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Abstract:

The primary objective of this paper is to introduce the class of integer-valued autoregressive (INAR) models for the time series analysis of traffic accidents in Great Britain. Different types of time series count data are considered: aggregated time series data where both the spatial and temporal units of observation are relatively large (e.g., Great Britain and year) and disaggregated time series data where both the spatial and temporal units are relatively small (e.g., congestion charging zone and month). The performance of the INAR models is compared with the class of Box and Jenkins real-valued models (such as ARIMA models) and Poisson and Negative Binomial (NB) models. The results suggest that the performance of the ARIMA model and the INAR Poisson model is quite similar in terms of model goodness of fit for the case of aggregated time series traffic accident data. This is because the mean of the counts is high in which case the normal approximations and the ARIMA model may be satisfactory. However, the performance of INAR Poisson model is found to be much better than that of the ARIMA model for the case of the disaggregated time series traffic accident data where the counts is relatively low. The paper ends with a discussion on the limitations of INAR models to deal with the seasonality and unobserved heterogeneity.
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INTRODUCTION

Road transport brings huge benefits to society, but it also has both direct and indirect costs. Direct costs include the costs of providing road transport services such as infrastructure, equipments, and personnel. Indirect costs include road transport accidents, travel delay due to road traffic congestion, and air pollution from road traffic. Among all of these costs, the cost associated with road traffic accidents is very high. According to the UK Department for Transport (DfT, 2003), the value of preventing a fatality (VPF) for the roads is £1.25 million (at 2002 price). Although UK is one of the safest countries in the world in terms of accident per veh-km travelled, the total number of fatalities from road traffic was 3,201 in 2005. One of the best ways to understand the causes of road traffic accidents is to develop various accident prediction models which are capable of identifying significant factors related to human, vehicle, socio-economic, road infrastructure, land-use, and the environment. For instance, Noland and Quddus (2004) developed an accident prediction model and reported that the improvements in medical technology and medical care reduced UK traffic-related fatalities. Based on the outcomes of accident prediction models, different countermeasures are implemented to reduce the frequency of road traffic accidents. Accident forecasting models are used to monitor the effectiveness of various road safety policies that have been introduced to minimise accident occurrences. For example, Houston and Richardson (2002) developed an accident forecasting model and concluded that the change of an existing seat belt law from secondary to primary enforcement enhances road traffic safety. However, the performance and validity of these accident models largely depend on the selection of appropriate econometric models. In order to identify an appropriate econometric model, the understanding of different count variables is essential as road traffic accidents are non-negative, discrete, and sporadic event count. 

A random variable that indicates the number of times that some event has occurred is known as a count variable such as the annual number of road traffic accidents occurred on a specific geographic entity such as country, county etc. Similar to other type of empirical data, count data also have three categories: (1) cross-sectional, (2) time-series, and (3) panel. Cross-section count data are a set of observations on the values that a count variable takes for several sample units (e.g., wards, counties, boroughs, states, countries, etc.) at the same point in time. Cross-section data have only a space dimension. For example, the number of UK county-level road traffic accidents for a particular year. On the other hand, time series count data are a set of observations on the values that a count variable associated with a particular entity (e.g., a junction, a ward, a borough, a country etc) takes at different times. Time-series data also have only a time dimension which may be collected at regular time intervals, such as daily, weekly, monthly, quarterly, or annually. For example, quarterly UK road traffic accidents over the 15 years. Panel count data are a mixture of time series count data and cross sectional count data. Panel count data, also called longitudinal data, are the values that a count variable takes for multiple entities in which each entity is observed at a number of different time periods thus containing both cross sectional count data as well as time series count data. For example, the number of UK county-level annual road traffic accidents over the last 15 years. 
Since road traffic accidents are non-negative, integer, and random event count, the distribution of such events follow a Poisson distribution. The methodology to model accident count data are well developed. For instance, cross-sectional count data are modelled using a Poisson regression model (Kulmala, 1995). Since accident count data are normally over-dispersed (i.e., variance is greater than mean), a Negative Binomial (NB) regression model which is a Poisson-gamma mixture is more appropriate to apply (Abdel-Aty and Radwan, 2000). If such cross-sectional count data contain a lot of zero observations (i.e., excess zero-count data), then a zero-inflated Poisson (or NB) model or the Hurdle count data model is more appropriate (Land at al., 1996). If cross-sectional accident count data are truncated or censored, such as the number of fatalities per fatal accident in which the count data are truncated at one as there should be at least one fatality in a fatal accident, these data are modelled using either a truncated Poisson or a truncated NB model. If cross-sectional count data are under-reported such as the occurrence of slight injury or property-damage accidents, then an under-reported Poisson model is used. If accident count data are panel data, fixed effects (FE) Poisson (or NB) model or random effects (RE) Poisson (or NB) model is used (Chin and Quddus, 2003). For clustered panel count data, the generalised estimating equations (GEE) technique is employed. 

However, there is a lack of suitable econometric models within the accident modelling literature to model time series accident count data. Normally, this type of accident data is modelled using a Poisson regression model or a NB regression model that has a prevailing assumption that observations should be independent to each other. This  suggests that these models are more suitable for cross-sectional count data. Modelling time series count data using these models may result inefficient estimates of the parameters as time series data are normally serially correlated. One simple solution would be to introduce a time trend variable as an explanatory variable in the model to control for serial correlation. For example, Noland et al. (2006) used a NB model with a trend variable to study the effect of the London congestion charge on traffic safety. However, there is no guarantee that this will explicitly account for the effect of serial correlation, specifically for the case of a long time series count data. 
Time series models for continuous data are very well developed. Real-valued time series models, such as the autoregressive integrated moving average (ARIMA) model, introduced by Box and Jenkins (1970) have been used to model time series count data in many applications over the last few decades (e.g., Zimring 1975, Sharma and Khare, 1999, Houston and Richardson, 2002, Goh, 2005). However, when modelling non-negative integer-valued count data such as traffic accidents within a geographic entity over time, Box and Jenkins models may be inappropriate. This is mainly due to the normality assumption of errors in the ARIMA model. This largely suggests that a model is required which can take into account both the non-negative discrete property and autocorrelation of time series count data.
Over the last few years, a new class of such time series models known as integer-valued autoregressive (INAR) Poisson models, has been studied by many authors in the fields of finance, public health surveillance, travel and tourism, and forest sector etc. This class of models is particularly applicable to the analysis of time series count data as these models hold the properties of the distribution of count data and are able to deal with serial correlation, and therefore offers an alternative to the real-valued time series models and general Poisson or NB models. 

The key objective of this paper is to introduce the class of INAR models for the time series analysis of accident count data from Great Britain. Two types of time series accident count data are considered: (1) aggregated time series data where both the spatial and temporal units of observation are relatively large (e.g., Great Britain and year), and (2) disaggregated time series data where both the spatial and temporal units of observation are relatively small (e.g., congestion charging zone in Central London and month). Various econometric models such as ARIMA, NB, NB with a time trend, and INAR(1) Poisson models are used to develop accident prediction models for each datasets. The performance of the INAR(1) Poisson model is compared with the other models. The results suggest that there is no significant different in terms of model goodness-of-fit and forecasting error between the real-valued ARIMA model and the INAR Poisson model for the case of the aggregated time series count data although the ARIMA model provides the best result. However, when the count data relatively has a low observed mean for the case of the disaggregated accident data, the INAR model provides the best goodness-of-fit. 
This paper is organised as follows. The next section describes the class of INAR models used in this study. This is followed by a description of data sources used for the analysis. A presentation and interpretation of the results are then discussed in some detail. This paper ends with conclusions and limitations of this study. 
METHODOLOGY
The model for continuous autoregressive pure time series data was introduced by Box and Jenkins (1970 ) and are now very well developed. The Box and Jenkins model such as the seasonal autoregressive integrated moving average (SARIMA) model is capable of taking into account the trend and seasonality (and hence the serial correlation) normally present in time series data. An extension of this model was proposed by (Box and Tiao, 1975) which has the ability to examine the effects of various regressors and intervention variables as explanatory variables along with the usual trend and seasonal components. This model can be expressed as follows:
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in which t is the discrete time (e.g., week, month, quarter, or year),  yt is the appropriate Box-Cox transformation of Yt, say lnYt, Yt2, or Yt itself (Box and Cox, 1964), Yt is the dependent variable for a particular time t, It is the intervention component, X is the deterministic effects of independent variables known as control variables (X), d is the order of the non-seasonal difference, D is the order of the seasonal difference, the subscript s is the length of seasonality (for example s=12 in case of monthly time series data), 
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 are the regular and seasonal autoregressive (AR) operators, 
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is an uncorrelated random error term with zero mean and constant variance (
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However, the model as shown in equation (1) is suitable for real-valued time series data as the error has to be normally distributed with zero mean and constant variance. Despite this assumption, this model are being used to investigate non-negative variate time series related to a number of applications including road traffic accidents (e.g., Houston and Richardson, 2002 ; Noland et al., 2006).  

There are a few major problems with the application of ARIMA models to non-negative integer-valued variables such as monthly accident count data. The first problem is the definition of the model. A real-valued autoregressive process of order 1 can be expressed as follows:
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In order to obtain an integer valued Yt  the following constraints have to be imposed on equation (2) such as (i) 
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is integer valued and (ii) 
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=-1, 0 , or 1. Such constraints limit the practical use of real-valued autoregression time series process in the framework of count variables. The second problem concerns the commonly made assumption of normality. For a count variable in which the mean of the counts is relatively high such as yearly road traffic accidents in Great Britain, the distribution is usually found to be an approximate normal and hence, the use of SARIMA model may be satisfactory as the normality assumption is less questionable. However, for a count variable in which the mean of the count is close to zero such as monthly fatal road traffic accidents within a small geographic unit, the distribution is normally skewed to the right. Therefore, the assumption of normality, or of any other symmetric distribution, is unjustified. 
The class of integer-valued autoregressive processes denoted by INAR have been studied by many authors (e.g., Al-Osh and Alzaid, 1987; McKenzie, E., 1988, Brännäs, Hellström, 2001, Karlis, 2006). A natural idea of such models is to replace the deterministic effect of lagged Yt’s by a stochastic one. The approach developed replaces the scalar multiplication between 
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 and Yt-1 by binomial thinning which is defined as follows. If 
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where 
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 is a binomial random variable, the number of successes in 
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The thinning operation of 
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The properties of the model in equation (3) can be found in Al-Osh and Alzaid (1987) and MaKenzie (1988). The mean and variance of the process 
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. Equation (4) is termed as the Poisson INAR(1). 
Extensions of this model includes the Poisson INMA(1), the Poisson INARMA(1,1), the NB INAR(1) model, and INARMA(1,1,) NB model which has the ability to deal with both under-dispersed and over-dispersed count data (Al-Osh and Alzaid, 1988; Brännäs and Hall, 2001, Karlis, 2006) . Equation (3) can be estimated using the programmable Exact Maximum (EM) algorithm (Karlis, 2006).
DATA

Two datasets are used to investigate the appropriateness of different types of accident prediction models discussed above. One of these is a highly aggregated time series accident count and the other is a relatively disaggregated time series accident count. 

The highly aggregated time series data considered in this study is the annual road traffic fatalities in GB between 1950 to 2005 obtained from the UK Department for Transport (DfT, 2006). The total number of observations is 55 and the mean and standard deviation of this time series process are 5,769 and 1,352 respectively. It is very well known that an accident model should contain an exposure to accident variable to control for total road traffic movements within the road network. The literature suggests that a good exposure to accident variable is vehicle kilometres travelled (VKT). The annual VKT data of GB are then collected from the DfT (DfT, 2006). Both annual road traffic fatalities and VKT data are shown in Figure 1. It is interesting to note that annual road traffic fatalities increase with the increase in VKT until 1966. Fatalities are then reduced with the increase in VKT. This is largely due to the implementation of different road safety measures, legislations, and policies over the years. For instance, the UK government introduced the seat-belt safety law in 1983 to reduce the severity of accidents. Penalty points for careless driving, driving with insurance, and seat- belt wearing for child passengers became law in 1989. The accident prediction model that will be developed using this dataset will also investigate the impact of these two interventions on road traffic fatalities while controlling for VKT. 
Figure 1 is about here

The disaggregated time series data considered in this study is the monthly car KSI (Killed and seriously injured) within the London congestion charging zone between January 1991 to October 2005. This data were obtained from the STATS19 database (1991-2004) and Transport for London (Jan 2005 – Oct 2005). The congestion charge was applied in central London area in February 2003 and it is expected that the congestion charge decreases the occurrences of car accidents within the zone. The accident prediction model that will be developed using this dataset will also investigate the impact of the congestion charge on car KSI. The time series plot of the data is shown in Figure 2. The introduction of the congestion charge (17th February 2003) is also highlighted within the plot. It is noticeable that the data exhibit both trend and seasonality. The total number of observations is 178 and the mean and standard deviation of this time series process is 6.07 and 3.54. The total number of monthly road traffic accidents within greater London is taken as an exposure to risk of accidents for this dataset. 
Figure 2 is about here

RESULTS

Different accident prediction models are developed using the econometric models  such as ARIMA, NB, NB with a time trend, and INAR Poisson models as described in the methodology section for both aggregated and disaggregated time series datasets. Our main objective is to identify the best accident model for each type of time series datasets. For this purpose, each of the datasets is divided into two parts. One part is used to fit a model and the other part is used to validate the corresponding model. The results for each of the datasets are presented below.
Annual Road Traffic Fatalities in GB (Aggregated Time Series Process)

The first part of the highly aggregated time series process representing the annual road traffic fatalities in GB contains observations from 1950 to 2000 resulting a total of 51 observations. This part of this time series process, usually known as a training dataset, are used to develop accident prediction models based on ARIMA, NB, NB with a trend, and INAR Poisson models. The rest of the observations (from 2001 to 2005) of this time series process, normally known as a validation dataset, is used to validate the developed accident prediction models. The sample autocorrelation function (sacf) of the training dataset exhibits serial correlation in the data as the autocorrelation coefficients at various lags fall outside the confidence limits (see Figure 3). This means that the underlying time series process is a non-stationary process. After examining both autocorrelation and partial autocorrelation functions, it is found that a non-seasonal difference of order one and a natural log transformation of the response variable are necessary to make the training dataset a stationary time series process. This stationary process also has a non-seasonal AR (1) component and a non-seasonal MA (1) component. Therefore, the suitable time series process is denoted as an ARIMA (1,1,1) model for the training dataset. 
Figure 3 is about here

It is worthwhile to note that the other models considered in this study such as NB, NB with a time trend, and INAR Poisson models assume that the underlying time series process is a stationary process and therefore, there is no need to manipulate the response variable of the process. 
The results of ARIMA, NB, NB with a time trend variable, and INAR Poisson models are presented in Table 1. In each of these models, two intervention and one control variables are used as the explanatory variables and the annual road traffic fatalities in GB is used as a response variable. The first intervention variable is the introduction of the seat-belt law in 1983 and the second intervention variable is the introduction of various safety legislations in 1989. Both of these intervention variables are dummy variables represented by the so-called step functions. This suggests that these interventions cause an immediate and permanent effect on road traffic fatalities in GB. The control variable is the annual VKT in GB. 

It can be seen that both intervention variables are statistically significant in all models except in the ARIMA (1,1,1) model. However, both AR1 and MA1 components of this ARIMA model are statistically significant at the 100% confidence level. The control variable, VKT, is also statistically significant in all models expect in the NB with a time trend model. This is due to the fact that the trend variable (linear) and the control variable (i.e., VKT) are highly correlated showing a correlation coefficient of 0.99. 
Table 1 is about here
The performance of each of the models presented in Table 1 can be found from the different “measures of accuracy” of the fitted models. These are the mean absolute percentage error (MAPE), the mean absolute deviation (MAD), the mean squared deviation (MSD), and the root mean squared error (RMSE). For all four measures, the smaller the value, the better the fit of the model. It can be seen that the best fitted model is the ARIMA(1,1,1) model in terms of all “measures of accuracy”. The performance of the INAR(1) Poisson model is also good relative to the ARIMA model. The worst performance model is found to be the NB model with a trend model for this dataset. 
The validation dataset that contains observations from 2001 to 2005 is used to estimate the relative forecast error, RFE, (%) of each models using the following equation:
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where, 
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is the forecasted annual road traffic fatalities using the developed model.

The results are shown in the last row of Table 1. The lowest RFE (2.79%) is also found in the ARIMA (1,1,1) model suggesting that the best performance model is the ARIMA (1,1,1) model both in terms of the forecasted values associated with the out of sample observations. 
In terms of the significant variables in the models, the two best performance models provide dissimilar results.  Both intervention variables are found to be insignificant in the ARIMA model but found to be significant in the INAR(1) model. Both the seat-belt wearing law in 1983 and the different safety legislations in 1989 have a negative impact on road traffic fatalities in the UK in the INAR(1) model. This finding is consistent with the finding of other studies on seat-belt safety law (e.g., Houston and Richardson, 2002). 
Figure 4 is about here

Figure 4 shows the graph of observed fatalities and predicted fatalities for the ARIMA, NB with a trend, and INAR(1) Poisson models from 1985 to 2005. It can be seen that the predicted fatalities of the ARIMA and INAR(1) Poison models are in-line with the observed fatalities for both within sample and out of sample observations. As expected, NB model with a time trend variable provides the worst fit. 
Monthly Car KSI within the Congestion Charging Zone (Disaggregated Time Series Process)

The training dataset for this time series process contains observations from January 1991 to December 2004 resulting a total of 168 observations over the 14 years. The validation dataset contains observations from January 2005 to October 2005. Similar to the aggregated time series training dataset, the disaggregated time series dataset also exhibits serial correlation (see Figure 5). However, the serial correlation is only observed at a periodic lags suggesting that a seasonal difference may be required to make the series a stationary time series process. After examining both autocorrelation and partial autocorrelation functions, it was found that a non-seasonal difference of order 1 and a seasonal difference of length twelve and order one are necessary to make the series a stationary time series. This stationary time series also has a non-seasonal MA(1) and a seasonal MA(1) components. Therefore, the suitable ARIMA model is denoted as SARIMA(0,1,1)x(0,1,1)12. 

Figure 5 is about here
The results of SARIMA, NB, NB with a time trend, and INAR(1) Poisson models are presented in Table 2. Each of these models has an intervention variable and a control variable. The intervention variable is the introduction of the London congestion charge in February 2003 which is assumed as a step function. The control variable is the total monthly road traffic accidents in greater London which is a direct measure of exposure to risk. It can be seen that the intervention variable, the introduction of the congestion charge, is statistically significant in all models except in the SARIMA model. The coefficient value of this variable is found to be -0.41 in the INAR(1) model suggesting that the introduction of the congestion charging zone within central London reduces car KSI by about 33% if all other factors remain constant. The control variable is statistically significant in the INAR(1) Poisson model only. Based on the various “Measures of Accuracy” and “Relative Forecast Error” of the developed models, it can be said that the best performance model is the INAR(1) Poisson model. The RFE for the INAR(1) Poisson model is only 2.21%. The worst performance model is the SARIMA model for which the RFE is 9.03%. 

Table 2 is about here

In summary, it can be said that for the case of the aggregated time series count data the best accident prediction model is obtained when the real-valued ARIMA model is used and for the case of the disaggregated time series count data the best accident prediction model is achieved when the INAR(1) Poisson model is employed. It should be noted that both time series count datasets used in this study exhibits serial correlation and hence it is not surprising that none of the NB models (with a trend and without a trend) is found to be a suitable model for serially correlated time series count data as these models are unable to take into account the effects of serial correlation. This suggests that the integer-valued discrete property of count data is not so important if the mean of the counts associated with a time series process are high. However, if the counts associated with a time series process exhibit low values, the distribution of count data follows a Poisson distribution and the properties of integer-valued count data becomes important. This is confirmed by the results of the disaggregated time series data while the real-valued time series model provides the worst performance among all models. The INAR(1) Poisson model provides good results for both datasets. 
In terms of identifying the effects of interventions, the ARIMA model provides an unrealistic result for both time series datasets. The exact causes have not been identified. However, one of the reasons may be that the AR and MA components of this model weaken the impact of interventions. 

CONCLUSIONS
Accident prediction models for time series count data were developed employing a range of econometric models such as ARIMA, NB, NB with a time trend, and INAR(1) Poisson models. Two time series accident count datasets were used to develop the accident models in this study. One of the datasets was a highly aggregated time series process of annual road traffic fatalities in GB and the other dataset was a disaggregated time series process of monthly car KSI within the congestion charging zone. Both of the datasets had a problem of serial correlation. Each of these datasets was used to develop four accident prediction models based on the four econometric models while controlling for exposure to risk of accidents. The performance of the fitted models was investigated using various “Measures of Accuracy” for within sample observations and “Relative Forecast Error” for out of sample observations. The results implied that the best accident prediction model for the aggregated time series count data was achieved when the ARIMA model was used. The performance of INAR(1) Poisson model was also found to be good for this dataset. On the other hand, the best accident prediction model for the disaggregated time series count data was achieved when the INAR(1) Poisson model was used. This largely suggests that the controlling of both serial correlation and non-negative discrete property of count data are important when the mean of the counts is relatively high. The preserving of integer structure of the count data is more important than the controlling of serial correlation if the mean of the counts is relatively low. Since INAR(1) Poisson model is capable of controlling both properties of time series count data, one should consider to employ this model when analysing time series accident count data. 
The INAR(1) Poisson process is a stationary time series process that has a limitation to deal with the presence of over-dispersion commonly found in accident data. The extensions of this model are an INAR(1) NB model or anINARMA(1,1) NB model that could potentially control for both non-stationary time series process and over-dispersion. However, the methods of estimating parameters for such models are very complex and are not readily available to the author to investigate in this study. 
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Figure 1: Annual road traffic fatalities and vehicle km travelled in GB
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Figure 2: Monthly car KSI within the congestion charging zone (Jan 1991 to Oct 2005)
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Figure 3: Autocorrelation function of annual road traffic fatalities in GB (1950 -2000)
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Figure 4: Observed vs Predicted values of fatalities
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Figure 5: Autocorrelation function of monthly car KSI within the congestion charging zone (Jan 1991 to Dec 2004)

Table 1: Accident prediction models for annual road traffic fatalities in GB
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Table 2: Accident prediction models for monthly car KSI within the congestion charging zone
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