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Abstract: Wardrop's deterministic user equilibrium (DUE) can be generalised to a stochastic user equilibrium (SUE), where a supplemented volume/cost demand function leads to a theoretically more satisfying economic interpretation of travel behaviour. The primal, dual and mixed complementarity (MCP) formulations are presented (its logit variant), being the key theoretical advance in mathematical programming of the classical traffic assignment models. A small numerical example demonstrates critical points and prompts a heuristic proposition: the PETRA algorithm (probabilistic equilibrium in traffic route assignment) that mixes DUE-duals (shortest distances) with primal SUE-variables (probabilistic flows) in an iterative calculus using quasi-PARTAN for better convergence. 
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Mathematics of Stoch. Traffic Equilibria 

Introduction
Traffic is dynamic and hardly ever in equilibrium. In our case, equilibrium is a time-less steady state of flows through a road net, the end result of countless route switching manoeuvres by non-cooperative individuals seeking to minimise their travel time (route cost). In economics, such behaviour is known as consumers maximising their utility within a choice set (a budget constraint), where markets move towards equilibrium by iterative price adjustments so that demand equals supply. In our case equilibrium requires route choice probabilities p (demand) conformant with (congested) link cost c (supply).
Following Smith (1979), perfect foresight is not assumed, but there are different time periods, named today and tomorrow for convenience. Travellers make optimal plans for tomorrow based on their knowledge of today’s cost. When route switching has died down, i.e. when today’s cost c0(q0) – a function of today’s link flows q0 -  replicate an identical flow (q1 ( q0) tomorrow, equilibrium is reached. Smith proved existence, uniqueness and stability in the case of Wardrop. The latter stated a first principle: in congested networks traffic arranges itself such that no individual traveller can improve his utility by unilaterally switching to another route; viz. journey times on all the routes actually used are equal, and less than those which would be experienced by a single vehicle on any unused route.
Beckmann et al. (1956) ingeniously formulated a non-linear mathematical program (NLP) that computes traffic equilibrium according to Wardrop’s first principle. Equivalent dual models are found in Patriksson (1994), or Larsson et al. (1997). Finally, the model traffic.169 (GAMS/modlib - Ferris et al. 1995) uses the Sioux Falls example to formulate 3 instances of Wardrop’s DUE: a primal NLP and its dual, plus a mixed complementarity problem (MCP). These models are a special case of the mathematical theory presented here (although our MCP uses a slightly different pairing). Interested readers might find Dirkse and Ferris (1998) useful for a short introduction into MCP or consult the GAMS manual for its explanation of the solver PATH.
Wardrop’s DUE is far too limited: (a) it conflicts with reality where observations confirm that non-shortest routes are used; (b) it lacks a proper (probabilistic) demand function - our vector p(c). In the literature, the SUE model is usually derived from random utility maximisation with two major variants: a probit model (Sheffi 1985) or a logit model (Dial 1971). We use logit: firstly, because it allows closed formulae; secondly, as regards the cost vector (c + (), the Normal error distribution (probit) and Weibull-Gumbel (logit) are sufficiently similar for our theoretical deductions to be transferable and valid in either case.
For didactic purposes, this paper is arranged as follows: we start with the MCP of an SUE, followed by the dual model and then the primal. All three use a behavioural parameter theta that must be calibrated, e.g. from traffic counts (Ernst 2003). Boundary cases (((0, ((() are studied next, where the latter degenerates into the classical case of a Wardropian equilibrium, a DUE. It shows that the mathematical models presented here are just a generalisation of the conventional methods. But first a few notes on notation.
Notation

With reference to an example the following notation is used. A network of nodes (n(N) and directed arcs (a(A) describes the road map of a traffic system. 
[Figure 1]

An arc a: n(m may be referenced by its start node n and end node m. The identifier a is unique, but not necessarily the node pair (n,m). For brevity, we use just sub-scripts n and m instead of n[a] or m[a] where the reference to the specific arc a concerned is evident from the context. We assume four trip origins, O = {1, 2, 6, 7}, and three destinations, D = {20, 24, 25}, with the following sparse trip matrix T. 
[Table 1]
There are 70 routes r: 1(25, but enumeration is not required (Dial 1971). Rather a step by step walk-through is modelled, where irrationality (back-tracking) is ruled out. In the example, a network of 80 arcs, given bi-directional links, reduces to just 40 (Fig. 1). Initially, Dial considered (O/D) pairs (i,k), but had to drop one node for compute-efficiency. He kept i and considered – say at node 7 – the likelihood that a traveller had come from node 2 or node 6. This is contrary to rational decision making. A traveller, having reached intersection 7, will dismiss his past as decision irrelevant (irreversible) and only weigh up going right (to node 8) versus going down (to node 12). To the modeller, travellers with the same destination (k) at any given node n are indistinguishable. In the literature, this is the multi-commodity network flow problem. Let vector xk denote all link flows to the terminal node k and Rk be the feasible region, the envelope of all reasonable routes (r: n(k). It is a feature of logit models that all reasonable routes have positive flows. Avoiding infeasibility, a modeller must therefore construe Rk from both the original road map and the trip matrix T (its column k). In the example, R20 is the rectangle [2, 5, 17, 20], R24 = rectangle [6, 9, 21, 24], and R25 as shown (Fig. 1). Let tk denote the expanded k-column of T, a vector with tk[n] = 0 for n(O. Let arc a be n(m then associated with Rk is a N(A node-arc incidence matrix Ik with elements Ik[n,a] = 1, Ik[m,a] = -1 else Ik[*,a] = 0. Dropping row k in Ik (and element tk[k] in tk) is mathematically convenient; it also restores full rank for the matrix Ik. It is a convention, henceforth presumed in our models.
A forward star Fn (all arcs with start node n) and its opposite, the backward star Bm (all arcs with end node m), refer both to the global net G(N,A) as distinct from the choice set Ckn that is defined within the subnet Rk: Ckn = Fn ( Rk. For example, consider node n = 18. F18 and B18 have 4 elements each (given bi-directional links) but the choice set C2018 is just arc a32 whereas C2518 = {a32, a33}. The first is a trivial case (choice probability pka = 1), but not the second. Dk (decision point) would have been a good name for the collection of all such nodes within Rk; but the letter D is already in use. We rename decision points Dk thus Ek (entropy points), a name that will be understood in due course.
There is a vector pk with pk[a] = 0 for a(Rk (exogenous and a priori defined). For a(Rk, either pk[a] = 1 (if n[a](Ek) or 0 < pk[a] < 1 (if n[a](Ek). The choice probability pk[a] defines expected flow values (the mean) and equates to the ratio pk[a] = xk[a] / yk[n] as can be shown. Vector yk is the node throughput with n-th component 
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. Sub- and superscripts give the least cluttered appearance in writing. However, sometimes it might be appropriate to emphasize a point, to distinguish between a characteristic (the commodity k) and an index, or to avoid indices on indices. Allowing interchangeable notation, ykn is then the same as yk[n], xka means xk[a]. Finally, Ckn is alternatively written Ck[n] with a lowered superscript k and an index [n] as can be seen below the summation sign.
Cost vector c = [ca] and link flows, vector q = [qa], have already been introduced. It remains to explain vector sk with components sk[n]. The name is reminiscent of satisfaction or shortest distance in the special case ((((), where the literature uses many other names as well (EMU = expected max-utility, composite utility, inclusive value, or accessibility). sk[n] measures the node distance n(k within Rk. It is the expected least cost value over all reasonable routes r (n(k) given a probability vector of route choices that reflects optimising behaviour. Based on random utilities, the formula is 
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 , where T denotes transposition and (r is the arc-route incidence vector ((r[a] = 1 if arc a belongs to r, else (r[a] = 0). r is an arc-chain n(k of arcs a(Rk. Mathematically, distance is a difference between two node potentials, sk[n] minus sk[k]. Such node potential is determined but for an arbitrary constant. The ambiguity is resolved by setting sk[k] = 0 at the destination k - a postulated value, henceforth implied within our models.
Traffic Assignment – Equilibrium in MCP format
Beginning with a mixed complementarity problem (MCP) we briefly summarise the essentials from the literature (Dirkse & Ferris 1998, Ferris & Munson 1998).
Definition: a MCP poses a square system, defined by a non-linear function F(z): Bn ( (n, where Bn is the box [li ( zi ( ui] (i = 1, .. , n), li and ui are lower/upper bounds (possibly -( or +(), and where the solution vector z* ( Bn determines the nature of n model restrictions as follows. Each function Fi(z) (i = 1, .. , n) is paired with a specific variable zj (j = 1, .. , n) such that
(i)

z*j = lj
(
z solves Fi(z) ( 0
(ii)

z*j = uj
(
z solves Fi(z) ( 0

(iii)
   lj < z*j < uj
(
z solves Fi(z) = 0
Often a compact vector notation is possible, written
v ( l
(
f(z) ( g(z) 
where v ( z (different entities, different dimensions). This notation means three things:

· The upper bounds are +( 
( 
only cases (i) and (iii) are relevant;
· Indices correspond

(
vi complements Fi(z) 
(i = 1, .. , n);
· F(z) has the form f(z) – g(z)

(writing g(z) ( f(z) is mathematically equivalent but not accepted in GAMS).
Solving MCP then requires equality, either left (vi = li) or right {fi(z) = gi(z)} | (i = 1, .. , n).
Free variables are a special case, defining a system of equations 
v free
(
f(z) = g(z).

Another special case is a fixed variable (lj = z*j = uj = constant). In that case, the associated restriction Fi(z) is redundant and may be dropped. In our traffic assignment case it occurs whenever there is just a single arc choice (pka = 1), i.e. at all non-decision nodes n(Ek.
We state the MCP model first, followed by explanations and analytical comments. 
Route switching
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Flow split (pka = xka/ykn[a])
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Link cost (congestion effects)
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Link flow (all commodities)
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where c0 is the free flow cost vector (c0 > 0).
The stated MCP is based on networks Rk of reasonable routes. Given logit choice probabilities all such routes have strictly positive flows. Hence - neglecting (4) - it can be shown that at the model solution all variables listed (on the left) are interior points and therefore all restrictions (on the right) are in fact equalities. We prove the premise for logit choice probabilities. 
Solving (1) for p gives 
[image: image10.wmf])}

(

exp{

[a]

k

m

a

k

a

s

c

K

p

+

-

=

q

 where factor 
[image: image11.wmf])

(

exp

[a]

k

n

s

K

q

=

 follows from condition (5). The result is the well known formula for a nested multinomial logit model:
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( k,  n(Ek,  a(Ckn 
(8)
and
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(trivially) in case of non-decision points
( k,  n(Ek,  a(Ckn ( Rk  
(4)
The nesting collapses for a uniform ( and thus the choice probability of a given route r is the same whether taken at once or computed via some walk-through along an arc-chain (n(k): (pr = ( pka). This fact has already been exploited by Dial (1971). Formula (8) also reveals that consumers’ rational behaviour considers not just the link cost ca of the next step, but takes the (expected) distance skm[a] of the remaining trip (m(k) also into account.
Equality (1), 
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 , allows a recursive computation of node potentials (satisfaction n(k) similar to Dijkstra’s algorithm, working backwards from sk[k] = 0. Consequently perceived distances n(k are rather less than measured ones (shortest distances n(k). Because (pka ( 1), the logarithmic term is negative and reduces (!) the incremental route length ca. It shows that optimising consumers take advantage of randomised cost (c + () but conflicts with the logical meaning of shortest distance.
In fact, this recursion formula raises serious questions:

· The term 
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 itself may become negative, e.g. for some small (. Do we accept negative distances - disutilities or costs that turn into profits?
· Consider node 18 with choice sets C2018 = {a32} and C2518 = {a32, a33}. For destination 20 the choice probability pka of arc a32 (18(19) is p2032 = 1, whereas in case k = 25, 0 < p2532 < 1. It means that (in our model) travellers towards 20 perceive the length of arc a32 as the real length c32, whereas travellers to destination 25 perceive (statistically) a different smaller length. It seems a dubious concept as is the whole distinction between perceived and measured distances, particularly when it results in expected minimal distances skn that are less than the true shortest distance, itself a lower bound that cannot be undercut.
We will return to these issues in the context of PETRA, but first let us study the other models.
Consider a traveller’s dilemma at a decision point (n(Ek). There exist at least 2 routes n(k, where, regardless which path had been taken in any recursive calculus, each time the result is the same (!) perceived trip length sk[n]. There is no point then in (unilaterally) switching routes; the traffic system is in stochastic user equilibrium. Thus Sheffi (1985) rephrases Wardrop: no traveller believes he can better his route choice by switching to another route.
Equation system (2) is also known as a trans-shipment model with conditions that equate input with output at each node. In the literature, they are sometimes called conservation of flow conditions. The remaining MCP relations (3) to (7) are more or less self-evident.

In optimisation theory it is customary to call a system in Q-space (quantities) a primal model, where the associated “dual values” refer to P-space (prices). Conversely a dual model has its constraints in P-space with “duals” within Q-space. Such models are presented next. In contrast, the MCP model above overcomes the dichotomy between Q- and P-space. Thus it can easily implement variable trip demand Tik as function of costs or of perceived distances i(k. Tariffs, taxes or road tolling can likewise be applied (Ferris & Munson 1998, Dirkse & Ferris 1998). Indeed, the resulting MCP might not even have any equivalent optimisation models.
Another important point is that the stated MCP model does not rely on a symmetric Jacobian matrix, the integrability conditions for the cost vector c(q). Therefore traffic assignment could incorporate node delays that generally result in “asymmetric cost”. Such intersection delays are an essential factor in (congested) urban traffic scenarios, but are often neglected in practice because of mathematical necessity, a methodology that is restricted to “symmetric cost”. - This line of research is not further pursued here, but notably PETRA exhibits the same desirable modelling capacity.
Non-linear Programs (NLP)

In this section two optimisation models are presented that – within their region of validity – are equivalent to the MCP above. The duality theorem proves that both primal and dual models produce at the optimum identical results with respect to primal and dual variables, where it can also be shown that there is no duality gap ( a saddle point solution.
Starting with the dual model (in P-space) we state the following NLP.

D-SUE:
maximise
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s.t. constraints (1), (4), (5), pk((++
(9)
The dual values on inequality (1) are the commodity flows xk, whereas the dual values on inequality (5) compute to ykn/( (n(Ek). [This difference to the stated MCP is irrelevant]. The maximisation ensures that all constraints are binding with strictly positive dual values. The integrals run from minimal cost c0[a] (free flow travel times) to actual link costs ca(qa), where separable cost, c(q) = [ca(qa)], existence of the inverse, qa(ca) = ca-1(qa), and integrability are assumed. Tik are trip matrix elements multiplied with ski = the expected perceived distances i(k.
D-SUE is equivalent to a model first proposed by Sheffi & Powell (Patriksson 1994, pp. 62-63) notwithstanding some apparent differences: (i) S&P minimise ( a reversal of signs in the objective function (OBJ); (ii) partial integration gives two terms ( their OBJ consists of three terms; (iii) S&P focus on probit models and hence – in the absence of closed formulae - rely on descriptive statements, calling it “an unconstrained mathematical program”. I suppose, I am not the only one confused by such terminology. Technically, S&P are correct since all conditions for a meaningful traffic assignment problem are embodied in their OBJ specification and no further side-constraint is needed. On the other hand, D-SUE does not look “unconstrained”. Arguably our conditions (9) do not “constrain”; they just specify which functional form to use (logit probabilities) when satisfaction values are computed for the OBJ. The irony of the situation is that maximisation causes every single constraint in (9) to be binding (with strictly positive dual value). The optimum is a border point of the feasible region (but for p((++). Besides, there are further problem boundaries/prerequisites such as a network topology, a trip matrix T and the functional form of assumed link congestion functions c(q).
Another interesting point is Sheffi’s (1985) claim that (at the equilibrated model optimum) the variables (xk) obey conservation of flows without the need to state such constraints explicitly. Sheffi obtains xk neither as dual value on model constraints nor does he attempt to formulate the dual model to his mathematical program (our primal model P-SUE). He lacks the tools provided by duality and proves his point theoretically, backed up by a numerical example. In our case the result follows from the duality theorem, the feasibility and optimality conditions of the respective primal or dual model. Central to these models are constraints (1) and (2), the feasibility/optimality conditions of D-SUE and P-SUE. The associated dual variables (xk, sk) are “the real drivers of the system” with all other constraints and variables “quasi-auxiliary”. Viewed from duality then, Sheffi’s claim - the observance of (2) - is a matter of course at the optimal solution of our model D-SUE.
Turning to the primal model P-SUE, it runs as follows (Ernst 2003).
P-SUE:
minimise 
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s.t. constraints (2), (7), xk((++
(10)

where
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Equations (11) are auxiliaries that detail the second term in the OBJ (10). They may be stated as explicit equations in the model P-SUE for convenience, but neither these constraints nor their dual values are of further interest. hkn is the entropy of commodity flows xk at node n. [In recognition of Helmholtz, the letter h is customary for entropy.] From 
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. It shows firstly that entropy exhibits constant returns to scale (with respect to y), and secondly (setting ykn = 1) that our definition is a generalisation of Shannon’s formula for the entropy of a probability distribution p. At trivial decision points (pka = 1) the entropy is zero, thus entropy terms appear in the OBJ (10) only for nodes n(Ek. The second relation in (11) simply defines node throughput ykn as the sum of all exit flows at node n. 
In P-SUE, the duals on constraints (2) and (7) are exactly the associated variables as listed for the MCP case. 
A short note on practicalities: optimisation software often initialises variables to zero, particularly, if that is their lower bound. Our frequent use of logarithms must prevent this and might require some positive small lower bound for the variables concerned. - We close this section on NLP models with an investigation of special cases for the behavioural parameter (.
Parameter ( at its limits

We investigate ( at the endpoints of its range (((0, (((). Looking at the primal model P-SUE, the OBJ (10) is a weighted combination of cost minimisation and entropy maximisation with factor 1/( applied to the latter. Multiplying the OBJ with a positive factor (() is a non-essential change: numerically the OBJ differs, but the optimal solution (variables xk, q) is unchanged. This consideration shows that in the limit (((0) the cost terms disappear and model P-SUE turns into a pure entropy maximisation problem subject to (2). [(7) is redundant.] The result is that every route r:i(k (within Rk) has equal probability pr to be chosen regardless of its cost (trip time). This can also be seen when logit formula (8) is adapted for un-nested route probabilities pr and then letting ((0. – Interesting as this case may be from a theoretical point of view, it is of little practical value. [As an aside, equivalent MCP or D-SUE models do not exist, because scaling constraints (1) by ( with subsequent operation ((0 fails.]
Turning to the other extreme ((((), we look again at the model P-SUE. This time entropy maximisation disappears [including all expressions (11)] and we are left with the classical model (P-DUE) for a deterministic user equilibrium. Regarding dual constraints (1), the log-terms disappear and vector pk is dropped from the NLP models with constraints (3) to (5) now left out. This being the case, there is no need to resort to special sub-nets Rk and the global net G(N,A) can be used everywhere, e.g. for the N/A incidence matrices Ik [yet still with row k omitted]. All these simplifications lead to valid primal, dual, and MCP models (see Ferris, Meeraus & Rutherford 1995; exemplified in GAMS/modlib/traffic.169 with Sioux Falls data. But their model set-up is not exactly a replica of ours). - We summarise as follows:

· SUE models are a generalisation, they include DUE models as a special case (((();
· Equation system (2) has more variables than constraints; thus commodity flows xk are somewhat arbitrary in a DUE in contrast to a SUE, where probabilities pk determine xk uniquely. Thus solving SUE models for a series of increasingly high but finite ( values ((((, travellers’ cost sensitivity increasing) is not the same – not even at the limit - as solving a DUE model;
· Satisfaction values sk[n] become shortest distances n(k for ((((); this follows from inequalities (1) as well as from random utilities (c+() with standard deviation ( reciprocal to theta (( ( 1/();
· In DUE models, complementarity (1) reflects Wardrop’s first principle: either xk[a] is zero or an equality holds that shows link a being part of the shortest route: its route incidence being (r[a] = 1 within the shortest route length (vector) formula 
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Numerical example

Our numerical example (Fig. 1) is inspired by Dial (1971). Flows (x, y, q) are measured in vehicles per minute; accordingly costs (vector c, distances s) refer to minutes. Congestion ca(qa) is a restated BPR formula with 3 parameters: c0 (already introduced) and c2 a pseudo-capacity, the point (q/c2 = 1) at which c0 has increased by c1 (usually taken as 15 % of c0). 
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The formulae apply to every link (subscripts [a] have been omitted). Presumed universal, we use c0 = 3 [min], c1 = 0.45 [min], c2 = 20 [veh/min] except for a “freeway” (11(12(13(14(15), where we take c0 = 2 [min], c1 = 0.30 [min], c2 = 40 [veh/min]. User total is distinguished from travel total (= ca qa for arc a). Integral (12) reflects the non-cooperative (selfish) behaviour of travellers that enjoy a “free ride”, a subsidy (13) that is handed back and equates to the difference between travel total and user total. Let ( be 0.8. Tables 2 and 3 show excerpts of results, complemented for comparison by a last column of PETRA results. Yet illustrating only the theory presented so far, we focus just on the left part of the tables.
[Table 2]
Focusing on the central problem variables (xk, sk), we contrast DUE with SUE results. Table 2 illustrates the ambiguity in DUE models. The total link flow qa is not in doubt, its composition xk is (see arcs a3, a4, a5). It contrasts with an SUE where commodity flows xk are uniquely determined by demand pk(c). It is a warning sign for tracing route flows through a particular link (cost/benefit analysis of selected links), if the results are derived from a DUE model. 
[Table 3]
Table 3 exhibits perceived distance ( shortest, a fact already deduced from equation (1) - the recursive formula for sk[n]. Obviously a cost minimising consumer prefers links with random utility - his perceived cost (ca + (a) - below measured cost (ca). Consequently SUE distances sk tend to be less than shortest distances n(k, 
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. s2524 in Table 3 is no counter example because the SUE flow exceeds the DUE flow (arc a40 in Table 2).
PETRA: solving for Probabilistic Equilibria of Traffic Route Assignments
With these modelling experiences behind us, we turn to an algorithmic approach. PETRA has no claim to revolutionary new concepts; rather it is a collection and implementation of ideas from various sources in the literature, a vehicle for testing and exploring the practicality of the proposed algorithm, for instance its numerical success in converging to an SUE. Specifically the following has been incorporated:
· The concept of random utilities is rejected (((0), perceived are measured cost. Thus it restores node potentials (vector sk) as shortest distance (n(k), an irreducible lower bound (recall the critical issues raised in connection with a recursion formula for sk).
· Usability of the global net G(N,A) instead of nets Rk that are different for each destination k (and must be specified a priori by the planner) including the awkward requirement that zero flows (and zero probabilities) must be precluded from the model. 
· Search for an equilibrium. Route switching behaviour - tomorrow’s decisions based on today’s cost – is mimicked by an iterative process. The method of successive averages is used as a means of last resort: predetermined step sizes instead of a line search. MSA is attributed to Powell & Sheffi, unaware of earlier similar schemes (Patriksson 1994, p. 23).
· PETRA is aligned with rational human decision making that is focused on its ultimate goal, looking forward in time. Dial’s (1971) initial intentions are restored when in our case each decision considers a pair of nodes (n,k). Instead of a forward pass followed by a backward pass, PETRA starts at the destination (k), computes backwards the vector sk of shortest distances (n(k) and produces a list L of nodes in topological order, where successor nodes are listed later than predecessors. The subsequent forward pass can thus use L for a cascade loading of the net. In short, we solve probabilistically (without path enumeration) a traveller’s dilemma at intersection n when he/she wants to reach node k.
· Formula (8) is implausible as Sheffi (1985) exemplifies: 5 minutes difference produces identical route choice likelihoods whether the decision maker contemplates long trips (2 hrs) or short ones (just 5 or 10 minutes). In contrast to absolute gains/losses, PETRA uses a route choice probability that considers the relative merits of all available options, a formula that is applicable within the full net G(N,A) and rejects unreasonable choices:
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The choice set Ckn (at node n) is dynamically defined: all arcs a:(n(m) that do not backtrack with respect to k. The distance sk[m] at the end node m[a] must be strictly less than the current position sk[n], a condition that ensures cycle-free paths. On the proviso, the global net G(N,A) is well connected, a shortest route r:(n(k) exists for all (current) nodes n and destinations k. Therefore the set Ckn is not empty; it contains at least one element (the arc belonging to some shortest route). This choice set is a subset of the forward star Fn, Ckn ( Fn. Formulae (14), (15) define choice probabilities 0 ( pka ( 1 for all arcs a(Fn be they within Ckn or within its complement Fn\Ckn (the set difference). 
Expression 
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 is termed scaled utility where the best choice (the shortest route) computes to a value of 1 and other less favourable (but reasonable) options to some value > 1. Using relative instead of absolute decision criteria have already been proposed by Fisk (1977) - a “common sense” modification of the logit probability formula (8).
Shifting goal posts (a moving scale of utility) make it highly unlikely that PETRA can be stated as a mathematical program, even more so when conceptual ideas are mixed: on one hand, Luce’s choice theorem (logit formulae for p) and entropy ( SUE; on the other hand, shortest distances, no errors ( ( DUE. Instead of large systems of simultaneous non-linear constraints, PETRA searches iteratively for an SUE via MSA where l denotes the iteration index (l := 0, 1, .. , limit). In that case, convergence becomes an important issue.
Not surprisingly, PETRA suffers the same performance problems that plague Frank-Wolfe due to linearization (constant costs). They may be remedied by PARTAN (Patriksson 1994, pp. 101-103). Flip-flop phenomena observed in our numerical example include alternating solutions between instances where flows xk from node 6 (with destinations k = 24, k = 25) used both exits (a10:6(7; a11:6(11) and cases where only the southern link (a11) was taken. 
The detailed PETRA algorithm is listed in the appendix. Alternative convergence criteria may be used, e.g. watching the cost vector c move towards a steady state. We opted for a statistical measure (the variance () of the differences between the iterated link flow (ql-1) and vector zl (an assignment of the total trip matrix T at current costs). Our heuristic for smoothing flip-flops checks the convergence criterion (/(l+1). As long as it decreases, the usual MSA is followed; but once it increases, the previous step is reversed by half a unit and only half a unit of the current step is added. It represents a “half-way house” between two flip-flop streams and is inspired by PARTAN (parallel tangents), a line search that is conducted in two directions (Frank-Wolfe). In our case a line search is replaced with pre​determined step sizes, where two iterations now likewise resemble a single PARTAN step. This modification has no adverse effects on the theoretically proven convergence of MSA. 
The listed algorithm omits iteration superscripts (vectors are reused) and uses the following notation: link flow vector q = iterated solution, vector z = an assignment of the trip matrix T at current costs (an accumulation over all k(D), vector r = the previous vector z (r like recent, retained). The results shown in Tables 2 and 3 were found after 27 iterations with the stopping criterion (/(l+1) ( 0.4. 
Methodological Review and Summary

Three mathematical models of traffic equilibria have been studied: primal and dual non-linear optimisations and a square system of mixed complementarities. Markets let opposing forces of demand and supply settle on a vector of equilibrated prices (link cost vector c). In the primal model, trip flows (vector x) adjust so that user cost (disutility, travel time) are minimised. Flows are not exactly demand that rather has been identified with probabilities (choice vector p), the price-induced “explanation” [a function p(c) of cost] why consumers choose a certain route (a chain of arcs). But before continuing the argument, let us look at the dual model first, “the opposition” to cost minimising consumers. Such model takes a producers’ perspective (supply) that maximises returns (vector s). sk[n] is a node potential, the (expected) shortest distance n(k in terms of (perceived) utility. When explicitly modelled, as is the case for the dual or MCP model, one can easily implement variable trip demands: vector t = t(s) as some function of (user optimised) journey cost or rather travel time. 
Setting fixed or variable trip demand (t) aside, we return to the issue of route demand (p). Such a cost-induced demand function p(c) is missing in a DUE. In Wardrop’s equilibrium, stray animals – travellers trying some route that is not shortest – are shepherded back to the fold: conditions known as W’s first principle. Evidently this is not a good model of market behaviour and fails to explain why equal cost (as all shortest routes have) should result in unequal flows (as usually is the case), flows understood as the aggregated response of con​sumers to price signals (route cost). 
This missing key ingredient p(c) is sufficient cause for mistrusting DUE, specifically for the purpose of a cost/benefit analysis; it necessitates using SUE results instead. As a side effect, based on perceived ( measured shortest distances (usually), I would like to point out that satisfaction, taken as yard stick for project evaluations, provides more conservative estimates, understated rather than overstated impacts on journey time. This argument is weakened by PETRA, a return to shortest distances on the principle that lower limits cannot be undercut. Besides, “perceived” decision criteria (deceived consumers?) is not an attractive modelling proposition.
Traffic equilibria – primal and dual models – could not only be seen as balancing market forces (supply and demand), but also in a game-theoretical context, computing the optimal strategy (a probability distribution p) within a non-cooperative N-person game (Haurie and Marcotte 1985). This line of thought has not been pursued and is in our case further restricted by the imposed requirement that probabilities be logit (our modelling premise). 
In the literature (Sheffi 1985 and others) logit models have been dismissed because of their poor correlation matrix in favour of probit models that have fully populated rich matrices. Such argument is short-sighted as it focuses on a technicality and looses sight of the bigger picture. In our models, conservation of flows (2) is either explicitly stated (MCP, primal SUE) or implicit (dual SUE). Together, this system of linear equations, known as trans-shipment model, implements a feed-back loop between each individual traveller's route choice and the impact on all other fellow travellers, causing them to reconsider their choices. Once equilibrium is reached and route switching has settled, network flows are in a timeless steady state that is not affected, if the cost vector was hypothetically fixed at its final value c* at which market forces balance (demand = supply). Viewed as a Nash equilibrium, each player in a non-cooperative N-person game optimises his strategy (the probabilities p he assigns to his discrete choice set of possible routes) on the proviso that none of the other (N-1) opponents changes his chosen strategy. The result is that costs can again be fixed at c* without affecting the outcome as the decision maker evaluates his payoff based on (constant) route costs (= c*T (r ) - his disutility. Yet once costs are taken constant, any correlation between overlapping routes disappears and logit is no longer the poor cousin to probit. Logit probabilities are legitimate and adequately model a traveller’s dilemma at some intersection (should I turn left, right or go straight ahead?). Besides, there are added benefits. Firstly, we can use closed formulae. Secondly, the model design is based on behavioural research (the Luce model - Bierlaire 1998, pp. 209-210) and on a well-defined physical entity: the concept of entropy, in our case with respect to probability distributions and a dispersal of network flows. This chain of reasoning is valid for PETRA likewise. 
Finally note that the terms 
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 in formula (8) or (14) evaluate a traveller’s (estimated) remaining trip cost at current correlated (!) values, i.e. based on the prevailing link cost vector c. The first term (ca) are disjunctive alternatives (one or more divergent paths) where route overlaps, if any, are further down the track, i.e. contained in the second cost term 
[image: image34.wmf]k

m

s

 

[a]

. In sum, it is the set of simultaneous equations, the trans-shipment model (conservation of flows) that captures a network structure (the topology), demand (a trip matrix), correlation (overlapping routes) and the mutual impact between independent traffic participants via an equilibrated link cost vector c* and the probabilistic route choice function p*(c*) = each consumer’s optimised strategy.
Tables 2 and 3 compare PETRA with earlier model results. Accordingly, identical entities are shown: link flows by commodity (Table 2) [vehicles/minute] and shortest distances n(k (Table 3) [minutes]. It is thus not a scaled utility (or “satisfaction”) that is shown in Table 3. It would always equal 1 (for the shortest route), be dimensionless [a quotient of same physical entities] and be totally useless for a meaningful comparison.

Even though PETRA’s design rejects the notion of perceived utilities, logit probabilities can always be derived from a random utility distribution (Bierlaire 1998), if so desired. It would be incorrect then to say that PETRA is incompatible with random utility concepts. Resorting to randomness is an admission by the planner of (partial) ignorance: he does not know any better why the modelled decision maker takes individually different choices.
Finally, despite its appeal to common sense and convincing rationale, PETRA need not be the final answer. Research is never finished. It has also been said that 50 % saving for short trips (10 min's) is dissimilar to 50 % saving for long trips (2 hr's) - point taken. However, these alternatives never mix. If a traveller is 2 hours away from the destination, there is no short-cut of 10 min's available; conversely, if he is close to the destination, a detour of 2 hours would never be a reasonable choice. It is legitimate then to treat each intersection - a decision maker's dilemma - as a case on its own. 
The real issue, however, is the question whether a planning engineer has at his disposal the software tools he needs. Whether he could undertake a "what-if analysis" and compute the traffic flows that result from the behavioural assumption that travellers are governed in their route choice by relative criteria (scaled utilities) as opposed to absolute (dis)advantages. It is this kind of planning exercise this paper seeks to encourage. All it required were the modelling languages AMPL and GAMS plus solvers MINOS, CONOPT and PATH - in short, software tools that are common in operations research but likely amiss within standard traffic modelling packages.
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APPENDIX: The PETRA Algorithm

In the listing below, most sub- and superscripts are omitted; besides, vectors are re-used: x[a] = link flows, y[n] = node flows, z[a] = accumulated link flows (all commodities k). z reflects travel plans for tomorrow (a whole trip matrix T) based at the link costs c[a] of today. q[a] are iterated link flows (the averaged z), p[a] = link choice probabilities (at node n, bound for k, conditional on (15) – “Dial’s efficiency”). s[n] = shortest distances (n(k), and L = node list (in topological order, here sorted by distance s[n]). The start-/end-node of arc a is fr[a] (from) respectively to[a]. Aiming at efficient implementation, index-oriented lists have been used for speedy access to forward (Fn) or backward stars (Bn): Fn = {a:i(j | i[a] = n}, Bn = {a:i(j | j[a] = n}. Yet these are minor details, as is the scripting language shown: a resemblance of AMPL (Fourer et al. 2003). Conditional assignments (if .. then .. else ..) imply a zero value (.. else 0) even if the else-part is not explicitly stated. False is zero, any other value means true. Bold print indicates vector assignment, e.g. L := 0 (the node list is initialised to zero). 
tst is the current convergence criterion, where old (initialised to infinity) holds the previous value. Thus (old-tst) monitors progress and switches between ordinary MSA and quasi-PARTAN.

The core routines are presented first, a backward pass (computing s and L) and a forward pass of assignments (link flows x and node flows y : a cascade loading of all traffic to k). The overall routine comes last: the iterative solving for a stochastic user equilibrium (using MSA). Shortest routes calculus starts at the destination k and is a “swarming out” (a backward pass) that can be summarised as follows. (Part of) node list L acts as a stack of “frontier nodes”, index i pointing to the bottom of the stack, j to its top, whereby the stack is built and maintained in sorted order of ascending distances by a bubble sort. Swarming out takes always the node at the bottom of the stack: the minimum of all “frontier nodes” (Dijkstra’s algorithm). 
Backward Pass 
shortest distances s and ordered node list L (Dijkstra)
Initialise:
for {n in N} s[n] := (; s[k] := 0;  L := 0; L[1] := k;   i := 1;   j := 1;

Pick node:
repeat {n := L[i]; 
# min frontier node

Scan Bn:
for {a in Bn} {dist := s[n] + c[a]; 
# distance fr[a](k


if s[fr[a]] = ( then {j := j + 1; L[j] := fr[a]};
# stack grows


if dist < s[fr[a]] then {s[fr[a]] := dist; 

# better route

Restore order:
m := j; while L[m] ( fr[a] m := m – 1;

# find fr[a] in L


while s[L[m-1]] > dist {L[m] := L[m-1];

# shift stack


m := m-1};  L[m] := fr[a];

# store fr[a]


};
# better route finished


}; i := i + 1;
# remove n from stack

Finished:
} until i > j;
# stack empty
Looking at the forward pass, we firstly examine the whole forward star Fn as explained in the context of (14)/(15), setting p[a] = 0 if s[to[a]] ( s[n] (the presupposed criterion for an unreasonable route). Secondly, vector p is used for the probability weights rather than the actual value. Vector y is also used to check the network for sufficient connectedness. An error would occur otherwise, because some y[n] would be initialised to non-zero but never be distributed on the net because node n would never enter list L. 
Forward Pass 
Cascade Loading (using s and a topologically ordered list L)

Initialise:
for {n in N} y[n] := if n in O then T[n,k];
# else y[n] := 0


for {a in A} x[a] := 0;
# default flows

Pick node:
repeat {n := L[j]; tot := 0;
# max distant node

Scan Fn:
for {a in Fn} {p[a] := if s[to[a]] < s[n] then
# compute weights


exp(-( (c[a] + s[to[a]])/s[n]);
# else p[a] := 0


tot := tot + p[a]};

Distribute:
for {a in Fn} {x[a] := y[n]*p[a]/tot; 
# compute arc flow


y[to[a]] := y[to[a]] + x[n]};
# promote flow

Clear n:
y[n] := 0; j := j – 1;
# for checking

Finished:
} until j = 1;
# L exhausted

Error ?
if max (y[n] | n(k) then {message; stop};
# disconnected net

PETRA
probabilistic equilibrium of traffic assignment


(route switching ( market equilibrium)
Prepare:
open files; input model data; q := 0;
# start; initialise values
Iterate:
for {l in 0 .. limit} {
# today, tomorrow, ..

New cost:
compute c := c(q); z := 0;
# decision basis; initialise z

Destination:
for {k in D} {
# for each commodity k do ..

Backward:
compute s and L;
# shortest distances

Forward:
for {n down through L} for {a in Fn}
# cascade loading


{compute p and x; update y};
# trip assignments

Accumulate:
z := z + x;
# total trip matrix T


};
# destination k done

Criterion
tst := (/(l + 1);
# convergence test value
Update Flow:
if old > tst 
# is tst monotone? 

then {q := (l(q + z)/(l+1); 
# yes: MSA
Converged?
if tst ( ( then break;
# exit iteration loop

old := tst; r := z}
# retain current results

else {q := q + 0.5*(z – r)/l;   old := (};
# no: quasi PARTAN


};
# end iteration

Results:
compute c := c(q); outputs; close files; stop;
# finalise run

Variance:
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(one of many convergence criteria)
Table 1:
 Trip Matrix
[vehicles/minute] 

	                  D
O
	20
	24
	25

	1
	
	
	20

	2
	14
	
	16

	6
	
	12
	22

	7
	18
	19
	8


Table 2:  Traffic Flows (xk[a] per arc a and destination k) 

[vehicles/minute]
	
	
	DUE models
	SUE models
	PETRA

	arc
	k
	Primal
	dual
	MCP
	primal
	dual
	MCP
	(at stop)

	1
	25
	9.06051
	9.06051
	9.06051
	8.76620
	8.76620
	8.76620
	9.98513

	2
	25
	10.93949
	10.93949
	10.93949
	11.23380
	11.23380
	11.23380
	10.0149

	3
	20
	3.50684
	14.00000
	3.50684
	10.33644
	10.33643
	10.33643
	7.36788

	3
	25
	25.06051
	14.56735
	25.06051
	16.67869
	16.67869
	16.67869
	13.5239

	4
	20
	10.49316
	
	10.49316
	3.66356
	3.66357
	3.66357
	6.63212

	4
	25
	
	10.49316
	
	8.08751
	8.08751
	8.08751
	12.4613

	5
	20
	3.50684
	9.47447
	3.50684
	5.00078
	5.00078
	5.00078
	3.66809

	5
	25
	12.11030
	6.14267
	12.11030
	7.04101
	7.04101
	7.04101
	6.74027

	…
	…
	…
	…
	…
	…
	…
	…
	…

	39
	24
	0.71573
	0.71573
	0.71573
	15.96338
	15.96339
	15.96339
	11.6640

	39
	25
	32.14225
	32.14225
	32.14225
	16.67214
	16.67213
	16.67213
	19.4791

	40
	25
	32.14225
	32.14225
	32.14225
	32.22944
	32.22944
	32.22944
	31.1007


Table 3:  Node Potentials (satisfaction sk[n], “shortest distance” n(k)
[minutes]
	
	
	DUE models
	SUE models
	PETRA

	node
	k
	primal
	dual
	MCP
	primal
	dual
	MCP
	(at stop)

	1
	25
	35.68859
	35.68859
	35.68859
	30.05366
	30.05366
	30.05366
	31.6959

	2
	20
	25.97369
	25.97369
	25.97369
	21.92504
	21.92504
	21.92504
	22.3961

	2
	25
	32.66963
	32.66963
	32.66963
	28.06808
	28.06809
	28.06809
	28.7938

	3
	20
	21.10054
	21.10054
	21.10054
	17.80624
	17.80624
	17.80624
	18.6347

	3
	25
	27.79648
	27.79648
	27.79648
	24.06424
	24.06424
	24.06424
	25.0325

	4
	20
	17.93324
	17.93324
	17.93324
	15.65471
	15.65471
	15.65471
	15.7889

	4
	25
	24.62918
	24.62918
	24.62918
	22.08308
	22.08308
	22.08308
	22.1866

	5
	20
	14.92924
	14.92924
	14.92924
	14.42894
	14.42894
	14.42894
	13.7032

	5
	25
	21.62518
	21.62518
	21.62518
	21.08696
	21.08696
	21.08696
	20.1009

	…
	…
	…
	…
	…
	…
	…
	…
	…

	23
	24
	6.27835
	6.27835
	6.27835
	6.19047
	6.19047
	6.19047
	6.80473

	23
	25
	12.28026
	12.28026
	12.28026
	12.22509
	12.22509
	12.22509
	13.0787

	24
	25
	6.00191
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Figure 1: Road Map
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