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Abstract

This paper presents a sequential modeling approach to address the feeder transit network design problem using Genetic Algorithm (GA). It consists of a feeder route generation and a schedule co-ordination model, which are applied sequentially, using genetic algorithm, to arrive at a feeder transit network design. In the feeder route generation model, the routes were developed for two different cases, Case-1 for selective search and Case-2 for open search, and the best results out of the two were adopted. In the schedule co-ordination model also, the schedules are developed for two cases; Case-1 for mixed fleet buses, considering all types of buses; Case-2 for single-decker fleet buses, considering only standard single-decker buses, and the results are compared to adopt the best strategy. The proposed model was applied on Thane City, which is a part of Mumbai Metropolitan Region, India.  

1. Introduction
Designing feeder transit network for a main line haul system is an important aspect in the design of a good integrated transit route network. The problem to be addressed can be defined in the following general terms: given the transit demand matrix for feeder area, and a description of the network, the aim is to determine set of feeder routes and allocate the transit units among these routes that correspond to a trade off between user and operator costs. The problem of transit network design i.e. routing and scheduling, usually have conflicting objectives related to user's cost and operator's cost, and which can be formulated as an optimization problem. The user cost would be to minimize the travel time, waiting time, and transfer time and at the same time maximize the comfort and convenience along the integrated network, where as the operator would like to maximize the ridership and profit and at the same time minimize the vehicle operating cost, and fleet size for all the modes within the integrated mass transit system. 
In past, many researchers have developed different heuristic approaches for bus route network generation. Lampkin and Saalmans (1967), Silman et al. (1974), Dubois et al. (1979), Hsu and Surti (1976), Dhingra (1980), Mandl (1980), and Baaj and Mahmassani (1990, 1995) developed bus routes using heuristic approach by insertion of nodes in base network. Most of such routes building algorithms are myopic in the search character. For the expansion of skeletons to form the routes, they consider the nodes which are only one link away. As a result the solutions generated are suboptimal. Whereas, an evolutionary algorithm like GA is a robust optimization algorithm for reaching global optimum solution for such problems. Attempts have also been made earlier, to obtain optimal schedules for transit networks, only with transfer time considered using computer simulation (Rapp and Gehner 1976) and using a combination of optimization and simulation procedures (Bookbinder and Desilets 1992). However, the development of such an optimal schedule is an extremely difficult task, even for a small network (Kikuchi and Parmeswaran 1993). The difficulty arises because of the large number of variables and constraints, the discrete nature of the variables, and the nonlinearity involved in the objective function and the constraints (Chakroborthy et al. 1995). Due to these complexities of routing and scheduling, the present study proposes to identify optimal feeder bus routes and schedules using Genetic Algorithm (GA).  
2. Genetic Algorithm
Prof. John Holland of the University of Michigan first conceived the idea of genetic algorithm (GA) in 1975. Genetic algorithms are computer based search and optimisation algorithms, which work on the mechanics of natural genetics and natural selection [Goldberg (1989), Holland (1975)]. The mechanics of a genetic algorithm are simple involving copying strings and swapping partial strings. The explanation of why this simple process works is subtle yet powerful. Simplicity of operation and implicit parallelization are two of the main attractions of the genetic algorithm approach. 

GA begins with a population of string structures created at random. Thereafter, each string in the population is evaluated. The population is then operated by three main operators- reproduction, crossovers and mutation- to create a hopefully better population. The population is further evaluated and tested for termination. If the termination criteria are not met, the population is again operated by above three operators and evaluated. This process is continued until the termination criteria are met. One cycle of these operators and the evaluation procedure is known as a generation in GA terminology. Fig.1 illustrates a pseudo code for a simple genetic algorithm.
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GA strings are created at random. These strings are similar to chromosomes in biological systems. The mechanism of genetic algorithms involves the manipulation of strings of 0 and 1. Since, each string consist of binary digits, the co-ordinates of a point in a search space is influenced by the values of 1 or 0. The size of the string depends on the desired solution precision. The creation of strings in the initial population of GA is as simple as tossing an unbiased coin. The successive coin flips (head=1, tail=0) can be used to decide genes (bits) in a string, then the next string is created. This process is continued till entire population of strings is created. The length of the string is usually determined according to the desired solution accuracy. Once the coding of the variables has been done, the corresponding point can be found using a fixed mapping rule, usually, the following linear mapping rule is used [Goldberg, (1989)].

Where,

xi,min  is lower bound on decision variable xi; xi,max is upper bound on decision variable xi.

The variable xi is coded in a substring si of length li. Decoded value (si) is summation i = 0 to i = 1 of 2isi, where, si ( (0,1) and the string s is represented as (sl-1sl-2……s2s1s0). When all the decision variables are decoded using the above mapping rule, the function value can also be calculated by substituting the variables in the given objective function f(x).

In general, a fitness function F(x) is first derived from the objective function and used in successive genetic operators. For maximisation problems, the fitness function can be considered to be the same as the objective function i.e., F(x) = f(x). For minimisation problems, the fitness function is an equivalent maximisation problem chosen such that the optimum point remains unchanged. The following fitness function is usually used [Deb, (1995)].
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This transformation does not alter the location of the minima but converts a minimisation problem to an equivalent maximisation problem. Once, the fitness function values of all the strings in a particular generation are calculated, the maximum, minimum and average fitness values of the strings in a population are calculated. Then the termination criteria are checked. If the termination criterion is not reached GA operators are applied to create a new population.  

The population of GA is usually operated by three main operators: reproduction, crossover and mutation. These are applied to string population to create a new population. These operators involve random number generation, string copying, partial string exchanging and changing bits 0 to 1 and vice versa. These three operators are described below.

Reproduction is usually the first operator applied on a population. It is a process in which individual strings are copied according to their fitness function values. Copying strings according to their fitness value means that string with a higher value have a higher probability of contributing one or more offspring in the next generation. Various selection schemes under this operator are existing today and a detailed study of these schemes can be found in Goldberg and Deb (1991). The essential idea behind all these schemes is that the above-average strings are picked from the current population and their multiple copies are inserted in the mating pool in a probabilistic manner. Various selection operators tried for present analysis are uniform-random selection and roulette selection. Uniform – Random selection picks a member of pool at random, completely ignoring fitness or other factors. Thus each chromosome in the pool is equally likely to be selected. Roulette selection is the classic selection method used in generational GA. In this selection method a string is selected for the mating pool with a probability proportional to its fitness. Since the population size is usually kept fixed in a simple GA, the sum of the probability of each string being selected for the mating pool must be one. Thus, the ith string in the population is selected with a probability proportional to Fi. The probability for selecting the ith string is 
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Where, n is population size and Fi is fitness of ith string. Thus in reproduction, good strings in a population are probabilistically assigned a larger number of copies and a mating pool is formed. It is important to note that no new strings are created by exchanging information among strings of the mating pool.

Crossover is applied after reproduction to the mating pool. There exists a number of crossover operators in GA literature but in almost all crossover operators, two strings are picked from the mating pool at random and some portion of the strings are exchanged between the strings. In a single point crossover this is performed by randomly choosing a crossing site along the string and by exchanging all bits on the right side of the crossing site as shown, in Fig.2. The crossing site in this figure is after initial two bits, the remaining bits on right side of this crossing site are exchanged between the two strings, as clearly shown in the figure. It is intuitive from this construction that good substrings from either parent string can be combined to form a better child string if appropriate site is chosen. Since, the knowledge of an appropriate site is usually not known, a random site is chosen. But this random site selection is taken care of by selection (reproduction) operator, because if good strings are created by crossover, there will be more copies of them in the next mating pool, otherwise they will not survive beyond next generation. The total number of strings participating in the mating pool can be controlled by specifying crossover probability, pc. This parameter is the ratio of total number of strings selected for mating and the population size. The crossover operator is mainly responsible for the search aspect of genetic algorithms.

Mutation is also used for search aspect of GA, but sparingly. By mutation, diversity can be maintained in the population, which helps in creating a better string. Mutation operator changes a 1 to a 0 and vice versa with a small mutation probability. The need for mutation is to keep diversity in the population. For example, if in a particular position along the string length all the strings in the population have a value 0, and 1 is needed in that location to obtain the optimum then neither reproduction nor crossover operator will be able to create 1 in that location. The inclusion of mutation may turn that 0 into 1. Furthermore, for local improvement of a solution, mutation may be found useful. Since, this operator disrupts a string, the probability of mutation pm is kept very low. Simple – invert and simple – random mutations are both used with bit string representations. They both randomly select a gene for mutation. The difference is that simple – invert inverts the bit while simple random selects a random bit value for the gene, which may be the same as the original bit value. Thus, simple – random has an effective mutation rate of half of the mutation rate for simple – invert. Swap mutation can be used for any representation. It simply swaps two randomly selected genes.

These three operators are simple and straightforward. The reproduction operator selects good strings and the crossover operator recombines good sub-strings from good strings together, hopefully to create a better string. Even though none of these claims are guaranteed and/or tested while creating a string. It is expected that if bad strings are created the reproduction operator in the next generation will eliminate them. Production of good strings will be increasingly emphasized. Application of these operators on the current population creates a new population. The values of the fitness function of the individuals of the new population are again determined by decoding the strings. This complete one cycle of GA is called a generation. In each generation, if the solution is improved, it is stored as the best solution. This is repeated till termination criteria is reached.     

When the average fitness of all the strings in a population is nearly equal to the best fitness, the population is said to have converged. When the population is converged, the GA is terminated. The same can be done by fixing maximum number of generations. However, there could be further improvement in the solution after convergence. In this study, 1000 iterations ignoring convergence has been used as the termination criteria. 
2.1. Difference Between GA and Traditional Methods

In order that GA surpasses their more traditional counterparts in the quest for robustness, GA must differ in some very fundamental ways. GA is different from more natural optimisation and search procedures in the following ways [Deb (1995), Goldberg (1989)]:

· GA works with a coding of the parameter set and not with the parameter themselves. The advantage of working with a coding of parameter set is that coding discretizes the search space, even though the function may be continuous. Another advantage of working with the coding of parameter set is saving in the computer memory for storing the parameter as one bit is required for storing one 0 or 1 in C language, and saving in computational times as bit processing is much faster in computers.

· GA search from a population of points, not a single point. Because there is more than one string being processed simultaneously, it is very likely that the repeated GA solution may be a global solution. In many large real problems, the decision-makers not only need the optimal solution but many near optimal solutions to select the one, which fulfils their requirements.

· GA use payoff (objective function) information, not derivatives or other auxiliary knowledge. Therefore, for GA it is not necessary that objective function or constraint set should be continuous or differentiable.
· GA use probabilistic transition rules and not deterministic rules. To persons familiar with deterministic methods (e.g. steepest descend) this seems odd, but the use of probability does not suggest that the method is some simple random search as this is not decision making at the toss of a coin. GA use random choices as a tool to guide a search toward region of the search space with likely improvement.
Taken together, these four differences – direct use of coding, search from a population, blindness to auxiliary information and randomised operators – contribute to GA’s robustness and resulting advantage over other more commonly used techniques.
3. Application of GA to Feeder Route Network Design Problem
This section discusses the application of GA for a feeder route network design problem, where a model is developed and optimized for feeder route generation. In this model, the routes are generated in two levels, the first level generates the initial set of shortest paths based on the maximum and minimum route length criteria, and in the second level, search is made around these corridors by generating K shortest paths for each station-to-terminal node pair and using GA to select one route combination out of all possible routing configurations.

3.1. Generation of Initial Set of Shortest Paths 
The initial set of shortest paths (potential feeder routes) is generated by first identifying the candidate terminal nodes for the feeder area under consideration. They are identified by fixing the maximum and minimum feeder route length criteria for the feeder area, all those nodes which fall within the maximum and minimum length (along shortest path) from station are chosen as candidate terminal nodes. These nodes are sorted in descending order based on the distance along the shortest path from station to all these nodes. Based on the maximum allowable number of shortest paths in the initial set (potential feeder routes), the final terminal nodes from the top of the sorted order are selected and the shortest path from station to all these final terminal nodes forms the initial set of shortest paths (potential feeder routes) for the feeder area considered. The shortest paths of the initial set obtained at this level are further optimized in the next level using genetic algorithm, to obtain the optimal configuration of feeder routes for the feeder area considered. 
3.2. Generation of Optimal Feeder Route Configuration

If routes are designed only along the shortest path of station-to-terminal node pairs, then such routes are likely to have fewer nodes than longer path and consequently, their contribution to the demand satisfied is likely to be less. However, if a route connecting the station to a terminal node is defined along a short (but not necessarily the shortest) path, it might satisfy a higher share of the total demand (achieving certain minimum level of ridership) with only a small increase in the total trip time. This is desirable from the operator’s point of view. But, at the same time, the individual users’ perspective warrants the routes to be as short as possible so as to minimize their travel time. So, the problem is to obtain a route configuration, which will optimize these conflicting objectives. In this level, search is made around the shortest paths of initial set by generating K shortest paths for each station-to-terminal node pair and selecting one route combination out of all possible routing configurations. Following are the various inputs required: -

1. Network: Details for all the links, including the link travel time, travel distance etc, within the feeder area and the initial set of shortest paths generated earlier.

2. Demand: OD matrix of station to every node and vice versa within the feeder area.
3. K-shortest paths: The label setting K-shortest paths algorithm (Sheir 1979) is implemented to generate the first K-shortest paths for each station to terminal node pair of the initial set identified in previous level. 
4. Route and node_route data structure: Out of all the K-shortest paths of all station-to-terminal node pairs, a few of them will be selected to form the optimal routing configuration. Hence, the data structure to represent routes is required. From the route data structure, node_route data structure is evolved, which gives the information regarding the number of routes passing through each node. 
5. Decision Variables: In this problem, out of all the K-shortest paths of all station-to-terminal node pairs, a few of them will be selected. Therefore, decision variable will be the path number for each station to terminal node pair (route). 
6. Objective Function: The objective for the feeder route generation model is to minimise the total in-vehicle travel time subject to constraint for unsatisfied passenger demand, the same can be expressed in terms of mathematical program as follows:
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Subject to:

g1

=
Upd ( x
Where,

Obj1 = objective function component for those nodes through which only one route is passing out of the generated feeder route configuration (SR); Obj2 = objective function component for those nodes through which more than one route is passing (i.e. the node has overlapping routes) out of the generated feeder route configuration (SR); dij = total passenger daily demand between the station i and all nodes j of the set of feeder transit routes SR; tijk = in-vehicle travel time in minutes between station i and all nodes j along the feeder route k of the set of feeder transit route SR; Upd = Unsatisfied passenger demand; x = Maximum allowable unsatisfied passenger demand in percent; SR = set of generated feeder routes; OR = set of overlapping feeder routes (out of SR) at a particular node.

The objective function in equation-4 consists of two components, the first component (Obj1) is for those nodes through which only one route is passing out of the generated feeder route configuration (SR) and the second component (Obj2) is for those nodes through which more than one route is passing (i.e. the node has overlapping routes) out of the generated feeder route configuration (SR). For the second component Obj2, the demand from station i to a particular node j is distributed among the overlapping routes (OR) passing through that node in proportion to their corresponding travel time and as per the logit distribution, which makes the component Obj2 non-linear. Besides this, the above formulation is a combination of conflicting objectives. By minimizing the total travel time of all the commuters in the objective function, it is ensured that the feeder routes are generated along the shortest possible path for the users, and at the same time, the constraint g1 for unsatisfied passenger demand makes certain that the feeder routes are demand oriented i.e. they satisfy maximum possible demand thus achieving certain minimum level of ridership. All this makes the formulation complex and non-linear, which is difficult to solve by classical approaches, hence Genetic Algorithm (GA) is used to solve the above problem.
Using all the inputs described above, the optimal feeder route configuration for a feeder area is generated for two different cases.

Case-1: Considering only one route each (out of k-shortest paths) from each station-to-terminal node pair of initial set of shortest path. 
Case-2: Considering all possible combinations of k-shortest paths of all station-to-terminal node pairs for variable number of routes. 
A comparison is also made between the results obtained by Selective Search and Open Search, and the best result out of the two is adopted. Suppose, if there are say five nodes identified as terminals for route design and for each station to terminal node pair first six shortest paths are considered, there will be a total of 0.77 ( 104 possible routing configurations for Case-1 and 0.17 ( 108 configurations for Case-2 (for a optimal combination of five routes), out of which one optimal configuration is to be selected. Getting solution for such a big problem will be very difficult by using enumeration technique or any other classical approaches. The multi-criteria and complex objective and possibility of a big search space justifies the use of a robust technique like genetic algorithm (GA) to arrive at the optimal solution for such problems. 
4. Application of GA to Feeder Bus Schedule Problem
The schedule-co-ordination problem is formulated as a combinatorial optimization. The objective function is fixed as minimization of sum of operating cost of buses (operator cost), transfer time cost for passengers transferring from a particular train station to feeder buses and waiting time cost of passengers boarding along the feeder routes (user costs) subject to load factor and transfer time constraint, it can be mathematically represented as follows: 
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Subject to:

g1
=
[qkmax / CAPb] ( Lmax   

( k( SR  

g2
=
[qkmax / CAPb] ( Lmin   


( k( SR
g3
=
tktt,ij ( ttt,max
                  

( k( SR

g4
=
tktt,ij ( ttt min
                  

( k( SR
Where,

C1 = Transfer time cost in Rs. per min; C2 = Waiting time cost in Rs. per min; C3 = Bus operating cost in Rs. per min; dktt ij = No. of passengers transferring from station i to node j along feeder route k, within certain time period; dkwt ij = Demand from node i to node j along feeder route k, within certain time period; tkwt,ij = Waiting time of passengers travelling from node i to node j along feeder route k; tktt,ij = Transfer time of passengers transferring from station i to node j along feeder route k; fk = Frequency of buses along feeder route k, it will be reciprocal of headway on feeder route k; Tk = Round trip time for buses along feeder route k, including layover time; Lk = Load factor for feeder bus route k; Lmin = Minimum allowable load factor; Lmax = Maximum allowable load factor; ttt,min = Minimum allowable transfer time; ttt,max = Maximum allowable transfer time; qkmax = Maximum flow on any link of feeder route k; CAPb = Capacity of the bus operating on the feeder routes; SR = Set of all feeder routes for a station.

4.1. Objective Function 

The objective function in equation-5 is a combinatorial type complex problem. The function consists of a user cost component and an operator cost component. The user cost component consists of minimizing the total waiting time of the commuters boarding en route and the total transfer time of commuters transferring from one mode to another. The operator cost component consists of minimizing the total vehicle operating cost of feeder buses. Here, the users and operator’s objective are conflicting in nature.  
4.2. Constraints

In the following the meaning of each constraint is briefly described:

Constraint g1 states that the load factor on any feeder route k should be less than the maximum allowable load factor Lmax for that route.

Constraint g2 assures that the load factor on any feeder route k should be more than the minimum allowable load factor Lmin for that route. 

Constraint g3 states that the transfer time tktt,ij incurred while transferring from station i to node j or vice-versa along feeder route k should be less than the maximum allowable transfer time ttt,max between the modes.

Constraint g4 assures that the transfer time tktt,ij incurred while transferring from station i to node j or vice-versa along feeder route k should be more than the minimum possible transfer time ttt,min between the modes.

4.3. Solution Approach

The complex, multi-objective and non-linear nature of the formulation suggests the use of Genetic Algorithm (GA), which is a robust optimization technique and well suited for such problems. Appropriate penalties are decided for various constraints, also the GA parameters are tuned properly. The results are obtained for two cases, case-1 for mixed fleet buses, for varying bus capacity (mini-bus, standard bus, double-decker bus etc.) i.e. capacity for a feeder route is chosen based on the maximum link flow on that feeder route, and case-2 for single-decker fleet buses, for fixed bus capacity, and the best result out of the two were adopted.. 

The next section discusses the application of above models on a case study area.
5. Case Study
The proposed models were applied on a case study area of Thane Municipal Corporation (TMC), for which an optimum rail corridor was identified by Verma and Dhingra (2005). 
5.1. Feeder Route Generation
The objective function and the constraint in the study pose a constraint optimization problem; therefore, penalty method is adopted for optimization; Deb (1995). Since, the objective function in equation-4 is of minimization type, the appropriate penalty calculated for any violation of the constraint for unsatisfied passenger demand, is added to the objective function to obtain the penalized objective function. The optimum feeder route configuration will be the one for which the penalized objective function is minimum. In this study, to maintain minimum possible level of unsatisfied passenger demand, its limit was taken as 10% and hence, the penalty was set for the passenger demand unsatisfied beyond 10% of the total demand. It was done by multiplying the unsatisfied demand above 10% of the total demand by a penalty multiplier and adding the penalty obtained to the objective function to get the unconstrained objective function value. This way the amount of penalty added is directly proportional to the amount of violation of the constraint. After doing the rigorous tuning of GA parameters, the following types/values of GA operations/parameters are adopted in feeder route generation model.

Type of selection/reproduction operator – Roulette

Type of crossover – Uniform

Type of Mutation – Swap

Seed Value – 1

Pool Size – 300

Cross Over Probability – 0.9

Mutation Probability – 0.1

Number of Generations – Till 1000 iterations ignoring convergence

The developed objective function programme was used along with genetic algorithm, appropriate penalty and the tuned GA parameters, to obtain the optimum feeder route configurations. The LibGA ver 1.0 software package (Corcoran and Wainwright, 1994) of genetic algorithm was used here. The optimal results for any feeder area were obtained as the shortest path number (1st shortest path, 2nd shortest path etc.) and the corresponding path details, for each OD pair of the initial set of shortest paths. 

The feeder routes were identified for each station for Selective Search Case (Case1) and Open Search Case (Case-2). Fig.3 shows the comparison of objective function value obtained for two cases, in the form of bar chart. It was found that better results in terms of minimized objective function value were obtained for Case-2, probably because there is option of choosing more than one route between high demand station-to-terminal node pair of the initial set in Case-2, resulting in higher demand satisfaction for the same number of routes and thus less penalty for demand unsatisfied. Fig.4 shows the sensitivity of objective function value for varying number of routes in optimal configuration for Open Search Case. It was seen from the sensitivity analysis that for the chosen objective function, optimum results were obtained at number of routes in optimal configuration equal to the number of station-to-terminal node pairs in the initial set of shortest paths of each feeder area. There is no appreciable improvement (only a slight decrease in total travel time, but no improvement in demand satisfied) in the objective function value for higher number of routes in optimal configuration. For example, in case of feeder area 70nw there were 4 shortest paths in the initial set, hence in the sensitivity analysis the optimum objective function value was obtained at number of routes equal to 4 in the optimal configuration, there is no appreciable improvement in the result for number of routes in optimal configuration equal to 5, 6, 7, and 8. Hence, the feeder route configuration obtained for number of routes (in optimal configuration) equal to the number of shortest paths in the initial set of the feeder area for Case-2, were finally adopted.

5.2. Schedule Co-ordination
The objective function and the constraint in the schedule co-ordination sub-model pose a constraint optimization problem; therefore, penalty method is adopted for optimization; Deb (1995). Since, the objective function in equation-5 is of minimization type, the appropriate penalties calculated for any violation of the constraints are added to the objective function to obtain the penalized or unconstrained objective function value. The optimum co-ordinated schedules will be the one for which the penalized objective function value is minimum. The penalty for load factor constraints g1, g2 were carefully decided after number of trials and the following objective function multipliers were taken:






  Objective Function Multiplier

lf > lf_max and lf ≤ lf_max+0.1 



2.5

lf > lf_max+0.1 and lf ≤ lf_max+0.2 



3.5

lf > lf_max+0.2 and lf ≤ lf_max+0.3 



5.5

lf > lf_max+0.3 and lf ≤ lf_max+0.4 



6.5

lf > lf_max+0.4 and lf ≤ lf_max+0.5 



7.5

lf > lf_max+0.5 
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lf < lf_min and lf ≥ lf_min-0.1 



2.5

lf < lf_min-0.1 and lf ≥ lf_min-0.2 



3.5

lf < lf_min-0.2 and lf ≥ lf_max-0.3 



5.5

lf < lf_min-0.3 and lf ≥ lf_max-0.4 



6.5

lf < lf_min-0.4 and lf ≥ lf_max-0.5 



7.5

lf < lf_min-0.5 





35

The maximum allowable transfer time from rail to feeder bus or vice-versa, was taken as 8 minutes. The objective function was penalized if the transfer time on any route exceeds this limit. The penalty for transfer time constraints g3, g4 were carefully decided after number of trails and the following objective function multipliers were taken:







  Objective Function Multiplier

transf_t > 8.0 and transf_t ≤ 9.0 




0.1

transf_t > 9.0 and transf_t ≤ 10.0 




0.2

transf_t > 10.0 and transf_t ≤ 11.0 



0.3

transf_t >11.0






10.0

Various trials were made to obtain the types/values of operations/parameters of GA, which performs better for the present case in terms of minimised objective function value. Thus, the following were adopted for optimum schedule co-ordination.: 
Type of selection/reproduction operator – Roulette; Type of crossover – Uniform; Type of Mutation – Swap; Seed Value – 5; Pool Size – 300; Cross Over Probability – 0.95; Mutation Probability – 0.01; Number of Generations – 1000 iterations ignoring convergence. 
The developed objective function programme was used with the GA software LibGA (Corcoran and Wainwright, 1994) and appropriate penalty and the tuned GA parameters, to obtain the optimum co-ordinated schedules for feeder buses for both the Mixed Fleet Buses Case (Case 1) and Single-decker Fleet Buses Case (Case 2). While comparing the constrained and unconstrained objective function value for typical feeder areas 70nw and 70se for Case-1 and Case-2, as given in Table-1, it is observed that better value of objective function (for both constrained and unconstrained) were obtained for Mixed Fleet Buses Case (Case 1). This could be due to more optimum supply (for both user and operator) for a given demand for Case-1 as compared to that for Case-2, and also because of very less or no violation of constraints for Case-1 as compared to that for Case-2. A similar trend is observed for other feeder areas also. Thus, it is concluded that for the given objective function, results obtained for Mixed Fleet Buses Case (Case 1) are optimum and hence recommended for the case study area of Thane City.
6. Conclusions
This paper deals with application of GA to feeder transit network design problem. The following conclusions/contributions can be drawn from the analysis, formulation, and model development: 
· It has been found that GA is very sensitive to penalties. Wide variation in results is seen due to slight change in any penalty. Therefore, appropriate penalties should be decided as per their relative importance for better and acceptable results. For deciding penalties, the load factor, transfer time, waiting time and ridership should be within the acceptable limits both to users and operators. Also, the total unsatisfied passenger demand should be kept as minimum as possible.

· GA has emerged as an efficient technique for multi-objective non-linear feeder route generation and schedule co-ordination problem. The time taken to obtain results is directly proportional to adopted pool size, also the termination criteria plays a key role in reaching the global optimum solution because there is possibility of improvement even after the GA has converged. In this study, the termination criterion is taken as 1000 iterations (large number of iterations) ignoring convergence. If computational time is not a constraint then GA guarantees global optimum results.  
· In the proposed feeder route generation model, better results in terms of minimized objective function value were obtained for Open Search Case. Also, it was found from the sensitivity analysis that for the chosen objective function, optimum results for Open Search Case (for each feeder area) were obtained at number of routes in optimal configuration equal to the number of station-to-terminal node pairs in the initial set of shortest paths of that feeder area. There is no appreciable improvement in the objective function value for higher number of routes in optimal configuration.
· In the proposed schedule co-ordination sub-model, better results in terms of minimized objective function value were obtained for mixed fleet case. Hence, if both the user and operator’s objectives are to be satisfied then it is recommended to use the mixed fleet for feeder bus route network in Thane City.
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TABLE 1. Comparison of Objective Function Value for Typical Feeder Areas 70nw and 70se for Schedule Co-ordination Problem
	Feeder Area
	Constrained Objective Function Value
	Unconstrained Objective Function Value

	
	Case-1 (Mixed Fleet Buses)
	Case-2 (Single-decker Buses)
	Case-1 (Mixed Fleet Buses)
	Case-2 (Single-decker Buses)

	70nw 
	632.92
	646.69
	632.92
	1013.70

	70se
	474.68
	478.69
	802.69
	1415.89


begin


Initialize population of strings;


Compute fitness of population;


Repeat



Reproduction;



Crossover;



Mutation;



Compute fitness of population;


Until (termination criteria);

end

FIG 1. Pseudo Code for a Simple Genetic Algorithm
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FIG 3. Comparison of Objective Function Value for Case-1 and Case-2 of Feeder Route Generation.
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FIG 4. Sensitivity of Objective Function Value for Varying Number of Routes in Optimal Configuration for Case-2 of Feeder Route Generation.
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