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Abstract
In this paper, a high-level formulation of the dynamic traffic assignment problem is used to analyse its specific complexities, most notably the chronological relativity of the volume loading. This applies in turn to the time-flow relationship at the path level. This induces significant discrepancies to static assignment, in particular as concerns the convergence criterion to be used in an equilibration algorithm. 

Convex combination algorithms, either arc-based or path-based, are analyzed in order to complement them with rigorous convergence criteria. A novel “hybrid” algorithm is introduced. 
Lastly, Leurent’s LADTA model is applied to a large size problem, demonstrating its computational efficiency.
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1. Introduction
This paper considers the problem of dynamic traffic assignment under the User Equilibrium principle. This topic has been the subject of a considerable amount of research during the last two decades, both in the transportation and operations research communities. However, it is acknowledged by many researchers that the theory of Dynamic Traffic Assignment (DTA) is still relatively under-developped, while practitioners manifest a heightened interest for large scale applications, with both real time and planning applications in mind. As a consequence, dynamic traffic assignment tools have been given few applications, as compared to static traffic assignment models. The work presented here — based on Leurent’s Lumpded Analytical Dynamic Traffic Assignement model (LADTA) — is an attempt to bridge the gap between, on one side, a sound analytical problem formulation and, on the other side, computational tractabiblity and efficiency. The sequel is structured as follows.

Section 2 introduces some notations and presents the equilibration algorithm in LADTA. Section 3 concentrates on some specific complexities of dynamic assignment, most notably the chronological relativity of the volume loading function, which affects in turn the time-flow relationship at the path level. This induces important discrepancies to static assignment, in particular as concerns the convergence criterion: this issue is discussed in Section 4. The design of a novel equilibration algorithm, called the hybrid algorithm, is the topic of Section 5. In Section 6, results from computational experiments are presented. 
Lastly, Section 7 concludes and indicates directions for research development.

2. On the formulation of dynamic assignment
Leurent (2003, 2004) provided a high-level formulation of dynamic traffic assignment which we shall recall hereafter in order to prepare the analysis in the following sections. The formulation is high-level as it makes explicit only the main traffic variables and their mutual dependencies, which are indicated in an abstract way that leaves place for flexible forms. It is generic in that it may describe most dynamic traffic assignment models: Leurent also provided a particular low-level formulation called LADTA for Lumped Analytical Dynamic Traffic Assignment.
We shall first give the notation (section 2.1). Then the high-level formulation is provided (section 2.2) and it is applied to static assignment (section 2.3). Lastly, the equilibration algorithm in LADTA is described (section 2.4).
2.1 Notation

Let us recall the elements of Leurent’s model (Leurent, 2003) in a simplified version in which the following assumptions are made:

· On the demand side, there is a single user class with path choice behaviour that is homogeneous and deterministic. Each user is assumed to select the path with minimum generalized cost.
· On the supply side, loop-free paths are considered, and congestion is modelled at the arc level on the basis of a vertical queue.
List of notation:
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the actual travel time of arc a having entered it at h.
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the time of exiting a knowing entry at instant h: this is a function for “chronological transfer”.
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the inverse function of 
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the set of destination nodes indexed by s.
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the set of loop-free paths r on the O-D pair i.
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the O-D volume of pair i cumulated until departure instant h.
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the cumulated flow that entered path r until h.
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the actual travel time of route r having entered it at h.
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for a path r and an arc a which belongs to r, designates the part of r that lies strictly upstream of a.
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for a path r and an arc a which belongs to r, designates the part of r that lies strictly downstream of a.
The model endogenous variables are the entry and exit volumes of the paths, 
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2.2 A high-level formulation

Leurent (2003) decomposed dynamic assignment into four parts as follows:
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Volume loading
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where 
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 is used in place of = when the mapping is multi-valued.
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 which satisfies the system of equations (1) is a dynamic traffic equilibrium.
 This abstract formulation is generic for many analytical dynamic traffic assignment models, including those of Akamatsu and Kuwahara (1998), Tong and Wong (2000); Friesz et al (2005) etc.
2.3 Application to static assignment

The generic formulation also applies to static assignment, provided that we omit the temporal variations and that we replace cumulated flows X by flow rates x: then the service formation problem amounts to building paths on the basis of arcs, the user choice problem amounts to assigning O-D flows on optimal paths only, the volume loading problem amounts to loading path flows on the network arcs yielding arc flows, and the flowing problem amounts to evaluating the arc travel time functions with respect to the arc flows.
2.4 The LADTA equilibration algorithm

The original approach to equilibrium in the LADTA model, proposed independently by Leurent (2003) and Gentile et al (2003), is to cast the equilibrium conditions into a fixed-point problem with respect to the arc cumulated flows 
[image: image39.wmf]+

A

X

, which are the basic endogenous variables. 
The fixed-point problem is obtained by linking the other endogenous variables to the basic endogenous variables, 
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The last condition is a fixed-point condition for the following mapping:
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Then the equilibrium is searched for using a method of convex combination, which is very parsimonious as it only requires storing arc variables.
The convergence criterion is an inter-iteration gap pertaining to the arc volumes:
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We shall establish more rigorous convergence criteria in Section 5.

3. The specific complexities of dynamic assignment
Let us now use the high-level formulation so as to detect and characterize the specific complexities of dynamic assignment: not only does the temporal dimension drive us to consider temporal profiles as model variables, but more importantly it makes the loading of path flows onto the arcs depend on a time field, in other words a chronology. We call this effect “the chronological relativity” of the volume loading (section 3.1). Then the time-flow relationship is relative to the chronology, too (section 3.2): path times stem from both path flows and the time field, and the circumstance under which the path times correspond to the time field is a special one, which we call the “time-flow consistency” (section 3.3). We also study the dual relationship from time to flow to obtain weaker conditions of “dual consistency” (section 3.4). Lastly, we define a consistency property that pertains to “flow energies” (total cost), for which we provide some sufficient conditions (section 3.5).

3.1 The chronological relativity of volume loading

In static assignment, arc flows are derived from path flows in a straightforward way:
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In dynamic assignment, the arc volumes are derived from the path flows through the volume loading function, 
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More precisely, Leurent (2003) stated the volume loading equation as follows:
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It means that the volume that enters a from instant  to instant h is the sum of the volumes of the paths r which traverse a: and that the volume of path r that enters a during 
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Thus the functions 
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 are involved in the volume loading problem through the associated time transfer functions, 
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We call this effect the “chronological relativity of volume loading”, as the time transfer functions constitute a chronological field.

3.2 The chronological relativity of the time-flow relationship

In static assignment the time-flow relationship at the arc level has a simple form: denoting by 
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 the travel time function,
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At the path level, the relationship of time to flow is still quite simple:
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In dynamic assignment the relationship of time to flow may also be considered as a simple one, by making use of a local flowing model: the arc travel times 
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 in the LADTA model). Concerning the paths however, the relationship of time to flow takes on the following form:
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which shows that the relationship is conditional on the chronology 
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 that influences the volume loading.
3.3 On the time-flow consistency

Let us define the “time-flow consistency” as the condition of identity between 
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 in Eq. (6):
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This is a fixed-point condition on 
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The consistency is a necessary condition for dynamic traffic equilibrium. It is not a sufficient condition, since it indicates nothing about the user choice.
Under time-flow consistency, the convergence of a traffic state to equilibrium can be evaluated on the basis of the distance from 
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where 
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This is because 
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To impose the time-flow consistency, the “natural” approach is to assign the path flows onto the network in a step-by-step, instantaneous way as in performing a time integration and solving for a differential equation; this yields also 
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. Tong and Wong (2000) implemented that treatment, which amounts to integrate the volume loading and the flowing problems, by using a mesoscopic simulation.

3.4 Dual time-flow consistency

Using the arc times 
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 as the basic endogenous variables, the model cycle is stated as:
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As 
[image: image93.wmf]R

t

 stems from 
[image: image94.wmf]A

t

, and 
[image: image95.wmf]+

A

Y

 is derived from 
[image: image96.wmf]+

R

Y

 under the chronology associated to 
[image: image97.wmf]R

t

, the consistency of energies holds:



[image: image98.wmf]å

ò

å

ò

Î

Î

+

Î

Î

+

=

A

a

H

h

a

a

R

r

H

h

r

r

h

Y

h

t

h

Y

h

t

)

(

d

)

(

)

(

d

)

(


(10)
When the 
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3.5 The consistency of energies

In static assignment, the “energetic power” of total cost takes on the same value at the arc and route levels, provided that 
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A similar result holds in the dynamic case under the two following conditions: first, that 
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Summing over the network paths, we obtain that
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since 
[image: image115.wmf])

,

(

F

R

R

V

A

t

X

X

+

+

=

.

4. Convergence Criteria for path-based models
Out of the numerous papers dealing with dynamic assignment and equilibrium, none has addressed explicitly the design of a convergence criterion that would rigorously indicate whether a traffic state is in equilibrium or not. In most papers, the convergence criterion is either the variation in arc flows from one iteration to the next (in an intuitive approach that may conduct to miss the equilibrium or to underestimate the gap to it), or the complementary slackness, which has more theoretical ground. However the complementary slackness alone is not a rigorous convergence criterion in the context of dynamic assignment, unless the time-flow consistency is achieved.
We shall first state a rigorous overall convergence criterion in an abstract way (section 4.1). Then we show how it may be reduced to complementary slackness if the solution algorithm yields time-flow consistency, as in the model of Tong and Wong (2001) (section 4.2). In the absence of consistency, an additional term must be included (section 4.3). Lastly, to avoid the enumeration of paths in the evaluation of the complementary slackness, we design an auxiliary complementary slackness that may be evaluated economically (section 4.4).
4.1 An overall convergence criterion

As an equilibrium state is characterized as the solution to the system expressed in Eq. (1) which is composed of four conditions, the distance to equilibrium of a given traffic state may be evaluated as the sum of four terms that capture the violation of each condition in Eq. (1):
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where the notation “small d” means some measure of distance, and the index taken in set {S, U, V, F} indicates the equilibrium condition which is addressed.

This makes a rigorous convergence criterion. In an algorithmic scheme, some components would fall down because of definitional linkages between such or such endogenous variable. For instance, if 
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4.2 Complementary slackness under time-flow consistency

Time-flow consistency implies that
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since each of the three terms is null.

Then the overall criterion is reduced to 
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, which may be evaluated by the complementary slackness criterion.

4.3 In the absence of time-flow consistency

When time-flow consistency does not hold, the terms in the overall criterion are likely to intervene in the following way. Firstly, it seems easy to zero 
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 because the service formation is a relatively simple problem. However some caution is in order because, as convergence is measured at a given stage in the algorithm, the value of 
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Secondly, the term 
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 is difficult to zero. In a convex combination method the auxiliary path flow vector 
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 but this does not apply to the current path flow vector unless equilibrium is reached. The term is costly to evaluate because it involves path variables. It may be stated as the complementary slackness criterion, which yields no significant computational saving unless the consistency of energies is satisfied, in which case the criterion can be evaluated using only arc variables.
Thirdly, the term 
[image: image129.wmf])]

,

(

F

,

[

d

R

R

V

A

V

t

X

X

+

+

 has to be evaluated if the path flow vector 
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Lastly, the term 
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 is relatively easy to evaluate since it amounts to compare two arc-based vectors.
4.4 An auxiliary complementary slackness criterion
In an equilibration algorithm that takes the arc flows 
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 as the basic endogenous variables, an issue arises of the existence of path flows 
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If this condition could not be met, there would be a “time discrepancy” of the arc flows that would preclude not only equilibrium but also the primal feasibility!
Let us show that, in equilibration algorithms that handle arc flows by convex combination, there is no risk of time discrepancy. We may assume that there are flows by arcs and destinations, 
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In Eq. (14) an arc time profile 
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 is associated to each arc a, by destination node s: let us call it a chronological gap between the entry and exit times for a given flow unit.
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Let us call this procedure the “method of chronological inference”.

We may use the set of auxiliary time mappings 
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because if 
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which shows that the auxiliary complementary slackness is easy to evaluate.

Then an overall criterion is as follows:
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5. Equilibration algorithms
Here we shall consider primal algorithms that handle flow vectors as basic endogenous variables. More specifically, as in most models of dynamic assignment, we shall consider convex combination methods: firstly at the arc level as in the LADTA model (section 5.1), secondly at the path level with separation of volume loading and flowing (section 5.2), thirdly at the path level with integration of volume loading and flowing as in the model by Tong and Wong (section 5.3). Lastly we shall introduce a novel algorithm called the “hybrid algorithm” that combines the chronological gap vectors 
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5.1 Arc-based convex combination method

The algorithm is stated shortly as:
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This algorithm is simple to implement and it requires limited memory space since it does not require storing path information.
To the best of our knowledge, criterion expressed by Eq. (16) is the simplest rigorous convergence criterion for that algorithm. Its implementation requires the additional computational effort of inferring the chronological gap, computing 
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. This doubles the base computation cost of the algorithm; a strategy to limit the increase is to measure convergence only at one out of N iterations.

5.2 Path-based convex combination under time-flow consistency

This algorithm is stated shortly as:
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In general the arc flows obtained using this method, denoted as 
[image: image176.wmf]+

R

A

X

/

, differ from those obtained by the arc-based convex combination, 
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 are identical. This is in contrast to static assignment.

The overall criterion in Eq. (13) simplifies into
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As shown in Mai (2006), the first term may be evaluated as follows, using auxiliary flow 
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5.3 Path-based convex combination relaxing time-flow consistency

Denoting by 
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 the function that operates volume loading and flowing in an integrated way, this algorithm is stated shortly as:
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This method, which was proposed by Tong and Wong (2000), has two attractive features: first, its theoretical convergence towards equilibrium ought to be robust; second, the complementary slackness criterion is rigorous on its own right.

But the computational cost is very heavy because of the mesoscopic simulation to perform 
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; moreover, the accuracy of 
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 is no trivial matter, which could imped convergence.
5.4 A “hybrid” algorithm

Using the same notation k as iteration counter and 
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 as coefficient in the convex combination, our hybrid algorithm is specified as follows:
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Convex combination. Let 
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Complementary slackness. For each destination s in S, let 
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Traffic flowing. Let 
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The time update may be a convex combination (not to be confused with that on flows):
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6. A large-size experiment

The main objective of this experiment is to asses if our implementation of the LADTA model can be of practical use for real world networks. To this end, we first selected a large interurban road network on which congestion frequently occurs. More detailed motivations concerning the choice of the network are given in section 6.1. Second, we collected the data (section 6.2) and processed them to provide appropriate inputs to the simulator (section 6.3). Finally, we present some results related to the evolution of the computation time per iteration (section 6.4).
6.1 Motivations

The Vallée du Rhône (VDR) area, located between Lyon and Marseille, is of main concern for the French DOT, not only because some wine is produced there, but also because a significant part of the trans-european road traffic Europe concentrates on it. This is particularly noticeable in summer time, when tourists coming from northern Europe, including Belgium, Germany, Netherlands and the U.K. travel accross France to reach southern countries like Greece, Italy and Spain. When concerned with their choice of itinerary, travellers certainly do not only concentrate on wine tasting opportunities on the way. A quick glance at the structure of the demand (see Fig. 1) explains why a large part of the traffic concentrates on the A7 highway, in the VDR area between Lyon and Orange. Also, the VDR road network supports a very high load of traffic during the whole year, due to goods transportation by trucks. Moreover, traffic forecasts do show an increase of demand for the coming 20 years, for both passenger cars and trucks. 

Besides high cost measures (i.e. investments in infrastucture), road authorities and highway operators are highly interested by fine-grain (i.e. within an hour) and dynamic (i.e. traffic responsive) time varying exploitation measures to better operate the network. A dynamic traffic assignment tool can be of great help in the design and implementation of dynamic traffic control measures, both at the conception stage (i.e. cost-benefit assesment, design of operating rules, ...) and at the operation stage, as a decision-aid tool. This last use is certainly the more demanding. It implies to be able to compute and keep up to date several scenarios, within a few minutes, in order to provide the road-operator with accurate traffic forecasts for the coming hours.
6.2 Data acquisition

Two services of the French DOT, SETRA and CETE Méditerrannée, provided us with the following data :

· a geocoded model of the road network, comprising 732 (undirected) arcs and 595 nodes, including connectors;

· for each arc 
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, its capacity 
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, its length 
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,  together with its measured average free flow speed, 
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; among the 732 arcs, 471 have a capacity of 1800 veh/h, 26 a capacity of 2600 veh/h, 145 a capacity of 3600 veh/h (corresponding to 2-lanes highway sections), 81 a capacity of 5400 veh/h (corresponding to 3-lanes highway sections). 7 connectors (to Belgium, Germany, the U.K, Spain, Italy, etc) have an infinite capacity.

· a static O-D matrix, representing the average annual daily demand for 1137 O-D pairs, in year 2000, for both passenger cars and trucks, including demand from connectors.

6.3 Data generation
For the purpose of our experiment, those data have been used to generate the appropriate inputs to the LADTA implementation, following the three steps below :
Step 1: generation of directed arcs. For each undirected arc 
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linking the set of nodes 
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Step 2: generation of arc data. For each undirected arc
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, the free flow travel time and capacity profiles of the associated directed arcs 
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Step 3: generation of demand. For each O-D pair 
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, a cumulated volume profile 
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 has been generated. The annual average daily demand 
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 has been distributed on 24 consecutive periods of one hour each, according to the following equations
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The sum of the 
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 coefficients is set to 1,8 in order to simulate a summer saturday day in year 2020. The distribution of the
[image: image246.wmf]k
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coefficients during the day has been choosen to simulate a morning peak and an evening peak within the simulated day. The shape of the corresponding flow functions is illustrated by Fig. 2. Note that 
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 coefficients do not depend on the O-D pair 
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, i.e. we assume that the distribution of the demand within the day is the same for each O-D. This 

is certainly a very bad approximation of the reality, but does not conflict with our main objective.
6.4 Results
The Convex combination operation at the core of the hybrid algorithm presented in section 5.4 is a classical Method of Successive Averages. When applied on scalar values, as it is the case for static assignment, there is nothing special to mention. But in the case of dynamic assignment, the values we are dealing with are (piece-wise linear) functions of time.  When computing 
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. At the end of the main loop, 
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 is assigned the value of 
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. In other words, 
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 increases with the number of iterations, in a way which is hard to predict and control. This remark has two bad consequences in practice :

· the computation time par iteration increases with the number or iterations;
· the memory needed to store the variables increases with the number of iterations.



This contrasts heavily with the static assignment problem, and typically results from the time dimension of the dynamic assignment problem.
To better figure out the computational behavior of our implementation, we recorded the time per iteration and the memory usage during a simulation of the VDR network. 
The simulation was run an a laptop computer equipped with a 1.6 GHz Intel Pentium M processor, 512MB memory, and running under Windows XP. The code, written in C++, was compiled with g++, with all stantard optimisations turned on. Results are presented in Fig. 3 and Fig. 4.
Fig. 3 shows the computation time taken from iteration 1 to iteration 4. As expected, the time per iteration increases with the number of iterations, but in a reasonable way, growing slowly from 6 seconds to 8 seconds.
In Fig. 4  is plotted the memory occupancy during the simulation. It grows significantly, starting from 50 Mb up to nearly 350 Mb at iteration 40.
7. Conclusion

Using a high-level formulation of dynamic traffic assignment, we analyzed its specific complexities, most notably:

· The chronological relativity of the volume loading.

· The chronological relativity of the time-flow relationship.

· That the time-flow relationship at the path level does not imply a time-flow consistency.

· That the time-flow consistency i.e. 
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 is a necessary condition for equilibrium.
We established some related properties of consistency.

As concerns the measurement of convergence, we showed that:

· the chronological relativity impedes the computation of the complementary slackness criterion.

· An auxiliary complementary criterion is available, which is much easier to evaluate when the volume loading and traffic flowing problems are addressed separately.
· There is a sound approach to design a rigorous convergence criterion, which will be composed of several components except when the volume loading and traffic flowing problems are integrated.
The algorithmic approach of Tong and Wong (2000) deserves emphasis as it integrates those two problems. We analysed it as well as other convex combination algorithms, either arc-based or path-based, in order to complement them with rigorous convergence criteria. We introduced a novel “hybrid” algorithm.
 Lastly, we reported on numerical application of the LADTA model to a large size problem, demonstrating its computational efficiency. 
Further developments are reported in our technical report (Leurent et al, 2006), in which path-based as well as arc-based formulations are introduced, with identification of more time variables, and introduction of various algorithmic frameworks that may be used to design novel algorithms for dynamic assignment.
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Figure 1: Structure of the traffic demand on the VDR area during summer time.
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Figure 2: Values of the 
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 coefficients used to generate the demand profiles. 
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Figure 3 : Evolution of the time per iteration during the simulation.
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Figure 4: Evolution of the memory occupancy during the simulation.
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