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SUMMARY

In this document we present a consolidated approach that allows different entropic trip distributions to be built based on the formulation and resolution of multi-objective mathematical programming problems and their corresponding substitute problems. The main characteristic of the modeling approach here proposed, is that it allows different trip distribution models to be formulated that have already been reported in literature, and therefore allow a clearer economical interpretation to be obtained in their deduction; in addition, this approach allows the main characteristics of each model to be combined in order to generate a more complete model, which in turn improves the predictive and explicative capacity of the trip distribution.
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1. INTRODUCTION

The trip distribution models are used to predict the destination choices of travelers in the best way possible, based on aggregate information related to the trip productions and attractions for each zone, and the level of impedance or generalized cost of traveling between each zone pair.

The most elemental and known distribution model corresponds to the so-called transportation problem or Hitchcock problem (Hitchcock, 1941), which consists of the provision of goods at minimum cost to a series of destinations based on the production of these goods in specific origins. This is a linear programming problem with constant costs.

An important advance with the Hitchcock problem belongs to the classic doubly constrained entropic and gravity type model (Wilson, 1970). This model, based on the concept of entropy and given certain trip productions and attractions, allows the most probable trip distribution matrix to be estimated. More specifically, the entropic models correspond to those distribution models that in their analytical deduction explicitly consider the concept of entropy, therefore allowing the most probable matrix to be estimated considering a series of exogenous additional constraints. Other distribution models, based on the concept of opportunities that intervene in the destination choice (Stouffer (1940), Schneider (1959)), have not proven to be better than the classic entropic models.

Based on the entropy concept stated by Wilson, and adding the equilibrium conditions of Wardrop through transformed Beckman (Beckmann, 1956), Evans (1976) developed a combined equilibrium model of trip Distribution and traffic Assignment.

Multiple entropic trip distribution models have been developed, among which we can highlight Fotheringham (1983, 1986), Fotheringham and O’Kelly (1989);Erlander and Stewart (1990); Fang & Tsao (1995), and Thorsen & Gitlesen (1998). These authors present entropic distribution models similar to the doubly constrained gravity model proposed by Wilson (1970), but incorporating additional sophistication that improve the modeling results. As shown in the following chapters, all these models are obtained based on a specific equivalent optimization problem. However, in order to obtain combined trip distribution and assignment models comparable to Evans (1976), we would require certain additional suppositions and developments that are not part of the present research.

In Chapter 2, we present the analytical deduction of three entropic distribution models reported in literature, which are obtained through the resolution of non-linear optimization problems. Based on these distribution models, in Chapter 3 we formulate a new consolidated distribution model, which groups the properties of each of the three distribution models previously reported. In Chapter 4 we present an estimation approach for the parameters considered, and show the main characteristics of the data used for calibration, as well as the main results of the calibration process considering a brief statistical analysis of the results; this analysis is developed for three data aggregation levels. Finally, in Chapter 5 we present the main conclusions and recommendations that are obtained from the analysis carried out.

2. FORMULATION OF ENTROPIC TRIP DISTRIBUTION MODELS 

2.1 Doubly Constrained Gravity Model (GM)

The traditional Gravity Model (GM) corresponds to the one stated by Wilson (1970), and is obtained by solving the following optimization problem:
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When applying the first order conditions we obtain:
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where Ai and Bj are the typical balancing factors of the doubly constrained gravity model, Cij  is the generalized cost (constant in this case) between pair (i, j) and C is the total system cost (constant but unknown). It is interesting to note that problem (1)

 corresponds to the reduced form of the following bi-objective problem (Cohon, 1978):
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2.2 Distribution Model Based on Competing Destinations (CDM)

The distribution model of competing destinations (competing destination model), developed by Fotheringham (1983; 1985) has the following functional form:
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where Sij represents the accessibility or attractiveness of traveling between zone i and zone j.   Fotheringham defines attractivity Sij in the following way:
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Parameter  is the “weight” related to the impedance of traveling between i and j. Variable w corresponds to the number of potential destinations.

In expression (6)

, the sign of parameter  will result from the empirical analysis in which the model is implemented. Considering this,  Fotheringham defines two types of forces that influence the destination choice:

i)

A first force, related to the impedance or traveling cost  between two zones: as the cost between zones increases, the number of trips between these zones is reduced. This force is the one which is normally incorporated in all trip distribution models, and particularly in the entropic type. Fotheringham calls this first type of force the “agglomeration forces”.

ii)

A second force is related to the fact that, as the distance which the user is willing to travel increases, the number of alternative destinations increase, and as a result the probability of satisfying the trip increases, since, for example, there are more job, commerce, or education opportunities. Fotheringham calls this second type of force “competition forces”.

If as a result of the empirical analysis we obtain     0, we would conclude that the agglomeration forces are dominant. Nevertheless, if the parameter is      0, then the competition forces are dominant.

An interesting extension to Fotheringham’s model is presented by Thorsen & Gitlesen (1998), and has the following functional form:
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Expression (6)

 is obtained directly by solving the following multi-objective optimization problem:
(6)

, and as such should also present a better statistical fit. The deduction of model (10)

 has more degrees of freedom than model (6)

, since the relationship of trips between O-D pairs and the trip production and attractions by zone are not strictly linear (except when  = 0 and  = 0). From the parameter estimation standpoint, model (10)

 has a higher degree of flexibility compared to 
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s.t.:
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We can observe, as a result, that the Fotheringham’s model corresponds to the classic gravity model of Wilson (1970) but including an additional objective (15)

, which is to maximize the natural logarithm of the travel attractiveness between i and j for all the pairs existing in the system. The previous multi-objective problem has the following substitute problem:
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Note that parameters  and  correspond to the relative weights of objectives 
(6)

 we replace Sij by (8)

 of the Fotheringham model. On the other hand, if in (7)

 and (6)

, (18)

, we obtain the optimality conditions  (15)

 respectively. Then, by solving problem (13)

 and  GOTOBUTTON ZEqnNum380573  \* MERGEFORMAT  we obtain expression (10)

 and its corresponding balancing factors.

2.3 Self Deterrent Distribution Model with Quadratic Costs (SDGM)

The entropic trip distribution model with quadratic costs (Fang & Tsao, 1995) is obtained by solving the following optimization problem:
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The first order conditions of  (19)

 are the following:
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Model (19)

 corresponds to a substitute problem of the following multi-objective optimization problem:
(20)

. The presence of this variable allows the information of a previous trip matrix to be used for the prediction (a-priori matrix). Then, the self deterrent gravity model (SDGM) described in (2)

), with the difference being the inclusion of variable Tij in the exponent of (20)

, called “self deterrent gravity model” by its authors, is similar to the classic gravity model (see 
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We thus observe that the model by Fang & Tsao corresponds to the classic gravity model by Wilson (1970), but including and additional objective (25)

, which in this case is the minimization of the sum of the trips squared weighed by the corresponding costs. This approach provides a higher degree of freedom to the model, and allows the non-linearity related to the effect of trip demand cost to be captured in a better way.

3. FORMULATION OF AN ENTROPIC CONSOLIDATED MODEL (CM) 
Considering the three entropic trip distribution models described in the previous chapters, it is feasible to construct a new distribution model that includes the most relevant features of these models; this new model will be called the Consolidated Model (CM). For this, we must state a multi-objective optimization problem, obtain the corresponding substitute problem, and finally apply the optimality conditions. Considering the most relevant features of the models reported in the previous chapters, the multi-objective optimization problem would present the following structure:
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A substitute problem in this case would be the following:
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Note that parameters  ,  and  correspond to the relative weights of objectives (34)

 provide, as a result, the following equations:
(31)

 respectively. The optimality conditions of (30)

 and (28)

, 
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On the other hand, if in place of Sij we use 
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Model (38)

 represents a more complete alternative for the entropic trip distribution model, and incorporates the most relevant concepts of the three models previously analyzed.

Regarding the uniqueness of the solution (global minimum), it is viable to analyze the second order conditions of the objective function of problem (34)

:
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As a result, in order to satisfy condition 
(41)

, the following must be true:   0 and   0. If   0, then   GOTOBUTTON ZEqnNum194987  \* MERGEFORMAT . Note that these conditions for uniqueness are also valid for the SDGM of Fang & Tsao (1995). The uniqueness of the GM  and CDM solutions require that only Tij  be greater than zero, which is evidently always true (there are no negative trips).

In Chapter 4, the calibration approach is presented, which is the same for the different models.

4. PARAMETER ESTIMATION OF THE TRIP DISTRIBUTION MODEL

4.1 Parameter Estimation

Trip distribution models are usually estimated through different alternative approaches, each with its own advantages and disadvantages (see for example Abrahamsson & Lundqvist (1999), Ortúzar & Willumsen (2001), Ham, Kim & Boyce (2005)).

Nevertheless, in our case we applied the approach based on Iterative 2 Stage Least Square (2SLS, De Vos & Bikker, 1982), which allows us to obtain a greater number of goodness fit indicators.  In order to understand this calibration approach, we will start with the classic gravity model (Wilson, 1970); nevertheless, the approach is analogous for the rest of the cases.

In the case of the doubly constrained gravity model (GM), the trips are determined from the following expression:
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Applying the natural logarithm on (42)

 we obtain:

lnTij = ln(AiBj) + ln Oi + lnDj – Cij
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Since both Tij and Cij are known as well as Oi and Dj, this can be rewritten as:
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Yij = ij - Cij
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Thus, it is feasible to calibrate the following linear regression model:

Yij = 0  + ij - Cij + ij
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Based on the observed values of Tij, Oi, Dj and Cij, it is feasible to calibrate model 
(46)

  through 2SLS. The presence of the constant parameter (or intercept) 0 guarantees that the sum of the errors is zero, in other words, that GOTOBUTTON ZEqnNum401928  \* MERGEFORMAT , and also that the sum of the modeled values 
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In the competing destinations model’s case (CDM, Fotheringham, 1985), the development is analogous, and we reach the following expression:

Yij = 0  + ij - Cij +lnSij +lnOi +lnDj + ij
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For the self deterrent gravity model (SDGM, Fang y Tsao, 1995), the expression is as follows:

Yij = 0  + ij - Cij - CijTij  + ij
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Finally, the general consolidated model (CM) presented in Chapter 3 results in the following expression:

Yij = 0  + ij - Cij +lnSij + lnOi +lnDj - CijTij  + ij


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (49)

The endogenous variable in this case (Yij) is related to the observed trips between each zone pair, as well as the trips produced and attracted between each pair. On the other hand, the exogenous variables are related to the service levels (Cij) and to the trip productions and attractions at a zone level (Oi y Dj). In addition, it must be noted that from an econometric point of view, model (46)

; the latter implies that it is feasible to use traditional statistical contrasts to compare the restricted and non-restricted models.
(49)

 corresponds to the more general model, while the more restricted model is defined by 
We must highlight that in all cases, parameter ij is specific for each zone pair (i, j). Nevertheless, it is not feasible to define a parameter for each pair, since the number of parameters would be greater than the number of available observations. Alternatively, we could define a dummy variable for each origin and destination (similar to the fixed effects of panel data), which would also imply the calibration of a high number of parameters. A third alternative would be to fix parameter ij as equal for all zone pairs (constant); however, this would be equivalent  to requiring that all the balancing factors be equal for the different zones, which would be incorrect.

Notwithstanding the above, it is feasible to carry out an iterative estimation procedure in such a way that Ai and Bj can be estimated in a combined and consistent way together with the rest of the parameters. This implies the estimation of Ai and Bj based on the values of the explicative variables and parameters through a balancing procedure.

On the other hand, it is important to note that the given definition of Sij in models (9)

) since this transforms the problem into a non-linear model in its parameters, which could be complex to resolve without guaranteeing the uniqueness of the solution.
(49)

 should not  be considered in the original form proposed by Fotheringham (see (47)

 and 
Because of this, and for models 
(49)

, we can use the expression Sij = 1/Cij as a measure of attractiveness. As a result, and without loss of generality, we guarantee that all the models have linear parameters, and thus the solution that is provided by a minimum squares approach is optimal and unique in each case; in the appendixes we show that when formulating the competing destination (Fotheringham, 1983),considering Sij = 1/Cij  provides an even better fit than (47)

 and  GOTOBUTTON ZEqnNum709078  \* MERGEFORMAT . Note that if Sij = 1/Cij  then 
[image: image66.wmf](

)

(

)

ijij

SC

rr

-

=

 .

The iterative parameter estimation process for the consolidated model (49)

 is as follows (for the rest of the models the process is analogous, but with less parameters):

Step 1: 
Define the initial values for 0 , 0 , 0, 0 and 0.

Step 2: 
Based on the initial values of 0 , 0 , 0, 0 and 0 and the exogenous known variables (Cij , Oi , Dj , Sij and Tij), obtain parameters Ai0 and Bj0 through balancing,. The intercept 0 is not necessary to determine the balancing factors.

Step 3: 
With parameters Ai0 and Bj0, estimate a new endogenous variable with the following form: Yij0 = Yij  – ln (Ai0Bj0) = Yij – ij0.

Step 4: 
Define model Yij0 = 0  - Cij -lnCij + lnOi +lnDj -Tij Cij + ij and obtain 
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Step 5: 
Compare the values of 
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 with 0 , 0 , 0, 0 and 0. If the differences are less than a small predetermined value, then the process ends; if not, got to Step 2 with values 
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, and repeat the process until it converges.

The iterative process described above was tested hundreds of times for the case of the city of Santiago, Chile, and provided a convergent result each time. On the other hand, it must be noted that the problem to be solved in Step 4 with 2SLS in our case will always be convex, and thus the solution is unique. In the same way, the calculation of the balancing factors (Step 2) in each iteration also provides a unique solution. As a result, the process here described also provides a unique solution.

4.2 Data Used

The trip information used for the parameter estimation of the different models corresponds to a series of bus trip matrices that were estimated based on a massive survey carried out on bus users in Santiago, Chile in the year 2001 (SECTRA, 2001); the travel cost considered between each O-D pair (Cij) was the free flow path distance. These matrices present several characteristics, considering three alternative levels of aggregation:

Table 1
Bus Trip Matrix Morning Peak Period Year 2001, Santiago of Chile

	VARIABLE
	Zone Aggregation
	District Aggregation
	Area Aggregation

	N° of Zones
	577
	36
	7

	N° of O-D Pairs
	332,929
	1,296
	49

	Total Trips
	524,674
	524,674
	524,674

	N° of Cells with Trips
	50,151
	1,201
	49

	N° of Cells without Trips
	282,778
	95
	0

	% of zeros
	84.9%
	7.3%
	0%


In Figure 1 we present the different zone aggregations considered. 

Figure 1
Zone Aggregations Considered

	577 ZONES
	36 DISTRICTS
	7 AREAS
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4.3 Analysis of Results

4.3.1 Results Obtained for the Zone Aggregation level (577x577)

In Table 2 we present the results obtained from the four formulated distribution models after using the calibration process described earlier (steps 1 to 5), considering a zone aggregation level (577 zones). The statistics used are R2 (coefficient of determination of the regression), r2 (correlation among the observed and modeled trips) and 
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 (sum of the errors squared). On the other hand, the specification of Thorsen & Gitlesen (1998), that includes parameters   and  related to Oi and Dj respectively, was not considered, since the exploratory analysis indicated that the estimators for parameters  and   were not significantly different than zero (for any of the three aggregation levels considered).

Table 2
Estimated Parameters 2SLS (577x577)

	MODEL
	R2
	r2
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	
	
	

	GM
	0.484
	0.521
	510,964
	0.410 (219.7)
	-
	-

	CDM
	0.491
	0.539
	501,994
	0.445 (122.3)
	-0.449 (-14.2)
	-

	SDGM
	0.538
	0.586
	494,857
	0.422 (229.8)
	-
	-0.00288 (-71.4)

	CM
	0.561
	0.586
	483,471
	0.487 (136.1)
	-0.454 (-14.6)
	-0.00252 (-63.0)


In this case,
 the sign of the parameters are consistent with the theoretical developments; additionally, in all cases the parameters are significantly different than zero and the R2 is also acceptable, although slightly superior for the CM. This last case also has a lower value for the sum of the errors squared. Since the GM corresponds to the CDM but considering  =  0,  and to the SDGM if we consider that  =0, in econometric terms this is equivalent to calibrating the restricted model; the same happens for the CDM and the SDGM versus the CM. As a result, it is feasible to statistically determine if said pair of models are different or not. To do this, we contrast the null hypothesis that models are equivalent though the following F contrast (Green, 1998): 
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, where 
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 corresponds to the estimator of the restricted model residuals and
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 to the non-restricted model. In addition, n is the number of observations used for the estimation, k is the number of parameters estimated in the non-restricted model, and p is the number of constraints imposed on the restricted model. In our case, we know that n = 50,150, k = 2 and 3, and p = 1, with which we obtain (at a 99% confidence):

· GM versus CDM:
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· GM versus SDGM:
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· CDM versus CM: 
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· SDGM versus CM: 

[image: image81.wmf]ˆˆˆˆ

()/1

1,180,96.65

ˆˆ

/(50,1503)

TT

RR

T

eeee

ee

-

=>

-


We can therefore conclude that the different models are not equivalent, with CM resulting to be the superior model and GM the inferior model.

In the following Figure we present the results for the modeled trips and the comparison with the observed trips:

Figure 2
Histogram of Modeled and Observed Trips 2SLS (577x577)
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In Figure 2 we can observe that the GM tends to significantly overestimate short trips, an aspect which is corrected by the CDM and the CM. The GM estimates almost 69,000 trips whose distance is shorter than 1 kilometer, against 30,000 observed trips that are within this range, which are correctly predicted by the CM. The CDM estimates less than 38,000 trips for this range, a value which is evidently closer than the 69,000 of the GM. The SDGM estimates nearly 50,000 trips in the same range.

4.3.2 Results Obtained for the District Aggregation Level (36x36)

Table 3 reports the results obtained for the four types of distribution models through the calibration process described earlier, considering the district aggregation level:

Table 3
Estimated Parameters 2SLS (36X36)

	MODEL
	R2
	r2
	
[image: image83.wmf]ˆˆ

T

ee


	
	
	

	GM
	0.736
	0.780
	5,738
	0.468 (57.8)
	-
	-

	CDM
	0.747
	0.795
	5,536
	0.516 (24.6)
	-0.560 (-2.3)
	-

	SDGM
	0.743
	0.923
	5,551
	0.450 (56.3)
	-
	-0.00003 (-13.1)

	CM
	0.752
	0.925
	5,364
	0.499 (24.2)
	-0.543 (-2.7)
	-0.00002 (-13.5)


In this case the parameter signs are once again consistent with theoretical developments; in addition, in all cases the parameters are significantly different than zero and the R2 is also acceptable in all cases, although slightly superior for the CDM and CM. The F test in this case rejects the null hypothesis that the models are equivalent:

· GM versus CDM: 
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· GM versus SDGM: 

[image: image85.wmf]ˆˆˆˆ

()/1

40.56.65

ˆˆ

/(1,2002)

TT

RR

T

eeee

ee

-

=>

-


· CDM versus CM:
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· SDGM versus CM: 

[image: image87.wmf]ˆˆˆˆ

()/1

41.76.65

ˆˆ

/(1,2003)

TT

RR

T

eeee

ee

-

=>

-


Figure 3
Histogram of Modeled and Observed Trips 2SLS (36x36)
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In Figure 3 and Table 3 we observe once again that the GM and the SDGM overestimate the number of shorts trips in comparison to the observed trips, while the CDM and the CM correct this problem. 

4.3.3 Results Obtained for the Area Aggregation Level (7x7)

In  Table 4 we report the results obtained through the calibration process described earlier for the four trips distribution models, considering the area aggregation level:

Table 4
Estimated Parameters 2SLS (6x6)

	MODEL
	R2
	r2
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	
	
	

	GM
	0.870
	0.956
	36
	0.395 (17.7)
	-
	-

	CDM
	0.889
	0.956
	33
	0.314 (4.0)
	1.133 (1.3)
	-

	SDGM
	0.889
	0.971
	32
	0.396 (18.4)
	-
	-0.0000026 (-2.2)

	CM
	0.896
	0.973
	31
	0.328 (4.3)
	0.854 (1.0)
	-0.0000023 (-2.0)


In this case the signs of all parameters are consistent with the theoretical developments, but a change can be observed in parameter signs, although not significantly different than zero. On the other hand, R2 is acceptable in all cases, although slightly superior for the CM.

Nevertheless, and as is shown next, the F test in this case does not reject the null hypothesis that the models are equivalent, and as a result they all collapse towards the gravity model:

· GM versus CDM: 
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· GM versus SDGM: 
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· CDM versus CM: 
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· SDGM versus CM: 
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Figure 4
Histogram of Modeled and Observed Trips 2SLS (7x7)
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In Figure 4 and Table 4 we observe that all the models adequately predict the observed trips, which is quite intuitive since they have all collapsed towards the gravity model. This gravity model is a very aggregate model that produces a satisfactory adjustment. 

4.3.4 Summary of Results

In Table 5 we summarize the results of the 2SLS for the three cases analyzed.

Table 5
Estimated Parameters 2SLS

	N° Zones
	MODEL
	R2
	r2
	
	
	

	577
	Gravity
	0.484
	0.521
	0.410 (219.7)
	-
	-

	
	Competing Destinations
	0.491
	0.539
	0.445 (122.3)
	-0.449 (-14.2)
	-

	
	Gravity Self-deterrent 
	0.538
	0.586
	0.422 (229.8)
	-
	-0.00288 (-71.4)

	
	Consolidated
	0.561
	0.586
	0.487 (136.1)
	-0.454 (-14.6)
	-0.00252 (-63.0)

	36
	Gravity
	0.736
	0.780
	0.468 (57.8)
	-
	-

	
	Competing Destinations
	0.747
	0.795
	0.516 (24.6)
	-0.560 (-2.3)
	-

	
	Gravity Self-deterrent 
	0.743
	0.923
	0.450 (56.3)
	-
	-0.00003 (-13.1)

	
	Consolidated
	0.752
	0.925
	0.499 (24.2)
	-0.543 (-2.7)
	-0.00002 (-13.5)

	7
	Gravity
	0.870
	0.956
	0.395 (17.7)
	-
	-

	
	Competing Destinations
	0.889
	0.956
	0.314 (4.0)
	1.133 (1.3)
	-

	
	Gravity Self-deterrent 
	0.889
	0.971
	0.396 (18.4)
	-
	-0.0000026 (-2.2)

	
	Consolidated
	0.896
	0.973
	0.328 (4.3)
	0.854 (1.0)
	-0.0000023 (-2.0)


i.
Parameters change and its statistical significance low when they move from disaggregated to aggregated. Therefore, the statistical inference depends on the aggregation level.

ii.
In all cases, the statistical fit of the Consolidated Model (CM) is greater than the rest, while the gravity model is always inferior. This implies that the reproductive capability of the CM is also superior. The superiority of the CM is evidently explained by the greater number of explicative variables, since in each 2SLS estimation, adding new explicative variables in turn increases (or at least maintains) the R2.  Regarding the Competing Destination (CDM) and Self-deterrent Model (SDGM), the results are not conclusive in either case, although always superior to the GM, but inferior to the CM. 

iii.
Considering a greater level of aggregation (less number of zones), all models provide a better statistical fit (R2 and r2), and reproduce the observed trips more accurately than in the more disaggregated cases. This is explained by the fact that if the aggregation is greater, a lower number of variables must be estimated (trips between different zone pairs) in comparison to the more disaggregate cases.

iv.
The greater the disaggregate level considered, the more GM generates distortions with respect to the real values, mainly in the short trips. Nevertheless, the models that include the term for competing destinations (CDM and CM) tend to correct the problems of the GM, specifically when modeling short trips. The self-deterrent model does not correct the problem of excessive short trips.

v.
As the aggregation level increases, the difference between the models (GM, CDM, SDGM and CM) is reduced, and vice versa.  This can be explained understanding  that when the aggregation is high (few zones), the trips located in the lower distance ranges collapse. For example, for the lower distance range (between 0 and 6 km) it is not possible to distinguish between trips of 1 km from trips of 5 km, since they are all aggregated in the range of 0-6 km. Additionally, if the aggregation is high (few zones) the trip distribution tends to be strongly dominated by the origin and destination constraints. Nevertheless, if the aggregation level is low (many zones) the origin and destination constraints are less important; with respect to this last point, it must be noted that when the area under analysis is divided in many zones (highly disaggregate), the number of O-D pairs for which trips must be estimated increases in a quadratic form, while the origin and destination constraints increase linearly.

5. CONCLUSIONS

In this document we presented a consolidated approach of the formulation and calibration of entropic trip distribution models, based on the specification and resolution of multi-objective mathematical programming problems, and by the use of traditional econometric techniques.

We compared three entropic trip distribution models reported in literature, and based on  the main feature of each model we formulated a fourth trip distribution model, called the “consolidated model”. This model includes the specific characteristics of each of the three models.

After analyzing the results of the four models during a calibration process in a real life example, we concluded that the traditional gravity model presented the worst statistical fit, while the consolidated model, which includes the features of the three remaining models, presented the best statistical fit.

Another interesting conclusion obtained in this document, is that the aggregation level of data used for the calibration of the distribution models, influences on the parameters estimation results and the choice of the type of model to use. Specifically, if we use disaggregated data, the more complex model (consolidated model) provides better statistical fit indicators, while the more simple model (gravity model) provides worse statistical fit indicators; nevertheless, if aggregated data is used for the calibration, the different models provide practically the same statistical fit results. As a result, if we count on more disaggregated information, it is recommendable to use more complex models, while if the information that is available is aggregate, it is more convenient to use simpler models, since the results are equivalent to the complex models in these cases.

A natural extension of this document would be to carry out a more extensive validation process of the models considering data from different cities, which would provide more information and thus allow the results here obtained to be more generalized. Another extension, which the authors are currently working on, is to incorporate the consolidated model but in the context of combined network equilibrium models, considering the steps of mode choice and trip assignment as part of the equilibrium model, as well as considering spatial correlation in the calibration process.
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APPENDIX

Comparison of 2 Alternative Specifications of Accessibility (Sij) for Fotheringham’s Competing Destination Model 

We compare two versions of the competing destination model, considering two different specifications for the accessibility Sij. A first specification alternative is 
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, while the second alternative is where Sij = 1/Cij  . The purpose of this analysis is to justify the specification Sij = 1/Cij  for the models presented in Chapter  4 of this document, since this specification allows 2SLS to be used directly and carry out the different processes of statistical inference, while 
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 results in estimation and inference problems since it generates a regression model with non-linear parameters. Therefore, if both specifications generate similar results, based on the principle of parsimony it would be more recommendable to use the specification Sij = 1/Cij .

As already mentioned, since the estimation of parameter  in specification 
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 is not feasible through 2SLS, we opted to carry out the parameter estimation through the resolution of a non-linear optimization problem whose objective is to minimize the sum of the errors squared (
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  was considered as the error of observed trips minus modeled trips); the modeled trips considered the expression 
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For consistency, this estimation approach was used to compare both specifications: Sij = 1/Cij  and 
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. The experiment was carried out with the data at a zone aggregation level (577x577). The main results are as follows:

Table 6
Comparison of the Specifications for Sij in the Competing Destinations Model

	SPECIFICATION
	r2
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	SPECIFICATION 1
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	0,5547
	47.716.862,5

	SPECIFICATION 2
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	47.436.591,7


Table 6 shows results about Competing Destinations Model estimation, using 2 definitions to Sij. The estimation was made solving a non linear programming problem (min 
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), because is not feasible to use econometric tools when 
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 (non linear regression model). r2 show correlation between observed and modeled trips, under 2 definitions of Sij, and 
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 is the objective function value. This analysis allow us to use Sij.=1/ Cij. like accessibility variable, and therefore to formulate a linear regression model to be estimated. w contain all destinations with trips in the sample. This analysis was considered for all O-D pairs with trips in the sample (excluding zeros).

Figure 5
Trip Histogram Comparing Specifications for Sij 
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We observe in Table 6 and Figure 5 that both accessibility specifications generate practically identical results, with specification Sij = 1/Cij  resulting slightly superior (lower value of the objective function and greater correlation between observed and modeled trips). With this, we corroborate that the use of specification Sij = 1/Cij  instead of 
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 for the models included in Chapter 4 is adequate.
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_1206861366.unknown

_1206861211.unknown

_1206861239.unknown

_1206861162.unknown

_1206860863.unknown

_1206860927.unknown

_1206860820.unknown

_1204986007.unknown

_1206338963.unknown

_1206339095.unknown

_1206339632.unknown

_1206858617.unknown

_1206339148.unknown

_1206339160.unknown

_1206339165.unknown

_1206339154.unknown

_1206339103.unknown

_1206339079.unknown

_1206339087.unknown

_1206338976.unknown

_1206338940.unknown

_1206338951.unknown

_1205046970.unknown

_1206338098.unknown

_1200317937.unknown

_1200317945.unknown

_1203857334.unknown

_1204004533.unknown

_1200317954.unknown

_1203854620.unknown

_1200317941.unknown

_1200317909.unknown

_1200317914.unknown

_1200317887.unknown

_1200317897.unknown

_1200317901.unknown

_1200317892.unknown

_1200312809.unknown

_1199689243.unknown

_1199700416.unknown

_1199782364.unknown

_1199782372.unknown

_1199782377.unknown

_1199700554.unknown

_1199700573.unknown

_1199700531.unknown

_1199693609.unknown

_1199693618.unknown

_1199693515.unknown

_1180517495.unknown

_1199687122.unknown

_1199687145.unknown

_1199687395.unknown

_1180786701.unknown

_1199687006.unknown

_1180515874.unknown

_1180517456.unknown

_1171108379.unknown

_1141573559.unknown

_1141573620.unknown

_1138601401.unknown

_1138601407.unknown

_1138599986.unknown

_1138599998.unknown

