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SUMMARY

One of the most common existing problems with the construction and projection of trip matrices is the zero estimation, also known as empty cells.  It is very difficult, and at times impossible, to distinguish if a trip matrix cell is empty because there are no existing trips for that Origin- Destiny (O-D) pair (statistical zeros) or simply because the sample didn’t consider this O-D pair (sampled zeros).  In this article there are two alternative methods proposed to estimate the null matrix trip values, which are based on the use of gravity models.  We conclude that an adequate estimation of zeros in the trip matrix allows a significantly improved prediction capacity for the distribution and trip assignment models. 
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1. INTRODUCTION

The construction of trip matrices which are based on transportation system user surveys, normally  have the inconvenience that the sample size cannot be representative of all the users in the system. What ends up happening is that when the sample results are expanded to construct a trip distribution matrix of the whole population, many null values are obtained (empty cells).

There has been an attempt to mitigate the matrix estimation problem by constructing mathematical trip distribution models.  These methods, which are based on information about trip production  and attraction from the different zones of the analyzed system, as well as the characteristics and service levels of a transportation system, predict the amount of trips between the different O-D pairs. However, the construction of these models present an inconvenience: they attempt to predict the number of trips between a large number of origins and destinations. For example, in the analysis of Santiago, Chile, the dimensions of the matrices are  600x600, which is equivalent to 360,000 O-D pairs. In these cases, when a model is used to predict the trips between all the O-D pairs, the model tends to generate biased estimations, normally overestimating the short trips and underestimating the long trips, since  the generalized travel cost is usually the most relevant explanatory variable. As a result, the predictive capability of the mathematical trip distribution models is normally low for multi-zone levels.

As a result, if we could count on adequate information about the trip structure for transportation system users (that is, regarding the O-D pairs where trips really do not exist),  the construction of the distribution models would provide more robust and precise results.

To reach this objective, in this document  we use information from a travel survey to calibrate a gravitational trip distribution model, which explicitly incorporates the phenomena of trip spatial correlation. The constructed analytical model is used to estimate the empty cells of the trip matrices through two alternative approaches.

In Chapter 2 we present the background and general definitions of the stated problem. In Chapter 3 we describe the distribution model that was used as part of the methodology for estimating zeros, specifying the way in which the trip spatial correlation phenomena was incorporated. In Chapter 4 we present two alternative methodological approaches to determine the null values in a trip distribution matrix of a transportation system. In Chapter 5 we report the main results obtained from the methodological approach presented in Chapter 4, highlighting the main advantages that the estimation of zeros has.

2. BACKGROUND AND GENERAL DEFINITIONS

In this Chapter we present a more formal definition of the concept of trip structures (section 2.1).  Later, in section 2.2, we present the concept of spatial aggregation and its relationship with the zeros in the trip matrices. These concepts are key when defining  the trip distribution models, which are used to estimate zeros (see Chapter 3). Finally, the methodology  used to  estimate zeros is detailed in Chapter 4.

2.1 Definition of Trip Structure

Within this document, we will define trip structures as the cells of an O-D matrix with null values; that is, the structure corresponds to the trip distribution matrix zeros or simply to the empty cells. Then, a specific combination of zeros within a trip matrix gives place to a specific trip structure. Let’s consider for example the following 4x4 matrix:
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In matrix (1)

, the cells with 0 (zero) define the trip structure of this matrix.

The trip structure corresponds to a definition of the actual availability of the travelers choice destination; in this context, it is equivalent to defining the availability of modes for system users (Ortúzar & Willumnsen, 2001). So, if a specific cell (i, j) contains a zero, it means that this destination j is not available for the traveler who’s origin is i. Note that the gravity models are a Logit type model for the destination choice (Anas, 1981). In this way, if a destination j has infinite cost, it is not available.

Evidently, since a trip matrix can be composed of hundreds of thousands of cells, the available destination alternatives for travelers will also be hundreds of thousands; this is the main problem when constructing trip distribution models where there are many existing zones that generate and attract trips.

Since in an urban transportation system like Santiago, where almost 600 zones exist,  the number of origin-destination pairs in which it is feasible to carry out a trip is very high (600(600 = 360,000), it is key to define a trip structure to determine the destination choices that are truly available for the travelers, eliminating the zone pairs  where no trips exist or that have a low probability of being chosen. Our objective is to reach an adequate estimation of zeros in the trip matrix.

2.2 The Spatial Aggregation Problem
When analyzing the urban transportation system trip patterns, we normally use the zone or sector concept, which represents (for modeling purposes) the set of activities that are developed in their interior. The zones must represent geographical sectors that are as homogeneous as possible. Figure 1 shows a zoning example for an urban transportation  system that considers 29 zones. Each zone is related to a centroid; a centroid represents the zone’s center of gravity, which should, by definition, be homogeneous.

Figure 1
Example of Zone Definition in an Urban Activity System (29 Zones)
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However, the system of activities represented by 29 zones (and 29 centroids)  in Figure 1 , can also be  represented in a more aggregated way (for example 8 zones), as shown in Figure 2: 

Figure 2
Aggregation Example in an Urban Activity System (8 Zones)
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Figure 2 represents the same activity system presented in Figure 1, but with a less amount  and larger sized zones. Nevertheless, in Figure 1 the trip matrix is represented by 29(29 = 841 cells, while the matrix that corresponds to Figure 2 contains 8(8 = 64 cells. If we carried out a survey over a random sample of 100 individuals, and we used the aggregation level of Figure 1, the minimum number of zeros that the trip matrix would have would be 841 – 100 = 741. However, if we carried out the same survey on a sample of 100 individuals but considering the aggregation of  Figure 2, we might even conclude that there would be no empty cells.

It is evident that the number of zeros related to the trip matrix of Figure 1 is significantly higher than the number of zeros related to matrix of Figure 2. Therefore, the estimation of zeros is closely related to the level of aggregation considered in the analysis.

3. SPATIAL TRIP DISTRIBUTION MODEL
The two methodologies used for zero estimation that are presented in Chapter 4 require a previously specified and calibrated trip distribution model.

3.1 Distribution Model
In this research we used the spatial trip distribution model based on the concept of competing destinations (Fotheringham, 1983; Fotheringham and O’Kelly, 1989; Erlander and Stewart, 1990; Fernandez et al, 2007). This model represents an extension of the classic gravity model (Wilson, 1970).

The competing destination distribution model is obtained from the following equivalent optimization problem:
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where Tij and Cij are the number of trips and the generalized cost between pair (i, j),  Sij is the accessibility between pair (i, j), and Oi and Dj are generation and attractiof trips in zones i and j, respectively. Parameters  and  must be estimated.

Applying the first order conditions in problem (2)

 we obtain:
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Notice that the gravity model (Wilson, 1970) corresponds to model (3)

 considering that  =  0. In econometric terms, calibrating the classic gravity model is equivalent to calibrating a restricted model (Fernandez et al, 2007), and thus, it is feasible to statistically determine if both models are different or not ( =  0 vs  (  0). A proper definition of accessibility Sij would be to consider the inverse of cost or distance, that is Sij = 1/Cij. Parameters  and  can be adequately estimated through econometric techniques, based on the information obtained from surveys and field measurements of the service levels (Cij).

3.2 Trip Spatial Correlation

In order to formulate and calibrate cross-section models that include the spatial correlation concept, it is key to first define what is understood by spatial correlation, its importance, and how to include it analytically in the models. Traditional econometrics has largely ignored these issues, thus obtaining inefficient estimators. Perhaps they have ignored these issues because it violates the Gauss assumptions used in econometric modeling. We can define spatial correlation most simply as the impact produced on the explained variable of a determined geographical sector (in our case , the number of trips between each O-D pair) by the explained and explanatory variables of the neighboring or by contiguous geographical sectors. Anselin (1988) provides a complete analysis for many spatial econometrics topics, including Bayesian estimation approaches, as well as maximum likelihood.

This way, we define a contiguous matrix W that indicates if a specific Origin-Destination  cell has a spatial correlation with another Origin-Destination cell. In our case, matrix 
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 is composed of n column vectors of 1 x n 
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  whose values are 1 if both zone pairs (i, j) belong to the same district as both zones of the pair (k, l), and 0 in another case. Note that if the trip matrix is m x m, the spatial correlation matrix W will have dimensions m2 x m2 (n = m2). Spatial correlation matrix definition (W) is arbitrary, and depends on the modeler.

The definition of W described in the previous paragraph was one which provided satisfactory results, and corroborates the importance of this phenomenon in the spatial trip distribution model estimation. In Figure 3 we show the zone aggregation considered (577 zones) and the district aggregation (36 districts); each district is composed of a specific number of zones.

Figure 3
Zone Aggregation Levels Considered

	577 ZONES
	36 DISTRICTS
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On the other hand, there are many other ways of defining the spatial correlation concept, which depend on the modeler, and should be empirically analyzed to contrast their validity. In our case, we opted for the Spatial Correlation on Errors Model (SEM, see Anselin (1988) & Arbia (2006)). The general structure of this model is as follows:
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where 
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 is vector (1 x n) of errors, with
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 is a gaussian spatial white noise, and parameter  represents the degree of spatial correlation.

In order to make the formulation (3)

, we can carry out the following variable change: 
(8)

 consistent with distribution model (7)

 and (6)

, 
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Then, by adding an error term to expression (9)

 we obtain the following linear econometric model:
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where W is the spatial correlation matrix whose components have a value of  0 or 1, as was explained above. Obtaining ij from expression (11)

 we finally obtain the following linear model written in vectorial terms:
(12)

 and introducing it in 
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3.3 Calibration of the Distribution Model with Spatial Correlation
The estimation of parameters ,  and  was carried out through the maximum likelihood method (Anselin and Bera, 1998), but applying it in an iteractive way, since based on parameters  and  we directly obtain the balancing factors Ai and Bj. Notice that the inclusion of the spatial correlation phenomenon (12)

 is done mainly to improve the estimation of  and , in such a way that estimators that are consistent and efficient are obtained; parameter  in our case also measures the degree of spatial trip correlation, but does not directly affect the estimation of trips Tij nor the balancing factors Ai and Bj.

In this case, the likelihood function is as follows:
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To solve this problem we used optimization method BFGS (Broyden, Fletcher, Goldfarb, Shanno) incorporated in GAUSS (Aptech Systems, 2002). The process is as follows:

Step 1: 
Define initial values for 0, 0 and 0 (we started with values 0.5 for 0 and 0 , and –0.5 for 0).

Step 2: 
Based on the initial values of 0 and 0, and the exogenous variables Cij and Sij, obtain the initial Ai0 and Bj0 through balancing (see (5)

). Note that Ai and Bj do not depend on , nor on the values of Tij.
(4)

 and 
Step 3: 
Numerically solve problem (14)

, in our case with GAUSS, regarding parameters ,  and  , but considering the values of Ai0 and Bj0 from Step 2. This way we obtain the values of 1, 1 and 1.

Step 4: 
Compare the values of 0, 0 and 0 with 1, 1 and 1. If the differences are less than a predetermined value, the process ends; if not, go to Step 2, with values 1, 1 and 1, and repeat the process until it converges.

4. METHODOLOGY FOR STRUCTURE CONSTRUCTION 
4.1 Structure Construction through Monte-Carlo Simulation
Expression 
(3)

 allows us to obtain the travel probability between each O-D (i, j) pair in the system. We have named this probability  GOTOBUTTON ZEqnNum650919  \* MERGEFORMAT , and what happens is:
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Expression Figure 4(15)

 allows us to construct the following instrument represented in  GOTOBUTTON ZEqnNum680651  \* MERGEFORMAT :

Figure 4
Accumulated Density of Trips in the System 
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The probability values in the lower horizontal axis of Figure 4 are generated based on the distribution model (see expression Figure 4(3)

). Higher probability values will be represented by wider intervals. For example, in  GOTOBUTTON ZEqnNum650919  \* MERGEFORMAT  we observe that P1,2 is greater than P1,3.

On the other hand, in the upper row we present a random variable (x) that has a uniform distribution between zero and one. The experiment consists on generating variables x ~ U[0,1] and assigning them to the respective pairs (i, j); we will generate as many variables x as  total trips that exist in the modeled system. As a result, we can say that each variable x corresponds to a traveler that is deciding on his trip origin and destination. For example, if variable x1 falls upon P3,8, it means that O-D pair (3, 8) will capture a whole trip; if variable x2 falls upon P58,179, it means that pair (58, 179) captures another whole trip. That is, traveler 1 selected pair (3,8) and traveler 2 pair (58, 179).  Successively, the n variables xn (in this case n would be the total number of travelers in the system) are assigned to different O-D pairs, which assures that only whole numbers will be present in the distribution matrix, and that the least number of trips for each cell will always be at least one (with the exception of the null values). 

Notice that the random variable x distributes uniformly between zero and one, and thus the order in which the values of Pi,j are placed (horizontal axis of Figure 4) is irrelevant, since what is important is the value of the probability (width of the bar) and not its position. This methodology evidently requires a sensitivity analysis between different test simulations to determine if very different results are obtained or not in the different experiments, since x ~ U[0,1]. The tests that were carried out showed that different experiments provided practically the same results in terms of the density function of trips, as the results obtained from assigning the different simulated matrices on the network (see Appendix A).  

4.2 Construction of Structures Through Confidence Intervals

As mentioned previously, the estimation of trips between each O-D pair in the transportation system is carried out, in our case, based on the construction of a distribution model (see 
(3)

) defined by expression  GOTOBUTTON ZEqnNum650919  \* MERGEFORMAT , where
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, it is feasible to construct the following confidence interval to predict trips between pairs (i, j):
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where 
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 is a scalar and t is the confidence level that is requested for prediction. In Figure 5 we represent the prediction of trips 
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Figure 5
Relationship between Trips and Generalized Cost (Cij)

[image: image49.wmf] 

ˆ

ij

T

 

(

)

ˆˆˆ

ijij

TtVT

+×

 

(

)

ˆˆˆ

ijij

TtVT

-×

 

A

 

B

 

C

ij

 


The thick curve in the middle of Figure 5 corresponds to the prediction of the trip distribution given by 
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, while the dotted lines represent the upper and lower confidence interval limits for a given level of confidence determined by t. We observe in Figure 5 that at the right of point B the lower interval has negative values, which is impossible in our case (negative trips do not exist). Therefore, from this point on, we consider that there are no trips between pair (i, j). Point A represents the prediction with the least variance, which is obtained by evaluating model 
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The resulting trip structure based on this second procedure will be obtained by defining the trips between pairs (i, j) with value zero, whose lower limit of the confidence interval generates negative values. This is equivalent to contrasting the following hypothesis test:

H0 : Tij = 0,          H1 : Tij > 0
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (18)

As a consequence, where the null hypothesis is not  rejected (H0 : Tij =  0), we consider that no trips exist for those pairs (i, j); this is equivalent to those pairs in which the lower limit interval has negative values. Nevertheless, to obtain the confidence intervals, particularly the lower interval, which in our case is the most relevant, we require the estimation of scalar 
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5. ANALYSIS OF RESULTS

5.1 Description of Data Base Used
The trip information that was used to estimate  the distribution model parameters  corresponds to a Public Transportation trip matrix estimated from a massive survey carried out in the year  2001 to the Public Transportation users in Santiago (SECTRA, 2001) during the morning  peak hour (7:30 to 8:30 a.m.). This trip matrix was constructed from a very large sample: 17% of all the public transportation users were interviewed inside the vehicles, which is equivalent to 87,446 travelers. Because of this, for the purposes of this analysis, we considered this matrix as the real trip matrix. This matrix presents the following characteristics, considering two aggregation levels (see Figure 3):

Table 1
Public Transportation Trip Matrix, Morning Peak Period Year 2001 Santiago

	VARIABLE
	Zone Aggregation
	District Aggregation

	N° of Zones
	577
	36

	N° of O-D pairs
	332,929
	1,296

	Total Trips
	524.674
	524,674

	N° of Cells with Trips
	50,151
	1,201

	N° of Cells without Trips
	282,778
	95

	% of Zeros
	84.9%
	7.3%


We can observe that the trip matrix at the most disaggregated level (577 zones) has a high number of empty cells (84.9%), while in the district aggregation case (36 districts), the percentage of empty cells is low (7.3%). This result corroborates the importance that the estimation of null values in trips matrices has, particularly when the number of zones is high.

5.2 Results of the Distribution Model Calibration

Table 2 reports the results obtained through the calibration process previously described (see section 3.3), considering the zone level aggregation (577 zones).

Table 2
Parameters Estimated through Maximum Likelihood

	
	
	
	

	Value
	-0.460
	0.468
	0.904

	t
	169.4
	15.3
	37.6


We can observe that the parameter signs are consistent with the theory, and the three parameters have a high statistical significance. With respect to spatial correlation parameter , we observe a value that is quite high, although we can also see that it is significantly different from 1: 
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. With these results, we corroborate that the spatial correlation phenomenon is highly important in spatial trip distribution models.

5.3 Results of Matrix Estimation with Empty Cells

As was shown in Chapter 4, we considered two approaches to estimate the empty cells inside  a spatial trip distribution matrix. Each of these approaches generates, as a result, a specific trip matrix with an important number of null values inside. In addition, with the distribution model it is also feasible to construct a trip matrix that does not consider empty cells, in other words, allow the model predict the values for all cells. The idea is now to compare these matrices with the observed matrix (matrix constructed based on the survey; see section 5.1).  As a result, we analyzed and compared four different matrices:

a)
Observed Matrix (obtained from survey).

b)
Matrix Constructed from the Monte-Carlo Experiment (MC, with empty cells)

c)
Matrix Constructed with the Confidence Interval Method (CI, with empty cells)

d)
Matrix Constructed with the Standard Gravity Model (SGM, without empty cells)

Table 3
Comparative Analysis of Matrices

	VARIABLE
	Observed
	MC
	CI (*)
	SGM

	N° of Zones
	577
	577
	577
	577

	N° of O-D Pairs
	332,929
	332,929
	332,929
	332,929

	Total Trips
	524,674
	524,674
	524,674
	524,674

	N° of Cells with Trips
	50,151
	72,510
	22,589
	316,113

	N° of Cells without Trips
	282,778
	260,419
	310,340
	16,816

	% of Zeros
	84.9%
	78.2%
	93.2%
	5.1%


(*): we considered t = 2.33 for the statistical significance (99%).

The comparison of these 4 matrices was carried out under 2 dimensions: comparing the histogram of the trip matrix, and comparing the results of assigning these matrices to the public transportation network. We now describe the relevant variables considered in each of these 2 cases:

i)
General Comparison of the Trip Matrix: we compare the trip histogram for the euclidean distance range.

ii)
Comparison of Network Flows: We compare the mean travel times of the network (mean travel distance, mean travel time, mean access and wait time), network link flows and flow profiles on important public transportation corridors.

5.3.1 Trip Matrix Comparison

Comparing different trip matrices cell by cell is not practical. Therefore, we compare the trip distribution related to each matrix, which is adequately defined by the trip histogram based on the Euclidean distance range.

Figure 6
Histogram of Modeled and Observed Trips

[image: image55.wmf]0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

0-3

3-6

6-9

9-12

12-15

15-18

18-21

21-24

24-27

27-30

>30

Euclidean Distance

Nº of Trips

OBSERVED

SGM

CI

MC


On Figure 6 we can observe that, regarding trip distribution, the three matrices modeled are practically equivalent amongst each other, and quite similar to the observed matrix. At a first glance, we could conclude that the method used for estimating trip matrices is not relevant; nevertheless, and as is presented in the following section, when assigning each one of these four matrices to the public transportation network, we obtain interesting results that show difference between these matrices.

5.3.2 Comparison of Service Levels and Network Flows 

In the following Table we report the mean values of the service levels obtained from the public transportation network assignment. The assignment model used corresponds to the one stated by De Cea & Fernández (1994), who consider variable wait times at stops as a result of the capacity constraints in the public transportation vehicles, and that in equilibrium, satisfy Wardrop’s first principle (Wardrop, 1952).

Table 4
Comparison of Levels of Service

	VARIABLE
	Observed
	SGM
	CI
	MC

	Mean Travel Distance (*)
	8.41
	7.03
	8.04
	8.05

	Mean Access Time (min)
	6.20
	6.29
	6.35
	6.35

	Mean Wait Time (min)
	7.74
	6.48
	7.65
	7.41

	Mean Travel Time (min)
	49.53
	41.61
	46.39
	46.39

	Total Trips (pax/hr)
	524,674
	524,674
	524,674
	524,674

	Total Time Consumption (hr)
	555,018
	475,530
	528,084
	525,986


(*): equilibrium flow path distance, that is different to euclidean distance.

Figure 7
Comparison of Levels of Service
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We observe that the use of a modeled trip matrix without the estimation of empty cells (SGM) underestimates the equilibrium mean travel distance and the equilibrium mean travel time. This happens because the O-D pairs where no trips exist are not explicitly considered, so the model tends to generate trips among all O-D pairs. These trips, on average, are shorter than in the observed matrix, since one of the explicative variables is the generalized travel cost between O-D pairs. On the other hand, we observe that the results of the matrix assignments that did consider empty cells through the method of confidence intervals and Monte-Carlo experiments (CI and MC), are very similar, and reproduce better quality values obtained from the observed matrix assignment.

The public transportation network link flows are shown in the following Figure:

Figure 8
Comparison of Public Transportation Network Link Flows
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We can observe that the matrix assignment modeled without zeros (SGM) reproduces the flows obtained from the assignment of the observed matrix less accurately, in comparison to the results obtained with the matrices with zeros (CI and MC). It is interesting to note that the assignment of the matrix without zeros tends to underestimate the flows of the network links. This aspect is consistent with the results of Table 5, where we show that the equilibrium mean travel distance in the matrix without zeros is lower than the rest. As a consequence, with shorter trips, the routes utilized will be composed on the average by less links, reducing the flow on the links of the network.

Figure 9
Flow Comparison (pax/hr) on Public Transportation Corridors: Av. La Florida
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Figure 10
Flow Comparison (pax/hr) on Public Transportation Corridors: Av. Santa Rosa
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Figure 11
Flow Comparison (pax/hr) on Public Transportation Corridors: Av. Alameda
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Figures 9, 10 and 11 show link flows in 3 different bus corridors in Santiago city; each bar represent a specific link on the bus corridor. In general we observe that the load profiles related to the SGM matrix (without zeros) are lower than the observed values, and the matrices CI and MC are very similar amongst each other and reproduce the observed values in a better way.

6. CONCLUSIONS

The methodological approach presented in this document allows adequate estimations to be obtained from the null values in matrices that are constructed by analytical spatial trip distribution models.

As a first conclusion, we can mention that the explicit estimation of zeros in trips matrices, in comparison to the case in which empty cells are not considered, improves the modeling process and, as a consequence, the planning processes of urban transportation systems. This was corroborated by analyzing the results of assigning the different matrices in the network, and quantifying the distortions generated in the service levels and total travel time consumption in the system.

A second relevant conclusion is associated to the evidence of the existence of spatial correlation when modeling trip matrices. The spatial correlation coefficient that obtained was 0.9, which indicates that the trips carried out between a given O-D pair are strongly influenced by the other pairs whose origin and destinations are close. This aspect was notoriously corroborated when comparing two trip matrices generated by Monte-Carlo experiments, which had cells that were quite different, but when assigned to the network generated flows and service levels that were practically identical (see Appendix A). As a result, we understand that the presence of the empty  cells is more relevant than the exact location of empty cells, since the phenomenon of spatial correlation turns out to be quite strong.

Finally, it is interesting to note the existing similarity between the Monte-Carlo and Confidence Interval  results. The assignment of both matrices on the network provided similar results in terms of flows and service levels, and thus we can conclude that both approaches are equivalent. Nevertheless, the implementation of the Monte-Carlo approach is significantly simpler than the Confidence Interval approach, since the latter requires a subsequent calibration process that can be quite complex if the number of parameters in the distribution model is high, while the first applies directly to the distribution model with no need to carry out additional processes.

The methodological approach presented in this document applies directly to traffic assignment models and private transportation analysis, as well as to several distribution models, that could include more explicative socioeconomic variables of travelers. This approach can also be used for combined models that include distribution, modal split and assignment.
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APPENDIX
Appendix A: Comparison of Matrices Generated through the Monte-Carlo Experiment 

Although the matrices obtained from different Monte-Carlo experiments showed differences regarding  the specific location of the empty cells, they were practically identical in terms of general structure and assignment on the network. We can see the comparison of the results of two different matrices generated by two Monte-Carlos experiments, according to the description in section 4.1. The comparison is carried out with the trip histogram regarding Euclidean distance, network flows and service levels resulting from the assignment on the network.

Figure A.1

Comparison of Trip Histograms between 2 Monte-Carlos Experiments
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Figure A.2

Comparison of Trip Dispersion between 2 Monte-Carlos Experiments
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Figure A.3

Comparison of Trip Dispersion between 2 Monte-Carlos Experiments (ZOOM)
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Figure A.4

Comparison of Flows on the Network Links
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Figures A.2 shows estimated O-D flows using 2 different Monte-Carlo Experiments (Figure A.3 is a zoom). Notice that the number of trip differences between every O-D pair (Figure A.3) is stronger than the difference between assignment flows of this matrix on the network.

These differences show that comparing 2 trips matrices cell by cell is not a good criterion, and that a better criterion involves a flow and service level comparison on the assigned matrix networks.

The results exhibited in Figures A.3 and A.4 validate the theory that states that the trips matrices do not really exist, and that they are a simply an abstraction of a phenomenon that allows them to obtain appropriate flows and service levels in the networks, which are variables that are feasible to measure and quantify appropriately.

Figure A.3

Comparison of Load Profiles on Public Transportation Corridors
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Figure A.4

Comparison of Levels of Service between 2 Monte-Carlos Experiments
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Based on the results presented in this Appendix, we can conclude that the matrices generated by the two Monte-Carlos experiments are practically equivalent for the purpose of demand analysis and transportation system planning.

Appendix B: Application of Method Sen & Matuazewaki (1991)
Let’s consider a transportation system that is modeled with a doubly constrained gravity model, in which there are I origins, J destinations and K explicative variables. The maximum likelihood estimators Ai, Bj and  can be obtained by solving the following system of equations:
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where cijk represents the k-ith explicative variable of the distribution model, and Nij represents the observed trips between pair (i, j) obtained from the expanded survey. In our case, k = 2, since we have 2 explicative variables: Cij and lnSij. Considering, for example, 3 origins and 3 destinations, the previous system of equations can be written in the following matrix form:
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Matrix M has a column that is linearly dependent from the rest, and thus the range of the matrix is (I+J+K-1).

On the other hand, if we define x as the vector of variables, and g(x) the function, the matrix of variance and covariance of g(x) can be asymptotically approximated to the following expression:
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where V(x) is the matrix of variance and covariance of vector x. In our case, function g is defined by the distribution model 
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, with  = (, ).  The jacobian of T with respect to (A, B, ) has the following form:
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where diag(·) indicates the diagonal matrix whose elements correspond to the values indicated inside the parenthesis. As a result, since, based on the estimated values of 
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Defining V(A, B, ) as the variance and covariance matrix of the parameters set A, B and  ,  we conclude that the variance and covariance matrix of 
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The elements in the diagonal of this last expression come about as a result of the variance of the estimated trips for each of the (i, j) pairs of the modeled matrix. As a result, the squared root of the elements of the diagonal of 
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 are the estimators of the standard deviation of the modeled trips between each O-D pair, and thus the following hypothesis test can be carried out:

H0 : Tij = 0

H1 : Tij > 0

whose one tail contrast, according to the central limit theorem, would be:
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