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Abstract
This paper aims to analyze energy consumption efficiency in transport sector by integrating a multiple-output stochastic frontier analysis (SFA) model with a structural equation model (SEM) to flexibly incorporate cause-effect relationships among factors influencing energy consumption. SEM is first used to specify complex interrelations among various factors, and the calculated latent variables are taken as the inputs of SFA model. A distance function approach with multiple inputs and multiple outputs is applied to analyze the efficiencies of transportation systems at different developed and developing cities. To verify the model applicability, an empirical study is carried out considering two outputs of energy consumptions, i.e., private transport and public transport, by using the Millennium Cities Database which includes demographics, economics, urban structure and transport-related data from 77 cities worldwide. Finally, the effectiveness of the proposed model is confirmed, and policy implications of estimation results are discussed.
Keywords: Energy consumption; Transport sector; Multi-input and multi-output stochastic frontier analysis; Structural equation model; Efficiency analysis
1. Introduction

Recently, transportation energy problems in urban areas, caused by the rapidly growing energy demand from road traffic, have been increasingly focused by many researchers and practitioners worldwide. The increase of passenger and freight traffic can induce heavy energy demand, and consequently result in the conflict with serious energy shortage. Thus, it is becoming more and more important not only how to save energy, but how to use energy more efficiently. From the perspective of urban sustainable development and strategic planning, it is worth exploring maximal energy usage at city level. 
Solutions to alleviate energy consumption could be proposed from several viewpoints. One is to increase energy efficiency of vehicles by introducing advanced technologies. The increasing share of low-emission vehicles (LEV) in automobile market, especially in developed countries, is clearly an encouraging trend. However, one has to keep the balance between the increasing LEV share and the newly induced traffic. Another method is to find some substitute resources for crude oil to support operation of transportation systems (Dutton and Pageb, 2006). This scenario seems quite promising, but it is still an ill-solved problem how to improve the cost-effectiveness of using such substitute resources. Actually, we cannot absolutely rely on new technologies or substitute resources because of the limitation of energy resources. How to reduce the use of natural energy is expected to be an ultimate measure. Therefore, it is a wise idea to reconsider our lifestyles and the structure of our living spaces. In transportation, promoting the use of efficient transportation systems (e.g., public transportation systems) and further enhancing the efficiency of the whole transportation system will be clearly beneficial to energy conservation. To realize such efficient state of transportation systems requires the introduction of some package policies including not only transportation supply, but also smart change of land use patterns and suitable management of transportation demand. 
In general, definition of efficiency which is based on production theory means the maximal output(s) given certain input(s) or the minimal cost given certain output(s) under current technological conditions. The former refers to production efficiency and the latter to cost efficiency, respectively (Kumbhakar and Lovell, 2000). It is expected that the concept of cost efficiency could be used to evaluate the efficiency of energy consumption in transportation. Concretely speaking, energy consumption taken as the system output could be preserved at the minimum level, given certain land use patterns, transportation supply and demand. The most widely used two approaches in efficiency evaluation are stochastic frontier analysis (SFA) and data envelope analysis (DEA), which are based on statistical techniques and optimization algorithms respectively. This study only deals with the SFA because it allows for the existence of random shocks beyond control of systems. However, one of the disadvantages of the SFA is that it cannot represent the cause-effect relationships among some of inputs in its specification. For most cases in transportation development, land use patterns, transport supply and demand are continuously interrelated and such relationships may show some variations across different contexts. Therefore, it seems important to develop a flexible modeling approach to deal with such situation. 
Thus, in this paper, we attempt to propose an improved model by integrating SFA model and SEM with latent variables. SEM is first applied to accommodate flexible cause-effect relationships among different factors influencing energy consumption of transportation systems. And then, the independent latent variables calculated from the SEM are introduced into the SFA model as inputs. The remaining part of this paper is organized as follows. In Section 2, the existing studies are reviewed briefly. In Section 3, the models used in this study and the newly proposed model are described in details. After that, Section 4 describes the data used for empirical analyses. The detailed analysis results are discussed in Section 5. Finally the study is concluded and some future research issues are also mentioned.

2. Literature Review

From the perspective of alleviating urban energy consumption, Litman (2005) compared transportation energy conservation strategies focusing on efficient vehicles and efficient transportation systems. These strategies include upgrade of fuel efficiency standards, use of alternative fuels, control of fuel tax and implementation of mobility management. It is shown that energy consumption can be reduced by realizing modal shift from high-duty pollution travel modes to low-duty modes. Numerical scenario analyses suggest that if modal split is promoted in favor of public transport modes (rail and public road transport) with specific ratio, about 45% reduction in energy requirements and CO2 emissions could be expected (Ramanathan and Parikn, 1999). Actually, energy consumption is influenced by many factors, such as level of urban economic conditions (Lise and Montfort, 2006; Zamani, 2006; Oh and Lee, 2004; Lee, 2006), level of transportation supply and land use patterns (Mindali et al., 2004). Lise and Montfort (2006) verified the relationship between energy consumption and GDP by undertaking a co-integrated analysis (possible bi-directional causality relationship) in Turkey, and concluded that there is a unidirectional causality running from GDP to energy consumption and energy consumption keeps on growing as long as the economy grows in Turkey. Mindali et al. (2004) proved that there is no direct impact of total urban density on energy consumption. However, if dividing the urban area into three entities, such as CBD, inner area and outer area, each area and its characteristics have different impacts on energy consumption. For example, level of employment density at CBD comes out as producing the potential to reduce energy consumption. It is also displayed that there exists strong negative correlation between energy consumption and the level of use of public transportation.

It is known that, given certain infrastructure supply, to promote system efficiency or make transportation systems more efficient will impulse energy conservation (Litman, 2005). In addition, it should be noted that the studies concerning energy or energy efficiencies which are discussed widely in existing literature (see Ediger and Çamdah, 2007; Ji and Chen, 2006) are quite different from this study. The existing studies attempt to evaluate the energy efficiency based on a simple equation of energy usage rather than system efficiency. Differently, in this study, the efficiency is defined based on production theory in econometric field. In case of urban transportation systems, which are the analysis target in this study, emissions or energy consumption can be treated as the system outputs, conditional on certain levels of land used patterns, infrastructure supply and some other policy variables. In the framework of efficiency analysis, it is argued that alleviating negative environmental impacts and pressures on energy resources can be partially achieved by enhancing efficiency of transportation systems. Piacenza (2006) investigated the way how subsidization mechanisms affect cost efficiency of public transit systems, taking into account the role played by environmental characteristics of each network facing different level of commercial speed. McMullen and Noh (2007) measured efficiency of transit agency using a directional distance function approach and demonstrated the importance of incorporating the transit agency’s goal to reduce vehicular emissions as well as production of passenger or vehicle miles.
In the econometric field, SFA has been traditionally an important topic and widely applied to evaluate various efficiency-related issues (Löthgren, 2002; McMullen and Noh, 2007; Piacenza, 2006). The method originated in 1977 has been systematically established by Kumbhakar and Lovell in the year 2000. Among most of SFA-based studies, applications with single output models have been popularly discussed. However, considering multi-dimensional characteristics of transportation systems, the efficiency analysis with multiple outputs is much more important than that with single output.
In addition, to apply the SFA, it is assumed that the inputs are independent with each other. If some inputs are highly correlated, policies derived from the efficiency analysis might be misleading because of the statistical issues caused by such correlation among inputs. Moreover, in reality, the factors influencing system efficiency are usually inter-related or inter-dependent with each other. Therefore, such interdependence or interrelation needs to be properly represented in the SFA applications. However, careful review about existing literature suggests that existing studies have still not satisfactorily solved this problem. Under such circumstances, this paper attempts to first represent cause-effect relationships existing among the inputs using the SEM and then introduce the latent variables calculated from the SEM into the SFA. Thus, it is expected that such modeling approach could properly deal with the above-mentioned problem in existing literature. Meanwhile, a much wider range of policies to improve the efficiency of transportation systems could be flexibly and systematically evaluated.
3. An Integrated Model
For integrating the analysis of efficiency and cause-effect interrelations, the structural equation model (SEM) and the multi-output stochastic frontier analysis (SFA) model which is a distance function approach are briefly described below. After that, how to incorporate the information from the SEM into the frontier analysis model will be conceptually explained. 
3.1 Structural Equation Model with Latent Variables
In general, a structural equation model (SEM) with latent variables can be used to capture the complex cause-effect relationships and interactions between observed and/or unobserved variables. SEM is a modeling technique that can handle a large number of (observed) endogenous and exogenous variables, as well as (unobserved) latent variables specified as linear combinations (weighted averages) of observed variables (Golob, 2003). Some similar models include simultaneous equation systems, linear causal analysis, path analysis, structural equation models, dependence analysis, and cross-legged panel correlation technique (Jöreskog and Sörbom, 1989). It is a confirmatory, rather than explanatory method, because the modeler is required to construct a model in term of a system of unidirectional effects of one variable on another. SEM is used to specify the phenomenon under study in terms of putative cause-effect variables and their indicators. Following Jöreskog and Sörbom (1989), the model structure can be summarized by following three equations. 
Structural equation model
η = Вη + Гξ + ζ
(1)
Measurement model for y:

y = Λy η + ε
(2)
Measurement model for x:

x = Λx η + δ
(3)
Here, η' = (η1, η2, …, ηm) and ξ' = (ξ1, ξ2, …, ξm) are latent dependent and independent variables, respectively. Vectors η and ξ are not observed, but instead y' = (y1, y2, …, yp) and x' = (x1, x2, …, xq) are observed dependent and independent variables. ζ, ε, δ are the vectors of error terms, and B, Г, Λx, Λy are the unknown parameters.

An important feature of SEM is that it can calculate not only direct effects, but also indirect and total effects (Golob, 2003). Direct effect refers to the influence of a predictor variable on a dependent variable. In contrast, indirect effect refers to the influence of a predictor variable on a dependent variable via some other variable(s). And, total effects are defined to be the sum of direct effects and indirect effects. Compared to other linear-in-parameter statistical methods, advantages of SEM are that it can treat both endogenous and exogenous variables as random variables by explicitly reflecting the measurement errors, define the latent variables using several observed variables, estimate the model parameters from equations (1) ~ (3) simultaneously, and represent dynamic phenomena such as habit and inertia (Golob, 2003). In SEM, latent variables can be used to integrate the information of some variables for the sake of effectively clarifying the causalities related to observed variables. Without the introduction of such latent variables, in reality, the analysis of such causality becomes difficult and sometimes impossible. 
3.2 Multiple-Output Stochastic Frontier Model: A Distance Function Approach
Stochastic frontier analysis (SFA) models have been one of the most popular tools for carrying out efficiency analysis. Numerous applications in the fields of finance, agriculture, environmental economics, public sector economics and development economics show the important role that SFA plays in efficiency measurement (Fernández et al., 2005). However, most of existing studies about efficiency evaluation have mainly adopted the SFA model with only single output rather than multiple outputs. Some recent parametric frontier models have attempted to solve the multiple output problem by estimating the production technology from three aspects: (a) an input requirements function (Gathon and Perelman, 1992) in which a single (possibly aggregate) input is expressed as a function of a number of outputs; (b) the ray frontier model (Löthgren, 1997), in which the various outputs are formulated into a single index where the Euclidean norm and the output polar-coordinate angles are introduced to represent the output mix vector; (c) an output- or input-oriented distance function (Coelli and Perelman, 2000) which can accommodate both multiple inputs and multiple outputs. The input requirements function approach has the advantage of permitting multiple outputs at the cost of restricting the production technology to a single input, and the ray frontier model is indeed the generalization of single output model. The distance function, however, requires no such restrictions. In current study, the distance function will be adopted and some detailed explanations about the model are shown below. 
Given the existence of a production possibility frontier, the distance that any firm (refers to a city in this study) is away from the frontier is a function of the set of inputs used, x, and the level of outputs produced, y. For the output-oriented model, this can be expressed as,
D0 (x,y) = min {θ: (y /θ)∈ P(x)}
(4)
where D0 (x,y) is the distance from the firm’s output set to the frontier, and θ is the corresponding level of efficiency. The distance function takes a value which is less than or equal to one if the output vector, y, is an element of the feasible production set, P(x). If the firm is fully efficient, so that it is on the frontier, D0 (x,y) = θ = 1. In case that D0 (x,y) = θ < 1, the firm is inefficient.

In order to estimate the distance from the frontier, both the frontier itself and the relationship between inputs and outputs need to be determined. This requires that some form of multi-output production function P(x) be specified. The most common functional form applied is the Translog production function, as it does not impose restrictive assumptions regarding substitutability between inputs or outputs. The Translog distance function with M (m = 1, 2, … , M) outputs and K (k = 1, 2, … , K) inputs, and for I (i = 1, 2, … , I) firms can be given below.
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(5)
In order to maintain the homogeneity of degree +1 in outputs, restrictions required are
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m = 1,2,…M                            (6)
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and those required for symmetry are shown below.
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A convenient method of imposing the homogeneity constraint upon equation (5) is to follow Lovell et al. (1994) and it is observed that homogeneity implies that
D0 (x, ωy) = ωD0 (x,y) 


for any ω > 0








  (10)
Hence, setting ω = 1/yM, the distance function can be obtained as follows:
D0 (x, y/yM) = D0 (x,y) / yM 












  (11)
Therefore, the homogeneity restrictions can be imposed through normalizing the function by one of the outputs. This provides:

[image: image8.wmf]å

å

å

å

-

=

-

=

=

-

=

+

+

+

=

1

1

1

1

1

*

*

1

1

*

0

0

ln

ln

ln

2

1

ln

)

/

ln(

M

m

M

n

K

k

ki

k

ni

mi

mn

M

m

mi

m

Mi

i

x

y

y

y

y

D

b

a

a

a



[image: image9.wmf]å

å

å

å

=

=

=

-

=

+

+

K

k

K

l

K

k

M

m

mi

ki

km

li

ki

kl

y

x

x

x

1

1

1

1

1

*

ln

ln

ln

ln

2

1

d

b


    I = 1, 2, … , N

  (12)
where 
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The level of inefficiency can be estimated from a stochastic frontier production function of the form y = f(x) + v - u, where v is the error term (assumed to be N [0, σ] ) and u is the one-sided inefficiency term that follows some probability distribution. The level of efficiency is estimated as the exponent of the negative of the error term (i.e., exp(-u)). Consequently, lnD0i= -ui, and the normalized equation can be expressed below.
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The frontier model used here is based on a cost frontier idea as the actual energy consumption is expected to be larger than the corresponding frontier. Therefore, sign of ui in equation (13) is negative in empirical analysis. 
3.3 SFA Model with Cause-Effect Relationships
Both single-output and multiple-output SFA models assume that the inputs must be independent with each other. However, the choice of independent inputs for the model in real applications is quite difficult. Inappropriate set of the inputs could cause the so-called multicollinearity issue, which results in wrong estimations and misleading interpretations of the results. To solve such problem properly, here, the SEM based model is adopted to generate some new independent composite variables by using the observed inputs, which might be interrelated each other. The composite variables here refer to the latent variables. Needless to say, this is not the only reason why to adopt the SEM. Another important reason is that the SEM can be flexibly represent various cause-effect relationships among the observed and unobserved variables related to energy consumption in transport sector in this study. These variables could include the information related to transportation systems and land use patterns. The information of transportation systems further refers to both demand-side information and supply-side information. After estimating the SEM, one can obtain some independent latent variables directly related to energy consumption in transport sector, and consequently these latent variables are introduced into the SFA model as the independent inputs.
4. Empirical Study: Data and Analysis
To verify the performance of the proposed SFA model with flexible cause-effect structures, we carry out an empirical analysis. The data used here are from the Millennium Cities Database which is compiled by UITP (International Association for Public Transport) in collaboration with Murdoch University. The database includes the data covering 100 cities worldwide concerning demographics, economics, urban structures and a large number of transport related data. Especially, for cities in developing countries, the source book contains a great deal of highly relevant information in the area of energy consumption, emissions and road traffic accidents. Although the data collection has been continued until now, there are still some missing data. For the requirement of data integrality in model validation, the missing data have to be excluded and as a result, valid data from totally 77 cities (the year 1990), including both developing and developed countries (see Table 1), are obtained for the analysis in this study. The 77 cities include 5 cities from Africa, 5 Asia affluent cities and 10 other Asian cities, 3 cities from Eastern Europe, 3 cities from Latin America, 2 cities from Middle East, 13 cities from North America, 5 cities from Oceania, and 31 cities from Western Europe.
It is expected that energy consumption in cities is related to the level of mobility and further economic growth. This can be observed by looking at the correlation between car ownership and the energy consumption by private transport which is shown in Figure 1. Obviously, with the increase of car ownership, energy consumptions in private transport system exponentially increase in the sense that the fitted exponential function of car ownership has a goodness-of-fit index (R-squared) 0.801. 
Table 1 Cities grouped by regions (Total: 77 cities)

	No.
	Region (# of cities)
	Cities

	①
	Africa (5)
	JOHANNES, CAPE TOWN, TUNIS, DAKAR, CAIRO

	②
	Asia affluent cities (5)
	TOKYO, OSAKA, SINGAPORE, HONG KONG, SAPPORO

	③
	Eastern Europe (3)
	CRACOW, BUDAPEST, PRAGUE

	④
	Latin America (3)
	SAO PAULO, BOGOTA, CURITIBA

	⑤
	Middle East (2)
	TEL AVIV, TEHRAN

	⑥
	North America (13)
	VANCOUVER, TORONTO, CALGARY, MONTREAL, DENVER, SAN DIEGO, CHICAGO, SAN FRANCISCO, LOS ANGELES, ATLANTA, NEW YORK, OTTAWA, WASHINGTON

	⑦
	Oceania (5)
	WELLINGT, MELBOURN, BRISBANE, SYDNEY, PERTH

	⑧
	Other Asia Cities (10)
	SHANGHAI, BEIJING, CHENNAI, JAKARTA, MUMBAI, KUALA LUMPUR, SEOUL, TAIPEI, MANILA, BANGKOK, 

	⑨
	Western Europe (31)
	MANCHESTER, BERLIN, MUNICH, ZURICH, HAMBURG, NANTES, NEW CASTLE, STUTTGART, FRANKFURT, GRAZ, LONDON, COPENHAG, BARCELONA, DUSSELDORF, BERNE, LYON, RUHR, GENEVA, MARSEILLE, STOCKHOLM, MADRID, ATHENS, MILAN, OSLO, PARIS, BRUSSELS, ROME, AMSTERDAM, GLASGOW, HELSINKI, VIENNA
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Figure 1 Energy consumptions by private transport and car ownership
5. Model Estimation and Policy Implications
5.1 Analysis Target, Inputs and Outputs for SFA
Different from public transport which is organized and managed by some firms/organizations, private transport is operated individually, reflecting heterogeneous travel behavior at individual level. Travelers usually tend to choose the car as a tool to perform various activities according to their own will, even though travel behavior itself is sometimes influenced by other people. Travelers derive utilities from the use of cars and continue to use unless they could not enjoy the utilities any more. However, problem that should be concerned is its overuse rather than the use of car itself. Therefore, it is necessary to change travelers’ car ownership behavior, and eventually change their car-dependent lifestyles to reduce the overuse and the corresponding environmental problems. 
In addition, goals of firms/organizations which are in charge of public transport are to maximize its revenues while meeting the needs of public mobility. Such organizational behavior is different from individual behaviors. There are various barriers to be overcome for achieving the goals of the organizations. In other words, an organization with efficient members does not automatically lead to its efficient operation. In this sense, it is expected that the factors influencing efficiency of transportation systems might be different between private and public transports.

It is known that individual travel mode choice behavior is influenced by the levels of services for each travel mode. Cost is an important part of the levels of services. The cost could include parking fee and/or toll when choosing private cars. Car price and maintenance fees (including tax) determine the level of car ownership and consequently influence the choices of different travel modes. Those transit-oriented pricing policies (e.g., high parking fees in CBD area, low fares of riding BRT or LRT, and low level of toll for light duty vehicles) are thought to be quite helpful to encourage people to travel in a manner of economical and environmental consideration. Undoubtedly, fuel prices in various areas of the world are different and surely affect on diverse travel behaviors. This may be a key factor influencing the system operation. Since price information is not available in the dataset used in this study, it is ignored in the following analyses.
This study deals with the efficiency issue related to energy consumption in transport sector. Here, energy consumptions by private and public transport are taken as two outputs for the SFA model. The inputs are selected based on preliminary analysis (see Table 2).
Table 2
Factors used to explain environmental efficiency (abbreviation)
	Outputs
	Energy Consumption
	· Energy consumption in private transportation system per capita (MJ)

	
	· 
	· Energy consumption in public transportation system per capita (MJ)

	Inputs
	Private Transport Demand
	· Daily public transport trips per capita (TripsPub/per)

	
	
	· Daily private transport trips per capita (TripsPri/per)

	
	Public Transport Demand
	· Bus vehicle kilometers per capita (BusKilo/per)

	
	
	· Total private passenger vehicles per 1000 people (VehPri/1000)

	
	Transport Supply
	· Parking spaces per 1000 CBD jobs (ParkCBD)

	
	
	· Total length of public transport routes per hectare (PubLenR/hec)

	
	Urban Compactness
	· Urban density (inhabitants per hectare) (Uden)

	
	
	· Job density (Job/area)


The SFA model assumes that the inputs are independent with each other. However, it is quite difficult to satisfy such assumption in reality. Observing the inputs mentioned above, one can easily understand such violation. Therefore, the structural equation model (SEM) with latent variables is adopted to represent the complex cause-effect relationships.
5.2 Analysis of SEM results
To establish the SEM structure, it is assumed that urban compactness influences both transport demand and supply, and transport supply affects the demand of both private and public transport simultaneously. In other words, four latent variables are introduced: “Urban Compactness”, “Transport Supply”, “Private Transport Demand” and “Public Transport Demand”, which are specified using the input variables shown in Table 2. Results of model estimation are shown in Figure 2, including both non-standardized and standardized results. 
Model estimation is conducted based on maximum likelihood method and convergence is achieved. GFI and AGFI indices (GFI=0.863; AGFI=0.710) show that the model accuracy is fairly good. Looking at all the cause-effect relationships among the variables (both latent variables and observed variables), there is no unexpected sign. In other words, the established model structure properly captures the cause-effect relationships existing in the data. Observing the relationship between “Urban Compactness” and “Private Transport Demand” & “Public Transport Demand”, it is found that the more compact is a city, the more use of public transport and the less use of private transport. “Urban Compactness” has the similar influence on “Transport Supply”, i.e., in reality, compact city leads to less supply of private transport systems, but more supply of public transport systems. Increase of length of public transport systems could increase the use of public transport and reduce the use of private transport. Furthermore, observing standardized estimation results, increasing length of public transport systems (PubLen/hec) has a larger effect on the use of public transport systems than reducing parking places at CBD (ParkCBD) in the sense that the latent variable “Transport Supply” has an absolute value 0.70 of parameter to ParkCBD, and 0.17 to PubLen/hec.

[image: image16]
Note: ** Significant at 1%, * Significant at 10%.

Figure 2 Standardized and non-standardized estimation results of structural equation model (SEM)
Note that the parameters related to the latent variables “Urban Compactness” and “Private Transport Demand” are statistically significant, however other parameters are not. Existence of insignificant parameters suggests that the set of input variables should be further refined. Since this study attempts to clarify the effectiveness of integrating SEM and SFA approaches, refinement of the input variables is left for future research. 

5.3 Results of SFA Estimation 

In the SEM, the four latent variables “Urban Compactness”, “Transport Supply”, “Private Transport Demand” and “Public Transport Demand” can be obtained. The values of latent variables are calculated based on the non-standardized estimation results. The descriptive statistics of these four latent variables and their relevant observed dependent variables are shown in Table 3. The statistics in Table 3 are calculated using the dataset of 77 cities. In fact, there are large variations in the values of relevant data in different cities, implying that differences of various cities can be observed not only in the level of economy development, but in the levels of transport supply and demand. For example, total passenger vehicles per 1000 persons (VehPri/1000) range from 13.110 to 755.960. Additionally, although average parking spaces per job at CBD is 248, actual values range from 2.49 (minimum: Min) to 1057 (maximum: Max).



Here, “Public Transport Demand” (x1) and “Private Transport Demand” (x2) are selected as the inputs of SFA model because they are two independent variables in SEM framework. Introduction of such independent variables into the SFA model could avoid the issue of multicollinearity in estimating the parameters of the SFA model. Output variables of multiple-output SFA model are energy consumptions y1 and y2 by public and private transport respectively. The model is estimated based on maximum likelihood method.




Table 3 Descriptive statistics of latent variables and their dependent variables
	Parameters
	Mean
	Min.
	Max.
	Standard Deviation

	Independent variables:
	
	
	
	

	Urban density (Uden)
	73.552 
	6.360 
	337.430 
	70.459 

	Population density (pop/area)
	24.986 
	1.828 
	148.121 
	27.454 

	Bus vehicle kilometers per capita (BusKilo/per)
	38.762 
	6.090 
	194.130 
	27.438 

	Daily public transport trips per capita (TripsPub/per)
	0.515 
	0.050 
	2.090 
	0.325 

	Parking spaces per 1000 CBD jobs (ParkCBD)
	248.022 
	2.490 
	1057.330 
	197.261 

	Total length of public transport routes per hectare (PubLenR/hec)
	5.809 
	0.040 
	32.740 
	6.135 

	Total private passenger vehicles per 1000 people (VehPri/1000)
	391.705 
	13.110 
	755.960 
	179.127 

	Daily private transport trips per capita (TripsPri/per)
	1.555 
	0.120 
	4.330 
	0.940 

	Latent variables:
	
	
	
	

	Urban Compactness
	77.076 
	9.176 
	342.090 
	72.024 

	Transport Supply
	1.577 
	0.004 
	8.520 
	1.529 

	Public Transport Demand
	21.628 
	0.899 
	60.895 
	11.946 

	Private Transport Demand
	117.487 
	3.952 
	459.557 
	99.378 


Table 4 shows the detailed estimation results. Correlation coefficient (R-squared) is 0.579. In this sense, the model accuracy is not good enough. However, just as mentioned by Kumbhakar and Lovell (2000), the efficiency model with multiple outputs cannot always get the expected results because of possible multicollinearity existed. This suggests the difficulty in the specification of such a complicated model. On the other hand, comparing with existing literature considering multiple outputs, the model accuracy here is relatively good. Hereafter, model estimation results obtained from Table 4 will be used to analysis of the inefficiency, which results is shown in Figure 3.


Table 4 Estimation results of multi-output SFA model

	Parameter
	Items
	Estimated Parameter value
	Standard Error
	t-score

	α0
	Constant
	-6.515
	3.815
	-1.708

	α2
	ln(y2/y1)
	0.619
	0.592
	1.047

	α21
	ln(y2/y1)2
	0.042
	0.058
	0.733

	β1
	lnx1
	-1.317
	1.249
	-1.055

	β2
	lnx2
	0.187
	0.856
	0.218

	β11
	lnx1 lnx2
	0.042
	0.226
	0.186

	β12
	lnx12
	0.093
	0.123
	0.758

	β22
	lnx22
	0.016
	0.042
	0.369

	δ12
	lnx1 ln(y2/y1)
	0.125
	0.172
	0.726

	δ22
	lnx2 ln(y2/y1)
	-0.203
	0.108
	-1.883

	R-squared
	0.579

	Log likelihood/Sample size
	-32.976/77


Based on the formula of distance functional approach, the SFA model, including two input and two output variables, can be expressed as an equation with quadratic vectors which involve both inputs and outputs. The output for validating the parameters can be any one of the two outputs (y1 or y2), which is shown below. The output can be forecasted based on the above equation provided that the ratio between the two outputs is known.
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Here, calculation of the inefficiency values in Figure 5 adopts the concept proposed by Battese and Coelli (1995), who suggest that the ratio of expected output and the measured output means the efficiency level. The reason that it is called inefficiency here is that the large value of the result indicates the bad performance of system operation. Therefore, all estimated results are larger than 1.
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Figure 3 Inefficiency measures of different cities (Total: 77 cities)
Among all the 77 cities, the first five cities with much higher inefficiency scores are SHANGHAI, BEIJING, CHENNAI, JAKARTA and MUMBAI respectively which all come from Asian non-affluent countries, even though these five cities have almost the lowest energy consumptions and the GDP levels as shown in Figures 4 and 5. This implies that the inefficiency level is not always consistent with the quantity of energy consumption. 
Comparing energy consumptions in Africa region (Figure 5) with the relevant inefficiency levels in Figure 3, it is clear that energy consumptions are in inverse proportion to the inefficiency levels. On the other hand, although energy consumptions of North America, Oceania and Western Europe are different, differences in the corresponding inefficiencies are not so large, compared to those of SHANGHAI, BEIJING, CHENNAI, JAKARTA and MUMBAI. It is also evident that the correlations between energy consumption and its efficiencies are consistent at different cities: some cities show positive correlations, but other cities show negative correlations. For example, in the North America and Oceania regions, even though their energy consumptions are clearly higher than other regions, the inefficiency levels are quite lower. 



[image: image21]
Figure 4 Gross domestic productions (GDP) per capita
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Figure 5 Energy consumptions of private and public transport systems
5.4 Exploring the Influences of Monetary Factors on Efficiency of Transportation Systems
It is expected that various factors influence the efficiency of transportation systems. Looking at Figures 4 and 5, it is obvious that economic levels in different cities differ greatly, in which the Asia affluent cities, North America and Western Europe cities are on the top while total of transport energy consumptions in North America cities are much bigger than other cities. In any city, energy consumptions by private transport are much higher than that by public transport. In addition, high economy level is not directly related to high energy consumption. For example, GDP in Asia affluent cities and Western Europe cities are much higher than that in North America cities, while the opposite is the energy consumption by transport. GDP levels in Asia affluent cities completely exceed those in East Europe, but energy consumptions by transport are almost similar. This possibly means that efficiency of energy consumption is not only influenced by economy development but also by other factors. As shown in Figure 2, cause-effect relationships between urban compactness, transport supply and demand have been explored and two latent variables related to transport demand have been introduced into the multiple-output SFA model, as the inputs, in order to calculate the efficiency level of each city. Here, instead of exploring comprehensive sets of factors related to the efficiency, we only deal with some monetary factors and examine how they contribute to the efficiency level of transportation systems at each city. There are three types of monetary factors available in the adopted dataset. One of them indicates the economic level represented “Metropolitan GDP per capita”. Another set of factors is related to operation performance of transportation systems represented by “Public transport operating cost”. The last set of factors represents investment level and includes “Road investment per capita”, “Public transport investment per capita”, “Percentage of GDP spent on public transport investment”, and “Percentage of GDP spent on public transport operating cost”. Figure 6 shows the relationships of the efficiency indicators with these monetary factors.
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Figure 6 Correlations between efficiency and monetary factors
Note that even though in Figure 5, inefficiency indicators are used, to make the explanation about analysis results more understandable, instead of the inefficiency indicators, the efficiency indicators, which are reciprocals of inefficiency indicators, are used. It is found that 
there exist some relationships between efficiency and monetary factors, but not all the figures show strong correlations. For economic level, “Metropolitan GDP per capita” has not clear relationship with the efficiency level. For operation performance of transportation systems, efficiency looks like a logarithm function of “Public transport operating cost”. Increase of operation cost partially means that more attentions are paid to maintenance of public transport systems and this consequently results in the improvement of efficiency of energy consumption. Such logarithm relationship can be also observed with respect to “Road investment per capita” and “Public transport investment per capita”, which are two indicators indicating investment levels. This might suggest that the investment on road system and public transport system could contribute to the improvement of efficiency of energy consumption. For other two investment level indicators, there is no clear relationship with the efficiency level of energy consumption.


6. Conclusions and Future Research Issues
To evaluate energy consumption efficiency in transport sector, stochastic frontier analysis (SFA) model has been applied. One of the assumptions made in SFA model is that all the input variables are independent each other. In transport sector, transport demand should be the first factor to directly determine the level of energy consumption. Needless to say, transport demand is influenced by the level of transport supply. Since travelers make their trips to perform various activities at various urban areas, urban structure would influence the level of transport demand. On the other hand, it is also expected that transport supply has strong relationship with urban structure. In this sense, factors influencing energy consumption in transport sectors are not independent. To overcome the shortcoming of traditional SFA model, this paper proposes to improve the model structure of a multiple-output SFA model by incorporating some latent variables as inputs, calculated from a structural equation model (SEM). These latent variables represent public and private transport demands, and are calculated by clearly reflecting cause-effect relationships with urban structure and transport supply. 

To verify the effectiveness of the proposed model, an empirical study is carried out. The first step is to estimate SEM to clarify various cause-effect relationships among the observed variables, including those representing urban structure, transport supply and demand. In the SEM, public and private transport demands are introduced as two independent latent variables. The second step is to introduce the two independent latent variables into the SFA model. Outputs for the SFA model are energy consumptions by public and private transport systems. To evaluate the system efficiency with multiple-output characteristics, a distance function approach proposed by Coelli (2000) is used to estimate SFA model parameters and calculate the efficiencies for the target cities. 


Estimation results confirm the effectiveness of the proposed model from the perspectives of both model accuracy and performance of measuring efficiency levels of the targeted cities. The calculated efficiency indicators could be used for policy evaluation. It is also found that investment in transportation systems could improve the efficiency of energy consumption. In addition, the output calculated by the validated formula indicates the maximum amount under current technical level. For multi-output SFA results, the output can be obtained under the assumption of fixed ratio between outputs. That is to say the expected output which is calculated based on the equation of distance function can be used as capacity of energy consumption to evaluate some environmental policies.
We have to say that there are many research issues that have not been satisfactory in this study. In this case study, by excluding the missing data, we only obtained the valid data from 77 cities among the 100 cities. Proper imputation of the missing data might contribute to the analysis accuracy. Results of data analysis and model estimation suggest that factors influencing the energy consumption efficiency are diverse and complicated. Input variables for the proposed model should be further refined before making any sound policy suggestion. Furthermore, 


the proposed model is built based on cross-sectional data. Considering that the implementation of some policies usually involve some time lags, and inputs and outputs for the model could have some relationships over time, it might be worth developing a dynamic model to link the SEM and SFA along the time axis. Such modeling efforts could further strengthen the accountability of the efficiency model in the evaluation of various policies. It is also necessary to apply the proposed model to evaluate the efficiency of environmental emissions in transport sector.
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