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Abstract

This paper presents estimates from a model of the demand for driving, for vehicles, and for fuel efficiency that takes explicit account of congestion: increased driving leads to more congestion and increased congestion reduces the demand for driving.  The analysis focuses on two feedback effects.  First, the “induced demand effect” refers to the extent to which improvements in road capacity increase vehicle use. Second, the “rebound effect” measures the extent to which fuel economy improvements increase vehicle use.   In addition to estimating these feedback effects, we investigate how they depend on income and how the rebound effect depends on congestion.  Estimates using cross-sectional time series data, at the level of US states for 1966 through 2004, suggest that congestion negatively affects the demand for driving, and that this effect is stronger when incomes are higher.  Furthermore, the “rebound effect” — the elasticity of  demand for driving with respect to the fuel cost of driving — decreases in magnitude with income (as previously reported) and increases with the level of congestion.  We discuss the policy implications of these findings, with an emphasis on recent debates on policies promoting the fuel efficiency of motor vehicles.

Rebound Effects with Endogenous Congestion

1.
Introduction

Many types of feedback effects are known to accompany transportation policies. One is the “induced demand effect” for vehicle travel, whereby increases in highway capacity attract new traffic (Downs, 1962). In areas that are already densely crossed by roads, induced demand occurs mainly through the mechanism of congestion formation: increased capacity tends to reduce congestion, which attracts increased traffic thereby partially offsetting the hoped-for travel-time improvements. Another feedback effect is the “rebound effect” (Greening, Greene, and Difiglio, 2000), which is really just a statement of the law of downward-sloping demand. Applied to fuel efficiency standards, it states that policies or technical improvements that raise fuel efficiency also decrease the per-mile cost of driving; this causes an increase in vehicle usage, thereby mitigating some of the policies’ intended benefits. This paper quantifies the induced demand effect and the rebound effect, as well as their dependence on income and the dependence of the rebound effect on the level of congestion.

Both feedback effects are a special case of more general phenomena involving offsetting behavior. For example, making cars safer might increase their use for the same reason as fuel-efficiency improvements, if people regard accident costs as part of the cost of driving. As for induced demand, any policy that reduces congestion without otherwise making driving more expensive, for example diverting some commuters to transit, will tend to attract new traffic that at least partially offsets the policy’s effect on congestion. According to the rebound effect as just explained, fuel-efficiency improvements are another such policy, except working in the opposite direction. If fuel-efficiency improvements increase travel demand at locations and times where congestion is present, they will tend to worsen congestion, which will itself tend to deter travel by exactly the reverse of the mechanism that produces induced demand. Thus there is an interaction between the feedbacks: the rebound effect will be dampened by congestion.

The focus of this paper is on measuring the rebound effect while taking into account urban congestion and its endogeneity. In order to accomplish this, we directly model the simultaneous interaction between vehicle miles traveled (VMT) and congestion. This procedure provides a more accurate estimate of the rebound effect than earlier studies, and it enables us to estimate the congestion impacts of fuel-efficiency policies — which here we call the “congestion effect”. The results help assess recent policy evaluations. For example, Portney et al. (2003) argue that the US Corporate Average Fuel Economy (CAFE) standards increase urban congestion enough that the extra costs of congestion seriously erode or even reverse the benefits of less fuel consumption. However, newer evidence suggests that the rebound effect in the US today is considerably lower than in the past — mainly due to rising real incomes — and is therefore lower than previous estimates in the literature (Small and Van Dender, 2007). Furthermore, Portney et al. do not attempt to account for the possibility that congestion itself would further reduce the rebound effect. We do account for that possibility and estimate it within a simultaneous model. We also measure the usual type of “induced demand,” namely the increase in VMT that accompanies an increase in roadway capacity.

 The model we use to estimate these two effects is an extension of that by Small and Van Dender (2007). They model the simultaneous determination of vehicle miles traveled, vehicle stock, and fuel efficiency; we add congestion. We also extend their 1966-2001 panel data set, aggregated at the level of US states (plus District of Columbia), to 2004. We estimate the model using three-stage least squares (3SLS) in order to account for the endogeneity of explanatory variables. Our results contain both short-run and long-run estimates because we allow for lagged effects within annual data. For VMT, the behavioral responses underlying short-run (one-year) effects could include changing travel mode, the number of discretionary trips, destinations, or the way several trips are combined into single tours. Long-run responses might include changes in the vehicle stock, job or residential relocations, and changes in land use. Except for vehicle stock, we do not model these other decisions explicitly.

We find that including endogenous congestion has a small but statistically significant impact on the measurement of the rebound effect. Our estimate for the average rebound effect for the US between 1966 and 2004 is 4.8% in the short run and 22.4% in the long run, similar to the finding of Small and Van Dender (2007). Furthermore, we estimate the “congestion effect” — i.e. the elasticity of total congestion delays with respect to an exogenous increase in fuel efficiency — to be 0.011 in the short run and 0.055 in the long run. Given current estimates of congestion costs from Schrank and Lomax (2005), this implies that in 2004, increasing the average fleet fuel efficiency by one mile per gallon (approximately a 5 percent increase) would raise total hours of congestion per adult by a modest 0.03 hours per year in the long run . With an average hourly wage of 18 dollars (BLS 2004), and assuming the value of time is equal to one half the wage (Small 1992), this translates into an annual cost of approximately 59 million dollars for the US. Our estimate of the elasticity of VMT with respect to road mileage, working through road congestion, is very small: 0.005 in the short run and 0.028 in the long run. (This does not include any induced demand working through the path of increased accessibility of previously remote locations.)


An outline of the paper is as follows. Section 2 reviews the literature regarding the rebound effect and induced demand for travel. Section 3 describes our theoretical model. Section 4 presents the econometric model, and provides a description of the data and of estimation results. Section 5 concludes.

2.
Literature Review


While a considerable amount of work has been done on induced demand and on the rebound effect, we know of no studies that focus on the joint modeling of both effects and their interdependence.  For this reason, we review separately studies on induced demand and on the rebound effect.

2.1 
Induced Demand for Travel

Transportation researchers have long recognized that any change in the transportation system that reduces congestion will, in the absence of some offsetting deterrent, cause travel on the congested facility to increase. This, like the rebound effect, is simply a consequence of the law of downward-sloping demand. Downs (1962), Smeed (1968), and Thomson (1977) suggest that such “induced demand” is so strong a phenomenon as to almost completely offset the congestion-reducing effect of a capacity improvement. For example, Smeed states that in British cities, “the amount of traffic adjusts itself to a barely tolerable speed” (p. 41); he estimates that “if it were not for the inhibiting effects of congestion, we might well have 4 to 5 times as much traffic in Central London as we have now” (p. 58). Holden (1989) provides more formal modeling of the phenomenon.

Empirically, a report by the Standing Advisory Committee on Trunk Road Assessment (SACTRA, 1994) caused a major rethinking of road-expansion policies in the UK by demonstrating that traffic responds significantly to road capacity. Reviewing a variety of empirical evidence from both econometric and traffic count studies, Goodwin (1996) believes that the most reliable studies suggest an average value for the elasticity of traffic volume with respect to travel time of around -0.5 in the short run and -1.0 in the long run. 

Fulton et al. (2000) examine county-level data from selected mid-Atlantic areas in the US, while Noland (2001) uses a panel data set of US states to examine induced demand, modeling VMT as a function of lane-miles. These studies control for endogeneity of lane-miles, and find best estimates of the elasticity of VMT with respect to lane miles to be 0.2–0.6 in the short run (two or three years) and 0.7–1.0 in the long run.  Cervero and Hansen (2002) use a cross-sectional time series of 34 urban counties in California over 22 years to estimate a simultaneous-equations model of VMT and lane-miles. They argue that past efforts to correctly measure induced demand have generally been plagued by simultaneity bias, and they propose a more complete set of instrumental variables than has been used in prior studies. They estimate the elasticity of VMT with respect to lane-miles to be 0.6 in the short run and 0.8 in the long run.

2.2
The rebound effect

Prior research has measured the rebound effect for passenger transport using a variety of data sources and statistical techniques. Nonetheless, estimates of its magnitude typically lie within a reasonably narrow range. For an overview of the conceptual and empirical issues surrounding the rebound effect see the literature survey by Greening, Greene, and Difiglio (2000). The authors look at 22 studies of the rebound effect for automotive transport that use aggregate national or state level data. They give a range for the potential size of the rebound effect between 10% and 30%. Other estimates rely on disaggregated data and come to similar conclusions. Below we highlight some key contributions.

Several empirical estimates of the rebound effect are based on aggregate data from the US Federal Highway Administration (FHWA). Greene (1992), using annual data for 1966–1989, estimates the short-run rebound effect to be 13.4% but finds no evidence for a lagged adjustment process (or, therefore, for a difference between the short-run and long-run rebound effects). Greene argues instead that the appropriate specification should include a correction for autocorrelation, but need not include lagged VMT. His results also suggest that the rebound effect has declined over time, but the statistical support is weak.  Jones (1993) takes another look at Greene’s data (adding observations for 1990) and finds a similar short-run rebound effect of 11-13%. He finds that the data support a logarithmic first-order autoregressive model, i.e. AR(1), and  finds mixed evidence for including a lagged dependent variable; when included, it implies a long-run rebound effect of 30%.

Other studies have used state-level panel data primarily from the US Federal Highway Administration (FHWA). Haughton and Sarkar (1996), using such data from 1970-1991, estimate the rebound effect to be 16% in the short run and 22% in the long run. They account for endogenous regressors, autocorrelation, and lagged effects. They also separately estimate a model of vehicle fuel intensity; from this they find that the current price of gasoline has no statistically significant effect on fuel intensity, but that drivers do demand more fuel efficient vehicles when the real price of gasoline exceeds its historic peak. Small and Van Dender (2007) estimate a simultaneous equations model of VMT, vehicle stock and fuel efficiency using state level panel data for years 1966-2001. They estimate the rebound effect to be 4.5% in the short run and 22.2% in the long-run on average. They also find evidence that the rebound effect has declined over time and explain much of this decline in terms of rising per-capita incomes, which they interpret as indicating that fuel costs have become a smaller fraction of the generalized cost of driving and thus less salient in drivers’ decisions.

Other estimates of the rebound effect rely on household level data. Mannering (1986), using a US household survey, finds that how one controls for endogenous variables in a vehicle utilization equation strongly influences the estimated rebound effect. Specifically, failing to correct for the endogeneity of vehicle type can downwardly bias these estimates. Using an endogeneity correction derived by Dubin and McFadden (1984), he estimates the short- and long-run rebound effects (constrained to be identical) to be 13-26%.

Goldberg (1998) estimates a system of equations consisting of a discrete-choice model of vehicle demand and a continuous model of vehicle use, using data from the Consumer Expenditure Survey for years 1984-1990. The vehicle use model suggests a rebound effect of approximately 20%. However, in a specification accounting for the simultaneity of the two equations, she cannot reject the hypothesis of a rebound effect of zero.

Greene, Kahn and Gibson (1999) estimate simultaneous-equation models of household vehicle use, vehicle fuel-efficiency choice, and fuel price. Their estimates of the rebound effect range from 17% for one-vehicle households to 28% for three-vehicle households, finding it to be 23% overall. They also find that multiple-vehicle households respond to changes in the cost of fuel by altering the level of use of different vehicles. 


To summarize, estimates of the rebound effect based on aggregate and disaggregate data are reasonably close to each other in magnitude.  According to some studies, it appears to be declining over time. The literature also highlights the importance of model specification. In particular how one deals with dynamics, by including lagged effects or autoregressive errors, can have an impact on estimated values for the rebound effect. 

3.
Theoretical Framework

We motivate our empirical specification with a model that simultaneously determines four variables: aggregate vehicle miles traveled, vehicle stock, fuel efficiency and traffic congestion. Our simultaneous model formalizes the key relationships, both direct and indirect, between these four variables. We use these relationships to derive expressions for the rebound effect, the induced demand effect, the congestion effect (the elasticity of traffic congestion with respect to fuel efficiency) and other elasticities. 

First, we assume that VMT, denoted here by M, is a function of the vehicle stock V, the per-mile cost of driving PM, traffic congestion C, and exogenous factors XM. Note that PM (the fuel cost of driving a mile, equal to the price of fuel PF divided by fuel efficiency E) is endogenous. We assume that a state’s vehicle stock is a function of VMT, the price of a new vehicle PV, the per-mile cost of driving, and other factors XV. Consumers and manufacturers jointly determine vehicle fuel efficiency E, which we assume is a function of VMT, the price of fuel PF, regulations RE, and other factors XE. Finally, traffic congestion is a function​ of VMT, road capacity K, and other exogenous factors XC. Thus:
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This model is an extension of that by Small and Van Dender (2007). In their model, the effect of congestion is proxied crudely by including road-miles per adult as one of the variables in XM. Here we fully incorporate congestion into the structural system and construct a more direct measure of it, as explained in the next subsection.

Small and Van Dender obtain a measure of the rebound effect in terms of their structural model by substituting the vehicle stock equation into the VMT equation and solving for M. This produces a partially-reduced-form usage equation in which VMT is a function of PM but no other endogenous variables. Here we substitute the equations for both V and C into that for M and solve for the partially-reduced form of the usage equation
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We derive the rebound effect in terms of the structural coefficients by differentiating both sides of (2) with respect to PM, evaluating at the solution given by 
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where each of the (’s on the right-hand side is a direct structural elasticity from (1).

Writing the elasticity in this manner allows us to decompose the rebound effect. We can see that exogenous changes in fuel efficiency exert a direct effect on usage which is captured by (M,PM (the elasticity of the first structural equation), and an indirect effect through changes in the vehicle stock and congestion which is captured by the other terms. Note that if 
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which is also derived by Small and Van Dender (2007). Thus we can compare equations (3) and (4) to assess the impact of including endogenous congestion on our estimate of the rebound effect. 

Our derivation of the induced demand effect proceeds in the same manner as above. We use the chain rule to differentiate M with respect to K in (1), convert the result to an elasticity, and solve to obtain:
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We can derive other elasticities using a similar procedure. To obtain the elasticity of congestion with respect to fuel efficiency, we first partially reduce the system by substituting the structural equations for M and V in (1) into that for C.  We denote this partially reduced form congestion equation as 
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The partially-reduced-form equation (6) is, like (2), a function of the endogenous variable E since 
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 this way so that we can derive an elasticity of congestion with respect to fuel efficiency — what we have called the “congestion effect” — consistently with how we have defined the “rebound effect”. Both the rebound effect and the congestion effect therefore refer to responses to a change in fuel efficiency, however the latter is brought about. In our empirical implementation below, we describe how we account statistically for the endogeneity. To derive the congestion effect, we use the fact that 
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Since the triple and quadruple products in (7) above involve quantities estimated to be small, we will use the following approximation, which ignores the indirect effects through the vehicle stock equation:
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4. Empirical Results

4.1
Econometric Model

We estimate the structural system (1), except that we work with fuel intensity rather than its inverse, fuel efficiency, and we generalize the system to account for dynamics. Thus in the vehicle usage, stock, and efficiency equations we include both lagged effects and autoregressive errors. We justify including lagged effects by noting that vehicle usage, ownership, and fleet fuel efficiency may only partially change from one period to the next due to behavioral inertia, transaction costs associated with vehicle sales, and other obstructions to adjustment.
 Travel delay in a given period, however, is determined mostly by contemporaneous technological factors; thus, we handle temporal behavior in the congestion equation by including year fixed effects (i.e., a dummy variable for every year but one) rather than a lagged dependent variable or autoregressive errors. 

We specify the equations as linear in the parameters with most variables in logarithms. The empirical counterpart of system (1) above is therefore:
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where
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Here, lower-case notation indicates that the variable is in logarithms. Thus vma is the natural logarithm of VMT per adult; veh is the log of number of vehicles per adult; fint is the log of fuel intensity; and cong is the log of hours of travel delay per adult.  Variable pf is the log of fuel price; hence log fuel cost per mile, pm, is equal to pf+fint. Variable pv is the log of a price index of new vehicles. The variable cafe is a measure of the strength of CAFE regulation; see Small and Van Dender (2007) for a complete description of how this variable is constructed. Variable cap is urban lane miles per adult, which is our measure of road capacity K in equations (1). The individual variables in each vector 
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Using (9), we can write the empirical counterparts to short-run elasticities (3), (5), and (8) as:
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The 
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 term in the vehicle usage equation in (9) contains interactions between pm and other variables. To facilitate ease in interpreting the elasticites 
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where we have used superscript L to denote that these are long-run elasticities. We also define 
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 as the elasticity of variable k=M,V,F with respect to k from the previous period. 

4.2
Variables and Estimation Method

We use cross-sectional data at the state level for years 1966-2004. Most of our data comes from the Federal Highway Administration’s (FHWA) annual Highway Statistics Publications. We provide a brief description of our variables below; Appendix A contains lengthier descriptions and data sources. The variables from the structural model are followed by the names from the empirical equations in parentheses. Table 1 below provides descriptive statistics for the variables in our model, which for ease of interpretation we show unnormalized and in levels rather than logarithms. All monetary variables and price indices are expressed in 1987 dollars.

Dependent Variables

M (vma):
Logarithm of vehicles miles traveled divided by the state’s adult population.

V (veh):
Logarithm of the sum of the number of light duty automobiles and trucks divided by the state’s adult population.

1/E (fint): 
Logarithm of average vehicle fuel intensity for a given state.

C (cong): 
Logarithm of total annual hours of delay divided by the state’s adult population. See below for more details.

Independent Variables

PM (pm): 
Logarithm of the per-mile fuel cost of driving. 

PV (pv):
Logarithm of the index of new vehicle prices.

PF (pf):

Logarithm of the price of gasoline.

RE (cafe):
Measure of the strength of CAFE regulation, which we define as the difference between desired and mandated fleet vehicle fuel efficiency. We estimate actual fuel efficiency for years 1966-1977, and then use the estimated coefficients to predict desired fuel efficiency for years 1978 and beyond. The variable cafe is defined as the difference between the logarithms of desired and mandated fuel efficiency, truncated below at zero. See Appendix B in Small and Van Dender (2007) for a complete description of how this variable was generated.

XM, XV, XE,XC:
XM includes but is not limited to pm2 and interactions between normalized pm and other variables. These other variables include normalized log income per capita (inc) and normalized congestion (cong). In the case of the congestion equation, we reason that congestion is a technical rather than a behavioral phenomenon and therefore many factors that might explain it should do so through the channel of VMT and road capacity; hence we include as explanatory variables only vma (our measure of demand), urban lane miles per adult (our measure of capacity), population density (a proxy for the physical nature of the roads) and the percentage of vehicles that are trucks. The vehicle usage, vehicle stock and fuel intensity equations contain time trends. We include state fixed effects in all equations and year fixed effects in the congestion equation. We list all other exogenous variables in the descriptive statistics Table 1 below and include lengthier descriptions in the appendices.

Congestion Measure

We construct our measure of travel delay using data from the annual report on traffic congestion constructed by Shrank and Lomax of the Texas Transportation Institute (TTI) — see e.g. Shrank and Lomax (2004). TTI has estimated congestion for 85 large urbanized areas, starting in 1982, using data from the Highway Performance Monitoring System database of the US Federal Highway Administration.

The TTI measure of congestion that we use is annual travel delay, which is simply the aggregate amount of time lost due to congested driving conditions. We aggregate congestion delay in all covered urbanized areas to the level of a state, then divide by the state's adult population to create a per-adult delay measure. This implicitly assumes that congestion outside these 85 urban areas is negligible.
 For the 14 urbanized areas that cross one or more state borders, we apportion their congestion to the constituent states based on population data, which exists for the 1980, 1990, and 2000 censuses. We linearly interpolate for intermediate years, and extrapolate the 1990-2000 trend to 2004. Appendix B contains a lengthier description of the TTI data as well as more detail regarding how we constructed our congestion measure.

Multiple Imputation Procedure

The congestion and highway capacity measures in the data set are available only for years starting in 1982, when the FHWA began collecting more detailed information on congestion through its Highway Performance Monitoring System. In order to use these data, we developed a backcasting method and implemented it using a multiple imputation procedure using the framework of Rubin (1987). Multiple imputations allow us to ‘fill in’ the missing data with predicted values in such a way that we can generate consistent coefficient estimates and consistent estimates of standard errors. 

The multiple imputation procedure is as follows:

1. We start with an imputation model. We separately regress total delay per adult and lane-miles per adult on all k exogenous variables in the system for years 1982 – 2004, when full data are available. From each regression we obtain a vector of estimated coefficients Bi and an estimated covariance matrix Wi where the subscript i indexes the missing variable. 

2. Next we draw M=20 samples 
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 from the sampling distribution of the estimated coefficients which is multivariate normal with mean Bi and variance Wi.

3. We then impute the missing data for years 1966-1981. We do this M times, each time using one of the coefficient vectors 
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 along with the values of the exogenous variables for 1966-1981. 

4. For each of the M sets of values of missing data, we insert those data into the rest of the data set and estimate the full simultaneous model as already described, obtaining estimated coefficient 
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5. Finally, we use the M estimates of 
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 to compute our best point estimate of (, denoted 
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The factor 1/(M-1) in (20) arises because the mean 
[image: image51.wmf] from which the variances and covariances are measured is itself estimated rather than known precisely.
The multiple imputation procedure has enabled us to incorporate the missing data in a statistically valid and computationally tractable way. The main benefit to this procedure is that it allows one to interpret the measures of statistical precision and hypothesis tests in the same manner as with complete data estimates. 

Instrumental Variables


Since the dependent variables in our model appear also as right-hand-side variables in (9), we estimate the system using three-stage least squares (3SLS), which is an instrumental variables estimator that normally uses all exogenous variables of the system as instruments.  The 3SLS method makes use of the correlations among disturbances across our four equations to obtain more efficient parameter estimates than single-equation methods such as two-stage least squares; such correlations may be expected due to common factors that influence the disturbances in all the different equations that we do not explicitly include. Our judgments on which exogenous variables to include in each equation (the exclusion restrictions) are discussed in Small and Van Dender (2007).  In addition, because our equations include lagged endogenous variables, autocorrelation, and certain non-linear transformations of variables, our set of instruments also includes one lagged value of each exogenous variable, two lagged values of each endogenous variable, and predicted values for non-linear combinations of endogenous variables; see Small and Van Dender (2007) for explanations.
4.3
Estimation Results

Table 2 shows the results for the vehicle miles traveled equation. We estimate all of the coefficients with a high degree of precision, obtaining plausible signs and magnitudes. The coefficients for the per-mile cost of driving and its interactions are all statistically significant and comparable in magnitude to those found by Small and Van Dender (2007).

 The coefficient for travel delay per adult is statistically significant and negative suggesting that all else equal, congestion decreases vehicle usage. Furthermore, the coefficients for congestion interacted with income and congestion interacted with the per mile cost of driving are negative, implying that congestion has a larger negative impact on vehicle usage for states with higher incomes and for states with a higher per-mile cost of driving. We find this plausible since people with higher incomes have a higher value of time and are more dissuaded from driving when faced with congestion costs.  Nevertheless, our estimates suggest that the elasticity of vehicle usage with respect to congestion is small. We attribute part of this to the inherent difficulty of capturing aggregate congestion, which is a localized phenomenon. 

The elasticity of vehicle travel with respect to income is 0.10 in the short run and 0.50 in the long run. We obtain a large and significant coefficient for lagged VMT, giving support for a partial adjustment process. The autocorrelation coefficient rho is small, even though quite precisely estimated, leading us to believe we have not omitted any important autocorrelated independent variables.

Table 3 shows the results from estimating the vehicle stock equation. We find that for a given state the amount of driving (vma), road-miles and the number of licensed drivers all have significant effects on the vehicle stock. We do not find significant effects for the price of a new vehicle, the interest rate, per capita income or the per-mile cost of driving. As would be expected, there is evidence for a slow turnover in the vehicle stock, as the coefficient for lagged vehicle stock is strong and significant. Furthermore, we obtain a low value for rho, the autocorrelation coefficient. 

Table 4 shows the results from estimating the fuel intensity equation. We obtain the expected signs and significant coefficients for most of the variables in this equation. We find that CAFE regulation, the oil shocks of 1974 and 1979, and the price of fuel impact fuel intensity substantially. As in the other equations, the results suggest we have correctly controlled for dynamics. We obtain a large coefficient for lagged fuel intensity and a small value for the autocorrelation coefficient rho. Since fuel intensity is mainly a property of the vehicle stock, factors that hinder adjustment of the vehicle stock will prevent full adjustment of fuel intensity to its desired level.

Table 5 presents the results from the congestion equation.  We include year fixed effects, as noted earlier, but do not report their coefficients in order to simplify the table. (All four equations include state fixed effects, also not reported for simplicity.) As expected, we find that increased urban road capacity (urban-lane-miles/adult) reduces congestion while higher traffic volumes (vma) increase congestion. Furthermore, we find that higher population densities increase congestion, as does a higher fraction of trucks in the vehicle stock. 


Using the results presented in Tables 2 through 5 along with the equations in section 3 above, we can calculate elasticities based on the structural model. These are reported in Table 6. Our estimate of the average rebound effect across the states and years in our sample is 4.8% in the short run and 22.4% in the long run. We estimate the “congestion effect” — the elasticity of congestion (travel delay) with respect to fuel efficiency — to be 0.011 in the short run and 0.055 in the long run. Finally, we estimate the induced demand effect, i.e. the elasticity of vehicle miles traveled with respect to urban lane mileage, which occurs via congestion as shown in equation (5). Our estimate is very small: 0.006 in the short-run and 0.028 in the long run. We found in all cases that our elasticity estimates were significantly different from zero. 


Most estimates of the induced-demand effect are larger in magnitude, typically 0.2 – 0.6 in the short run and 0.7 – 1.0 in the long run. Why is ours so small? One possible reason is that most such estimates capture effect of both increased road capacity and increased road mileage. The former works through congestion relief, the latter through greater accessibility of remote locations. Our estimate holds road mileage constant and therefore includes only the first effect. However, if we include the road-mileage variable we still get values much smaller than other studies, so that cannot be the only explanation.


Another possible explanation is that our measure of capacity (urban lane-miles per adult) is broader than measures used in other studies. Fulton et al (2000) use only Interstate, State Highway and primary road lane-miles in their measure of capacity. Similarly, Noland (2001) excludes local roads (i.e. city streets) and Cervero and Hansen (2002) use only state owned roads in their respective measures of capacity. One would expect that an urban freeway capacity expansion would tend to relieve congestion more than a similar expansion of small city streets. Hence the induced demand effect should be greater if the analysis is limited to major highways. 

We can also use the estimated coefficients of the interaction terms from the vehicle usage equation to see what impact other variables have on the rebound effect. For example, the coefficient on pm*inc in Table 2 is .070. This shows that a 10 percent increase in real income (which approximately translates into 0.1 increase in log income) results in a reduction of the rebound effect by about 0.70 percentage points. Similarly, the coefficient on pm*pm is –0.024, which implies that a 10 percent increase in the per-mile cost of driving translates into a 0.24 percentage-point increase in the rebound effect. These results are of similar magnitude and more precisely estimated than the results found by Small and Van Dender (2007). Finally, the coefficient on pm*cong is –0.014, a very small value suggesting that a 10 percent increase in congestion will increase the rebound effect by about 0.14 percentage points.

5. Conclusion
We have shown that including a measure of congestion in an aggregate transportation demand model is feasible and that it has a small impact on the measurement of the rebound effect and the price elasticity of gasoline consumption. Our best estimate of the rebound effect, controlling for the endogeneity of congestion, is 4.8% in the short-run and 22.4% in the long run over our entire sample. These estimates are similar to those found by Small and Van Dender (2007), and like them we also find a strong dependence of the rebound effect on real income, implying that the effect is much smaller today than the above values and that it is likely to continue to decline. The rebound effect is positively related to fuel cost, but this effect is smaller and therefore unlikely to reverse the downward trend over time that our model suggests.

These results suggest that fuel-efficiency mandates can work quite well, with little loss of effectiveness due to undesired eliciting of additional travel. Furthermore, the declining price elasticity of fuel implies that using fuel taxes as a policy tool becomes even harder politically over time, because it takes a larger tax to produce a given response.


Accounting for congestion does not appear to alter these main results or their implications. Using the estimated elasticity of travel delay with respect to fuel efficiency, we can calculate the impact of higher fuel efficiency standards on urban congestion. Raising the fleet fuel efficiency of light duty vehicles by one mile per gallon will in the long run produce an increase of 0.03 hours, about 2 minutes, of annual travel delay per adult. With an average value of time of 9 dollars per hour, this would imply a monetary loss of 59 million dollars. 
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Appendix A
Data Sources: 

Adult population 

Definition: midyear population estimate, 18 years and over 

U.S. Census Bureau. 

Corporate Average Fuel Economy Standard (Miles Per Gallon) 

National Highway Traffic Safety Administration (NHTSA), CAFE  

Automotive Fuel Economy Program, Annual update 2004, Table I-1 

Congestion (total hours of delay per adult)

1982 –2003: Texas Transportation Institute 2004 Urban Mobility Report. 

Note: See text for a full description of how we generated the values for years 1966-1981 and 2004.

Consumer price index – all urban consumers 

Bureau of Labor Statistics (BLS), CPI (1982-84=100) 

Note: all monetary variables (gas tax, new passenger vehicle price index, price of gasoline, personal income) are put in real 1987 dollars by first deflating by this CPI and then multiplying by the CPI in year 1987. The purpose of using 1987 is for ease in replicating Haughton and Sarkar (1996). 

Highway Use of Gasoline (millions of gallons per year) 

1966-1995: FHWA, Highway Statistics Summary to 1995, Table MF-226 

1996-2004: FHWA, Highway Statistics, annual editions, Table MF-21 

Income per capita ($/year, 1987 dollars) 

Primary measure: Personal income divided by midyear population 

Personal income is from Bureau of Economic Analysis (BEA) 

Interest rate: national average interest rate for auto loans (%) 

Definition: average of rates for new-car loans at auto finance companies and at commercial banks. 

Source: Federal Reserve System, Economic Research and Data, Federal Reserve Statistical Release G.19 “Consumer Credit”. Available starting 1971 

for auto finance companies, 1972 for commercial banks. For earlier years in each series, we use the predicted values from a regression explaining that rate using a constant and Moody's AAA corporate bond interest rate, based on years 1971-2004 (finance companies) or 1972- 2004 (commercial banks). 

New Car Price Index: price index for U.S. passenger vehicles, city average, not seasonally adjusted (1987=100) 

Source: Bureau of Labor Statistics web site. 

Note: Original index has 1982-84=100. 

Number of vehicles: Number of automobiles and light trucks registered 

1966-1995: FHWA, Highway Statistics Summary to 1995, Table MV-201 

1996-2004: FHWA, Highway Statistics, annual editions, Table MV-1 

Note: “Light trucks” include personal passenger vans, passenger minivans, utility-type 

vehicles, pickups, panel trucks, and delivery vans. 

Price of gasoline (cents per gallon, 1987 dollars) 

Data Set A: U.S. Department of Energy (USDOE 1977), Table B-1, pp. 93-94 (contains 

1960-1977) 

Data Set B: Energy Information Administration, State Energy Data 2000: Price and 

Expenditure Data, Table 5 (contains 1970-2000) 

2001: Energy Information Administration, Petroleum Marketing Annual, Table A1. 

Note: We use Data Set B for 1970-2000, and for the earlier years we use predicted values 

from a regression explaining Set B values for overlapping years (1970-1977) based on a 

linear function of Set A values. 

Public lane mileage: Total number of lane miles in state 

1980-1995: FHWA, Highway Statistics Summary to 1995, Table HM-220 

1996-2004: FHWA, Highway Statistics, annual editions, Table HM-20 

Number of Licensed Drivers 

1966-1995: FHWA, Highway Statistics Summary to 1995, Table DL-201 

1996-2004: FHWA, Highway Statistics, annual editions, Table DL-1C 

Notes: Some outliers in this series were replaced by values given by a fitted polynomial of degree 3.

Urban Lane Mileage (miles): Total municipal lane mileage 

1980-1995: FHWA, Highway Statistics Summary to 1995, Table HM-220 

1996-2004: FHWA, Highway Statistics, annual editions, Table HM-20 

Urbanization: Share of total state population living in Metropolitan Statistical Areas (MSAs), with MSA boundaries based on December 2003 definitions. Available starting 1969; for earlier years, extrapolated from 1969-79 values assuming constant annual percentage growth rate. Source: Bureau of Economic Analysis, Regional Economic Accounts 

VMT (Vehicle Miles Traveled),in  millions 

1966-1979: FHWA, Highway Statistics, annual editions, Table VM-2 

1980-1995: FHWA, Highway Statistics Summary to 1995, Table VM-202 

1996-2004: FHWA, Highway Statistics, annual editions, Table VM-2

Appendix B
Constructing the measure of Congestion:

The Texas Transportation Institute (TTI) provides an annual measure of congestion for the 85 largest urbanized areas in the US. Their data, which come from the FHWA’s Highway Performance Monitoring System database, begin in 1982. Please refer to the TTI’s technical documentation for more information on how they measured congestion. This section describes how we generated a statewide measure of congestion for years 1982-2004.

Since the model uses statewide data, we simply aggregated the urbanized area numbers by state for each year then divided by adult population to create annual travel delay per adult. However, in order to do this, we first had to adjust annual travel delay for the 14 urbanized areas that cross one or more state borders. There were two sources of data we used to do this apportioning. 

First, the decennial census provides a breakdown of urbanized area population by state. The information for the 1990 and 2000 census was available online from the American FactFinder website. Similar data for the 1980 census is not online, can be found in the Census report PC80-S1-14 "Population and Land Area of Urbanized Areas for the United States and Puerto Rico:  1980 and 1970". 

Unfortunately, annual population estimates are not available for urbanized areas and only exist at the MSA level. For the most part, MSAs are very similar to urbanized areas but the population estimates are not exactly the same. The MSAs tend to encompass larger geographical regions than the urbanized areas, usually including more suburbs.

We ended up using the decennial census data (at the urbanized area level) to do the apportioning.  In order to find the intercensal population ratios, we linearly interpolated the missing data in between years 1980 and 1990 and 1990 and 2000 and used the year 2000 ratio for 2001-2004. 

� Our specification ignores the role of expectations (e.g. about future prices), which arguably affect long run elasticities.  But since expectations may change over time, it is not clear that explicit treatment of expectations provides better policy-relevant estimates.


� An alternative would be to restrict our model to urban areas only, on the grounds that economically relevant congestion occurs in these areas alone.  While comparison of the results of such a model to the one chosen here would be useful, it is not feasible since many of our state-level data cannot be broken down to urban and non-urban areas.


� We obtain a single draw in the following manner. First, we decompose Wi using the Cholesky decomposition. This gives us � EMBED Equation.3  ��� where � EMBED Equation.3  ��� is a lower triangular matrix. Next, we draw a vector of length k from the standard univariate normal distribution and premultiply it by � EMBED Equation.3  ��� giving us � EMBED Equation.3  ���. Finally, we center the draws by adding Bi to � EMBED Equation.3  ��� obtaining � EMBED Equation.3  ��� which is distributed as multivariate normal with mean Bi and covariance matrix Wi).
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