised in cluster UA[5]. 
In contrast, other operators of large scale networks, i.e. those inside XJ[12] provide a diminishingly small percentage of total seat capacity for long distance (only some 5.2%), although their airport base is significant (25 airports, all of them being used by other clusters for long-distance as well). In addition, XJ[12] appears to be more focussed on trans-border traffic rather than truly inter-continental traffic, as the small percentage of 1.5% for ASM share on total ASM offered suggests. 
Cluster TZ[8] was shown before to offer significant intercontinental scope, despite of its smaller US-domestic networks (see cluster results for details). Airlines inside cluster TZ[8] operate from a wide base of national airports (34) of which 9 are non-overlapping with any other cluster. However, the amount of seat capacity that is allocated on such routes remains considerably under average, suggesting smaller aircraft and less frequency. A comparison with an even smaller score in terms of ASM (4.9%) shows that such routes are mostly trans-border (i.e. going into Mexico or Canada). 
CONCLUSION
Our findings draw a complex, though nuanced and coherent picture of the differences in traffic distributions between Europe and the US. In Europe, relative to the US, much fewer airports serve trans-European routes, but relatively many serve long-distance and intercontinental. It will remain to be seen to which extent the success of trans-European low costs (i.e. the Ryanairs, etc.) can be extrapolated into the future. One obstacle, of course, may come from the European Union’s ambitious program to encourage trans-border traffic with high-speed trains. The hub-and-spoke structure is a key concept that helps us explain the different distributions of traffic and its inherent economies, but also needs to take into account the role that geopolitical aspects may play when instrumentalizing them: with the full integration of European air traffic being yet unaccomplished, airports in the US have shown to organize around hub airports that are dependent on domestic routes (both intra-state and inter-state), whereas even for intra-state routes they are able to benefit from distance economies that help lower unit costs of operating flights. Due to the shorter distances within European nation states, such economies risk to remain unexploited in many cases. Geopolitical considerations that would not matter inside an US domestic market in many cases prevent European cross-border traffic. As was shown with its very high Gini score, spatial concentration among the European airports is strongest for long-distance, i.e. intercontinental, routes. Geopolitics is a key aspect that helps explain the relative underdevelopment of trans-European and the disproportionate concentration of intercontinental routes at very few airports compared to the US. 
Looking at the composition of airlines as economic agents and the strategic behaviour that is manifest in both geographies, other important asymmetries were found: very small airline networks make up the majority of agents in Europe, whereas they do practically not exist in the US, with competition there being less atomised compared to Europe. In the US, several large airline networks exist that specialize on domestic traffic with little or no long-distance links to outside the US. In Europe, the only airline that seems to come close to sharing such network characteristics today is low-cost entrant Ryanair. For similar network size, we see significantly higher rates of traffic at airlines’ hub airports in the US compared to Europe. Also, large and very large airline networks in the US provide significantly more connections per airport served, as well as exhibiting faster decaying, i.e. more unequal, traffic distributions among airports. This higher performance of large to very large US airlines was found independently of their intercontinental scope.
A further decomposition at geopolitically distinct levels of traffic distribution allowed pinpointing the impact of various airlines both for Europe and the US. For domestic markets inside EU member states, the biggest legacy carriers were still heavily invested in such routes, but operated on the most densely travelled ones only, with less densely travelled ones being served by highly fragmented medium and small airline networks. This situation stands in contrast with the US, where intra-state routes are covered by multiple specialized domestic operators of mostly large high density networks. Larger geographic distances inside states allow large networks to exploit routes on intra-state (in the same manner as they would on intra-state) and organize these economically viable routes around hubs, where market coverage shows little overlap of airports with those covered by other strategic groups.
As for intra-European traffic, we found little evidence that big networks contributed in an indispensable way to improving trans-European connectivity, considering their focus on exploiting the highest density routes only. Multiple medium sized airlines, many of them legacy carriers, deploy capacity on significantly longer high density routes. Ryanair stands out as the most remarkable example of having grown into a large medium to higher density trans-European network. 
As for the US, in contrary, large and medium sized networks have emerged that provide domestic (i.e. inter-state) service between many more airports than in Europe. They are effective alternatives to the very big legacy carriers, while operating higher density routes with little or no intercontinental scope. Due to the greater geographic scales in North America, these networks can take advantage of distance economies (without operating on above average distances compared to the overall US market). Other very large networks which are operated by legacy carriers tend either to concentrate traffic on ultra-high density, shorter distances or high densities on significantly longer routes. As for long-distance and intercontinental, the European context shows a somewhat idiosyncratic market structure with a high number of small airlines operating scheduled flights on point-to-point routes. Their business models may, for example, be economically viable by exploiting distance economies with medium-sized aircraft to very few, high value, destinations. As for large networks that show substantial intercontinental scope, there is little evidence that would suggest that spatial hyper-concentration, such as exemplified by AF[3], is truly required or necessary, in particular when taking into account negative externalities that are mostly due to airport congestion at these very few European mega hubs.
As shown, higher spatial capacity of airlines often was accompanied by a more pronounced segmentation of markets and specialization between strategic groups of operators in the US. This evolution was related, although needed to be distinguished, from spatial concentration at the airport level. Policy makers may find that less fragmented market structures would enable airlines to exploit distance economies and organize into medium-to-large scale hub networks if geopolitical limits can be overcome. Such organization of air traffic can be expected to provide for sustainable, efficient and balanced competition. As for the legacy carriers, the US example again shows that alternatives exist to such spatial hyper-concentration. It is up to the policy maker to decide whether Europe’s biggest incumbents may continue to be allowed to pursue further on the path to which they had decided upon early into liberalization. Otherwise, policy may encourage these same agents to change course and follow the US example of medium to large sized networks that in the end would present an alternative for competitive market structure in the long run. 
REFERENCES
Allison, P.D. (1978) ‘Measures of inequality’, American Sociological Review, 43(6), pp. 865-880

Berechman, J., De Wit, J. (1996) ‘An analysis of the effects of the European aviation deregulation on an airline’s network structure and choice of a primary West European hub airport’, Journal of Transport Economics and Policy, 30(3), pp. 251-268

Burghouwt, G. (2006) Airline network development in Europe and its implications for airport planning, Published dissertation, Faculty of Geosciences, Utrecht University, The Netherlands.

Burghouwt, G., De Wit, J. (2005) ‘Temporal configurations of European airline networks’, Journal of Air Transport Management, 11(3), pp. 185-198

Burghouwt, G., Hakfoort, J. (2001) ‘The evolution of the European aviation network, 1990-1998’, Journal of Air Transport Management, 7, pp. 311-318

Button, K.J., Reynolds-Feighan, A.J. (1999) ‘An assessment of the capacity and congestion levels at European airports’, Journal of Air Transport Management, 5(3), pp. 113-134

Caves,R.E., Porter, M. (1977) ‘From entry barriers to mobility barriers: Conjectural decisions and contrived deterrence to new competition’, Quarterly Journal of Economics, 91, pp. 241-262
Efron, B., Tibshirani, R. (1993) An introduction to the bootstrap, Chapman & Hall, New York
Graham, B. (1998) ’Liberalization, regional economic development and the geography of demand for air transport in the European Union’, Journal of Transport Geography, 6(2), pp. 87-104

Humphreys, I., Francis, G. (2002) ‘Performance measurement: a review of airports’, International Journal of Transport Management, 1(2), pp. 79-85

Janic, M. (2003) ‘Modelling operational, economic and environmental performance of an air transport network’, Transportation Research Part D, 8(6), pp. 415-433

Lijesen, M.G. (2004) ‘Adjusting the Herfindahl index for close substitutes: an application to pricing in civil aviation’, Transportation Research Part E: Logistics and Transportation Review, 40(2), pp. 123-134
Oum, T.H., Yu, C., Fu, X. (2003) ‘A comparative analysis of productivity performance of the world’s major airports‘, Journal of Air Transport Management, 9(5), pp. 285-297

Reynolds-Feighan, A. (1998) ‘The impact of US airline deregulation on airport traffic patterns’, Geographical Analysis, 30(3), pp. 234-253

Reynolds-Feighan, A. (2001) ‘Traffic distribution in low-cost and full-service carrier networks in the US air transportation market’, Journal of Air Transport Management, 7, pp. 265-275
Sen, A. (1976) ‘Poverty: an ordinal approach to measurement’, Econometrica, 44(2), pp. 219-231

Stuart, A., Ord, J. K., Arnold, S.F. (1994) Kendall's advanced theory of statistics (6th edition), Edward Arnold, London and New York
Veldhuis, J. (1997) ‘The competitive position of airline networks’, Journal of Air Transport Management, 3(4), pp. 181-188

Table 1: Domestic versus US intra-state traffic concentration
	Domestic/intra-state
	W.Europe 
	USA

	
	AS
	ASM
	AS
	ASM

	No. of airports:
	448
	448
	344
	344

	Unbiased estimator of pop. Gini coeff.:
	0.779649
	0.811864
	0.797211
	0.85173

	Percentile 95% CI:
	0.743091 to 0.801935
	0.774797 to 0.832092
	0.762265 to 0.816742
	0.821402 to 0.867718


Table 2: Intra-European versus US inter-state traffic
	Intra-EU/inter-state
	W.Europe 
	USA

	
	AS
	ASM
	AS
	ASM

	No. of airports:
	248
	248
	354
	354

	Unbiased estimator of pop. Gini coeff.:
	0.79177
	0.782314
	0.844051
	0.872197

	Percentile 95% CI:
	0.75502 to 0.814007
	0.746387 to 0.805907
	0.815349 to 0.862681
	0.846503 to 0.890034


Table 3: Long-distance and intercontinental routes
	Intercontinental
	W.Europe 
	USA

	
	AS
	ASM
	AS
	ASM

	No. of airports:
	104
	104
	64
	64

	Unbiased estimator of pop. Gini coeff.:
	0.850955
	0.892231
	0.745139
	0.788631

	Percentile 95% CI:
	0.785431 to 0.877977
	0.828625 to 0.919577
	0.660743 to 0.793833
	0.706176 to 0.845027


Table 4: Best Cut Significance Test - Upper tail

	
	W.Europe
	USA

	Proposed Partition
	Realised Deviate
	t-Statistic
	Realised Deviate
	t-Statistic

	2 clusters
	14.04
	208.30
	7.55
	64.09

	3 clusters
	3.02
	47.40
	3.24
	27.49

	4 clusters
	2.44
	36.24
	0.71
	6.02

	5 clusters
	1.50
	22.24
	0.66
	5.64

	6 clusters
	0.61
	8.98
	0.25
	

2.08

	7 clusters
	0.52
	7.65
	
	

	8 clusters
	0.24
	3.63
	
	


Table 5: Multiple scale results for clustered airline groups

	W.Europe
	APcount
	AvLink
	MaxDep (log)
	lnSlop
	IntScop

	GN [107]
	3.14
	1.27
	0.98
	-0.094
	2.58

	SQ [21]
	4.14
	1.17
	0.71
	-0,101
	23,81

	HG [45]
	10.76
	2.10
	1.87
	-0.128
	1.73

	AP [25]
	25.00
	2.88
	2.44
	-0.089
	2.36

	SN [10]
	41.20
	4.49
	2.96
	-0.071
	16.60

	BY [7]
	46.86
	4.49
	2.79
	-0.052
	52.29

	IB [3]
	80.67
	4.45
	3.36
	-0.038
	26.33

	AF [3]
	90.67
	4.43
	3.61
	-0.037
	113.33

	USA
	
	
	
	
	

	C8 [29]
	7.55
	2.74
	2.38
	-0.158
	1.59

	TZ [8]
	23.38
	4.15
	2.74
	-0.096
	32.13

	YX [17]
	41.88
	3.22
	3.25
	-0.071
	3.18

	XJ [12]
	97.17
	6.12
	3.42
	-0.046
	10.25

	AA [2]
	98.50
	9.72
	4.01
	-0.046
	184.00

	UA [5]
	102.40
	11.60
	4.00
	-0.037
	88.40


Table 6: EU domestic routes (OD) relative spatial capacity and concentration
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Table 7: US intra-state (OD) relative spatial capacity and concentration 
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Table 8: Intra-EU (OD) relative spatial capacity and concentration
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Table 9: US domestic, extra-state (OD) relative spatial capacity and concentration
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Table 10: EU intercontinental (OD) relative spatial capacity and concentration
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Table 11: Extra-US (OD) relative spatial capacity and concentration
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Figure 2: Cluster results for EU airlines
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Figure 3: Cluster results for US airlines
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