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Abstract

This paper proposes an easy to apply design load concept that treats capacity and traffic flow as random variables. It will be shown that the traffic flow within a volume class is normally distributed and that its standard deviation changes with the volume to capacity ratio. A new definition of capacity is given and estimated. Given the new capacities reliability is described by the costs of breakdowns which are assessed based on the value of travel time savings. It is shown how the results can be integrated into a cost-benefit analysis.

Motivation

Highway design is often based on the idea that a particular percentile (e. g. 99.7%) of the annual distribution of hourly volumes defines the economically relevant load for which predefined level of service needs to be achieved. The question whether a design providing for a fixed percentile of the hourly volumes of a year is economic or not remains normally unanswered. In a second step the resulting travel times and costs are estimated and evaluated in a cost-benefit process.
This paper sketches a way of how one might be able to address this issue and obtain a new, consistent design concept for road infrastructures including the elements’ reliability, while accounting for the complete annual demand profile. While the paper will focus on motorways, it aims to be general and applicable to any type of road facility and to value reliability and mean travel time changes on the known values of travel time savings. A modern design concept has to be includable into a cost-benefit framework to assess alternative infrastructural improvements. 
In addition to the fundamental choice of the annual demand profile as the basis of the approach, the design concept treats both capacity and volumes as random variables. It is known from analyses of values of travel time savings (e. g. Gaver, 1968, Knight, 1974 and Vickrey, 1969, or more recent in Noland, 1985, Polak, 1996, and Koenig, 2004) that the willingness to pay is different for reductions in mean travel time and for unexpected delays. To include the reliability of an infrastructure element into the assessment of the generalised costs of travel two traffic flow regimes have to be considered: undisturbed flow under normal conditions for a given traffic volume and the congested state. While average travel speed changes are trivial to assess, reliability can only be addressed analogous to structural reliability theory (e. g. Gulvanessian, 2000). Its adaptation to transport requires modelling demand or traffic flow as well as capacity as random variables to estimate breakdown probability. Additionally, the effect of a breakdown must be known to calculate the risk (risk equals probability times effect) of unexpected delays which is described by speed drop or extra travel time and the duration of the breakdown event.
Central to any design concept is the conceptual separation of design load (traffic) and facility capacity. Existing approaches often do not explicitly separate these two. Generally speaking, the capacity has been identified as the maximum expected traffic flow that can be achieved repeatedly (Transportation Research Board, 2000). In this context, this single capacity value includes no information about the frequency or probability that the flow could reach this value given a sufficient demand.

Traditionally, it is assumed that a breakdown occurs when the flow regime changes from the upper branch (undersaturated flow) to the lower one (oversaturated flow) of the fundamental diagram (Transportation Research Board, 2000). Alternatively, one could define a breakdown as an event in which a flow is deteriorating by a defined speed reduction; e. g. 15 km/h after the event or below a threshold of ⅔ of the free flow speed, as used here. The probabilities of such breakdowns grow with traffic flow as demonstrated by van Toorenburg (1986), Minderhoud et al. (1996), Okamura et al. (2000), Matt and Elefteriadou (2001), or Brilon and Zurlinden (2003). Capacity defined by capacity violations and speed reduction is therefore not a single value but is better described as a random variable with a certain set of moments (mean, variance, skew etc.). The probability of the event is associated with the traffic volume before its occurrence.
The chosen time frame for the traffic volume to be evaluated is the hour, as the annual demand profile should be available at this resolution or can be obtained with minor efforts. Higher resolutions (e. g. 15 min, 5 min, or even vehicle by vehicle data) will increase the accuracy of the evaluation but are not discussed here, since no undue data demands should be made for the application of the concept. 
The count data for the following analyses were provided by the Swiss Federal Roads Authority (ASTRA); 13 motorways sites (Autobahn) were chosen. For each site more than 180.000 5-minute intervals or approximately two years of measurements are available, which capture all possible traffic states.
When estimating the probability distribution of breakdowns, it is important that the counting station analysed is located at the bottleneck of an infrastructure element, so avoiding measuring effects due to upstream or downstream congestion. All counting stations are assumed to mark the bottleneck of the road section, but they are not obvious bottlenecks such as lane drops, tunnels, etc. In addition breakdowns due to identifiable road works or road maintenance, especially as low volumes, were excluded from the analyses.
The breakdown probability is calculated by defining capacity as the 60-minute traffic flow (average of the previous twelve 5-minute flows) before a breakdown occurs (i.e. speed drop below ⅔ of maximum allowed speed in the following 5-minute interval) for 11 sites with allowed vmax=120 km/h and 2 sites with vmax=100 km/h. The probability is calculated by dividing the number of intervals marked as “before breakdown” by the total number of intervals in the same volume to capacity class. The 60-minute average before the breakdown was used as reference value to avoid scaling problems, as the input data of the intended application are hourly traffic volumes. That means, the capacity is estimated for a certain scale (here 60-minute intervals). The obvious problem that hourly volumes smooth out peaks is addressed by considering the distribution of the 5-minute intervals belonging to a given hourly volume.
The next sections discuss the derivation of the design concept and its application. First, the traffic flow is treated as a random variable based on the conditional distribution of short duration intervals (5 min) for a given hourly flow. Next, the reserve capacity concept is introduced to estimate the breakdown probabilities, employing the random variables traffic flow and capacity. The effect of a breakdown is assessed in terms of the additional generalised travel costs occurred. Finally, the model is generalised to the annual demand profile to obtain a full account of the generalised costs. 
Traffic Flow as A Random Variable
For practicality the concept is based on hourly volumes. Still, it is desirable to assess the reliability of the system. It is obvious that a single 60-minute average hides the oscillation of traffic flow within this interval, for example of 5-minute intervals. To estimate this variance (standard deviation) the 60-minute average traffic flow q60,A,t was calculated for counting site A at time t as follows:


[image: image37.emf]0

10

20

30

40

50

60

70

80

90

100

110

120

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

r

60

=Q

60

/C

VSS

E(v) in km/h

120 km/h:   0 -   5%

120 km/h:   5 -  15%

120 km/h: 15 -  25%

100 km/h:   0 -   5%

100 km/h:   5 -  15%

100 km/h: 15 -  25%

  , if all twelve 5-min intervals q5,A,t+i∙5min are defined and contain valid data.

For comparability the flows are standardised by the site’s capacity CA (based on the official Swiss guideline SN 640 018a using percentage of heavy vehicles < 5 %). The saturation rates r for hourly volumes and 5-minute traffic intervals, are respectively:
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The hourly volume to capacity ratios r60 are assigned to n groups G defined by ratio intervals:
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  for i=[1, 2, …, n].
As volume to capacity ratios higher than 1.0 can be observed due to traffic volumes higher than norm capacities, it is likely that more than ten groups will be built. In addition, a few groups might be empty, as a result of a lack of observations. Within a group Gi of Ji elements the mean of the ratios r60,Gi is calculated as:
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The standard deviation for each group can then be estimated as follows:
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where 
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 is a good approximation, as for large Ji
r5,Gi = r60,Gi (
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In Bernard and Axhausen (2005) it was demonstrated that the distribution of the 5-minute volume to capacity ratios follows a normal distribution within their corresponding 60-minute ratios. The standard deviation of this distribution varies predictably with the hourly volume to capacity ratio r60. Figure 1 shows a graph of this relationship. It can be seen that the standard deviation of the 5-minute volume to capacity ratios increases for higher hourly volume to capacity ratios up to ca. 40% (level of service A, LOS A, based on VSS, 2006).The LOS B with hourly ratios of 40 to 60% is characterised by a little volatility. In the following LOS C (60 to 80%) the standard deviation of the 5-minute ratios is slightly increasing, reaching a peak of 85‰ within LOS D. Higher hourly volume to capacity ratios (LOS E, 90 to 100%) lead to a steep decline of the standard deviation of the 5-minute ratios. This effect is due to increasing congestions and less freedom of the drivers to travel at their desired speed. The graph suggests a more systematic alternative for the LOS boundaries. The fundamental coherence of hourly volumes and standard deviation of their 5-minute traffic volumes is visible in the small 95%-confidence intervals estimated using all measurement sites. (see Figure 1).

Figure 1 here 
Capacity and ReseRve Capacity as Random VariableS
In the following, the capacity of an infrastructure element C will be treated as a random variable with the probability density function fC(x). Traffic flow Q is a random variable with probability density function fQ(x) (see above). An infrastructure element fails to work properly (i.e. a breakdown occurs) when traffic flow exceeds capacity. With the probability density functions of capacity and traffic flow the breakdown probability Pb can be written as:
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Capacity C and traffic flow Q are defined to be statistically independent. In structural reliability theory this case is called the fundamental case (Gulvanessian et al., 2002). The integral for two probability density functions fC and fQ of any shape cannot be solved in general but, assuming that C and Q are normally distributed, an analytical solution can be found.

If the reserve capacity or safety margin is defined as:

R = C – Q
the breakdown probability Pf becomes:

Pb = P(C – Q ≤ 0) = P(R ≤ 0) .

If C and Q are normally distributed then R is also normally distributed with the mean μR and standard deviation σR as follows:

μR = μC – μQ   and   
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With the cumulative probability density function of the normal distribution Φ=N(0, 1):


[image: image15.wmf](

)

ò

¥

-

-

=

F

x

X

dx

x

x

2

2

1

2

1

exp

)

(

p

s


Pb can be written as:
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with the reliability index (coefficient of variation) β = μR / σR.
The breakdown probability is the product of the distribution of the prevailing traffic flow together with the distribution of the capacity. One can  estimate the parameters of the capacity distribution using the observed flows and breakdowns. 
The measured breakdown probabilities Pb,m for a given mean traffic flow µQ on a given road using the 60-minute traffic volume before a breakdown of at least 5 minutes are denoted as Pb,m(μQ). The standard deviation of the mean hourly traffic volume σQ(µQ) is given by the graph shown in Figure 1 and the analytical breakdown probability Pb=Φ(-β), which is dependent on µR and σR, where the two parameters are dependent on µQ, σQ, µC and σC. Since the traffic flow parameters (µQ, σQ) are given only µC and σC remain as unknown values. The analytical breakdown probability Pb for the traffic volume µQ can be written as (see above):

Pb,m(µQ) ≈  Pb(μQ) = 
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The index Q indicates a volume to capacity class of the size of one tenth of the official deterministic capacity, i.e. the traffic volumes are rounded to match the classes with a mean of r60 = 1/10, 2/10, et cetera. The parameters µC and σC are estimated by minimising the sum of squares of the residuals rQ’=Pb,m(μQ) – Pb(μQ) using a nonlinear least squares method. As the frequency of high hourly volumes is relatively low in comparison to lower traffic volumes the precision of the measured breakdown probabilities is lower for traffic volumes that are infrequent. This effect is compensated by weighting the residuals by the square root of the number of observations (NQ) in the class Q, considered:
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It is important to note that the so estimated capacity cannot be compared with the known deterministic values of e.g. TRB, 2000 (HCM), FGSV, 2001 (HBS) or VSS, 2006 (SN 640 018a), as these values are based on a different concept and therefore have a different meaning: the deterministic capacity is defined as the maximum traffic volume that can be reached repeatedly, whereas a traffic volume equal to the mean of the capacity distribution will result in a breakdown probability of 50%. Given that Bovy (2001) suggests a probability of congestion from 2 to 5 % as an economic optimum, it is clear that in the design process the mean value of the capacity distribution should not be compared to demand directly.

With the method described above the mean random capacity CA and its standard deviation of sd(CA) was estimated for each site A. To compare the sites with different numbers of lanes and various grades the values of the estimated capacities seen as random variable are divided by the deterministic capacity CA,VSS from SN 640 018a (VSS, 2006):
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The capacities of VSS (2006) are calculated using the same methods as in TRB (2000) and FGSV, 2001 and can therefore be directly compared among each other. The basic values of SN 640 018a for grades smaller than 2 % on motorways with two lanes per direction and free flow speeds of 120 or 100 km/h are CVSS = 4000 veh/h for a share of heavy vehicles of less than 5 %, the capacity of motorways with three lanes per direction (120 km/h free flow speed) are CVSS = 5800 veh/h (≤ 5 % heavy vehicles) with grades smaller than 2 %. These values have to be considered typical CVSS and can be used if no other measurements or estimates are available. For this paper individual deterministic capacities were determined for each site and used in the following as basis for comparison. Computing the relative values for all sites and each class of heavy vehicle percentage one obtains the values shown in Table 1. Knowing the relationship between capacity as a random variable and deterministic capacity, the expected breakdown probability Pb can be expressed by the volume to capacity ratio with hourly estimates of the traffic volume Q60 and the deterministic capacity CVSS as shown in Figure 2.

Table 1 here.

Figure 2 here.
Effect of A Breadown Event
The effect of a breakdown event is the product of its probability and the associated additional generalised travel costs. The speed vm is the expected speed of a vehicle during undisturbed flow for a given volume to capacity ratio. This free speed vm must be distinguished from the free speed v0 which describes the maximum (allowed) speed of a road. To estimate the speed vm the intervals were selected which were not affected by a breakdown. These intervals include all weather and traffic conditions (except breakdowns) to obtain the mean for the average day of the year. As the data contains counting stations on roads with speed limits of 120 km/h and of 100 km/h these sites are evaluated separately. The speed vm can be computed with the BPR-function of Transportation Research Board (2000) in the form:
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where vm denotes the free speed for the given hourly volume to capacity ratio (r60=Q60/CVSS). The parameters v0, α, and β are estimated by a nonlinear least squares method based on the observed vm. Figure 3 plots the estimated BPR-functions. In these graphs the squares indicate the measured mean free speed of the given volume to capacity ratio of all sites of the same speed limit, the solid lines follow the BPR-function of the estimated parameters, the dotted lines mark the 95 %-confidence interval of the estimate, and the dashed lines show 95 % interval of the measured speeds of all sites.

Figure 3 here
Let us assume that the speed vm is the drivers’ expected speed, as they consider traffic volume, weather and light conditions when planning a trip. However, random breakdowns that are not due to tailbacks of bottlenecks are assumed not to be scheduled, i.e. in the case of a breakdown the travel time will increase as travel speed will drop for the duration of the breakdown. Instead of assessing the reduced speed during a breakdown (denoted as vb) directly the factor fmb (vb=fmb • vm), the quotient of the breakdown speed and the undisturbed speed, is used. Figure 4 was created using the measured speeds during breakdowns divided by the measured undisturbed speeds (vm) for the three heavy vehicle shares (0 - 5 %, 5 - 15 %, 15 - 25 %). The 95 %-confidence intervals are 0.13, 0.19 and 0.32 for heavy vehicle shares between 0 and 5 %, 5 - 15 % heavy vehicles, and 15 - 25 % respectively. As very few observations for volume to capacity ratios higher than 0.8 were available in combinations with high percentages of heavy vehicles (class: 15 - 25 %) the values for ratios higher than 0.8 were extrapolated (marked as dashed line in graph).

Figure 4 here
When a breakdown occurs the actual travel speed vm, drops to the lower breakdown speed, given by the factor fmb. As breakdowns are no instantaneous events but have a temporal extent the duration of a breakdown is measured from the time when the speed drop is detected until the point when two consecutive 5-minute intervals with average speeds higher than the critical speed are observed. Figure 5 shows average durations of a breakdown tb for a given volume to capacity ratio.

Figure 5 here.

The total travel time resulting from both free flow time and congested times is obviously dependent on the distance travelled. For that reason the expected travel speed will be calculated including the free travel speed and the expected proportion of congestion. With Tm being the total time (over a year) during which flows of a given volume to capacity ratio are not affected by breakdowns and Tb the sum of all durations of breakdowns for the same traffic volume the expected value of travel time can be written as:


[image: image23.wmf]b

b

m

b

m

b

m

m

v

T

T

T

v

T

T

T

v

E

+

+

+

=

)

(

 ,

where vm denotes the free speed which is not affected by breakdowns and vb the reduced average speed during a breakdown. If the times Tm and Tb are rewritten as Tm=nm • Δt and Tb=nb’ • tb and if nm is the number of the observed 5-minute intervals (Δt=5 min) with a free traffic flow and nb’ the number of observed breakdowns with the duration tb, then the breakdown probability Pb can be written as Pb=nb’ / nm which results in the expression for the expected travel speed E(v):
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or with fmb=vb/vm:
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Δt is fixed as 5 minutes. Other interval lengths will lead to different breakdown probabilities as shown in Matt and Elefteriadou (2001). The expected travel speed E(v) including speed reductions due to breakdowns is plotted in Figure 6.

Figure 6 here.

Setting the travelled distance to s and assuming the expected travel time to be E(t) then s can be written as s = E(v) • E(t), which for undisturbed flow is equal to the expression s = vm • tm, where tm is the theoretical travel time at free speed (see Figure 3). If Δtb is defined as the additional travel time caused by breakdowns with Δtb = E(t) – tm the expression Δtb / s can be written as follows:
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A straightforward concept for the benefit of a measure uses the willingness to pay for a reduction in travel time. This reduction in travel time is multiplied with the value of travel time savings (VTTS or willingness to pay in monetary units per time unit, e. g. €/h) for each user of the infrastructure element to compute the total benefit. Extending this simple approach leads to the calculation of users’ costs by taking into account that a higher willingness to pay exists to reduce late arrivals (e. g. due to congestions) than to reduce travel time as shown in Vickrey (1969) and Small (1982) or more recent Polak (1996) and König (2004). Adapting this concept to the travel time estimations leads to the formulation of the generalised costs of travel time (COSTt):

COSTt = VTTSm • tm + (VTTSm+VTTSb) • Δtb ,

where VTTSm denotes the value of travel time, tm (=s / vm) the free flow time, VTTSb the willingness to pay for the reduction of late arrivals and Δtb the expected additional travel time due to random breakdowns.

Generalised costs of load configurations
It is known that the hours with the highest traffic volumes produce a large contribution to the total generalised costs of a facility (Brilon and Zurlinden, 2003). This result suggest a simple method to take all load configurations into account analogous to concepts used e.g. in hydraulic engineering where the costs of a certain breakdown event (e. g. flooding due to high volumes) are estimated and valued (DVWK, 1989). By combining the flow’s period of repetition with the expected breakdown costs, one can define a marginal cost function which is needed for to estimate the yearly generalised travel time costs as inputs to a cost-benefit analysis (see Figure 7). The assembly of the breakdown cost function shown in Figure 7 represents just the additional generalised costs, whereas the total generalised travel costs also incorporate the mean travel time.

An example for a load configuration would be a certain hourly traffic volume during the peak hours of a common weekday that is expected to occur 200 times a year. It is assumed that these traffic volumes have a considerable share in the total generalised costs. Another scenario could be a lower traffic volume that prevails 500 times a year for one hour, resulting in lower generalised costs for the single event but having a higher frequency. A benefit of the load configurations (scenario concept) emerges from the increasing accuracy with the precision and level of disaggregation of the defined scenarios, i. e. the preciseness of the measured and/or predicted traffic volumes straining the alternative road infrastructures.
When looking at the extra costs due to breakdowns, for application purposes not all possible scenarios have to be considered. It is possible to focus on hours with high frequencies and high traffic volumes, for which the costs start growing non-linearly and have substantial spatial spill-over effects. Externalities and safety costs are primarily assumed to vary directly with the volume; however, defined scenarios can also cover these effects, but are not addressed in this work.
Figure 7 here.

Since the hourly volume distribution is known, the frequency of each demand is known as well and can be described by an occurrence function that maps the number of occurrences per year to traffic flows. In Figure 7 the occurrence function (1st quadrant) is embedded into a nomogram of the cost function of an infrastructure element. In this graph a breakdown describes a major increase in travel time, so the function of the breakdown costs (2nd quadrant) returns the expected generalised marginal costs for a given flow. These costs are estimated with the willingness to pay for a reduction in travel time (see e. g. Axhausen et al., 2004) and for a reduction in the variation of travel time, having a share in the total generalised costs (Chen et al., 2003). Combining the occurrence function and the function of breakdown costs leads to the marginal cost function (4th quadrant). It serves as the basis for a cost-benefit analysis since it maps the probability of occurrence to the resulting costs of the scenarios considered. With the risk of a scenario being the product of the occurrence probability and the generalised costs of the event, the expected annual marginal costs are computed by integrating (or summing up in the discrete case) over risk of all scenarios considered.

Structure of new design concept

Comparing the expected travel speeds of Figure 6 to the average free speeds in Figure 3 reveals a substantial reduction in travel speed and should therefore be of interest when a new policy is introduced or an infrastructure element is build or modified. With this approach the tools are given to integrate travel speed and random delays into a cost-benefit-analysis.

Another advantage of this concept, in contrast to existing design concepts for motorways, is the detailed description of effects that influence travel speed. Classical design concepts focus on modifications of road capacity or the influence of different traffic demands. The present methodology offers variables to cover for example the effect of a reduction in the capacity’s or demand’s variation to reduce the breakdown probability for the same mean capacity and demand. Furthermore, an increase of average free speed, a reduction of the speed drop on breakdowns, or a reduction of the durations of breakdowns can be assessed and the benefit in expected travel speed can directly be calculated.
When looking for a uniform design process across the different infrastructure elements the present method is an important contribution, as the current design concepts for signalised and unsignalised intersections or roundabouts now overlap in their approach. The concepts described in the HCM (2000), the German HBS (2001), and the Swiss Norm (VSS, 2006) require generally speaking demand and capacity as input variables and show formulations of the resulting waiting/queuing times of a facility, i.e. the same input variables (flow and capacity) can be used for highways and intersections/roundabouts while comparable output is generated, as travel times and additional travel times due to queuing are available. Introducing distributions of traffic flow and capacity would increase the accuracy of the models without changing the general concepts.
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Tables
	

	

	

Percentage of heavy vehicles
	median E(C)/CVSS

Median expected value of capacity
	median sd(C)/CVSS

Median standard deviation of capacity
	mean E(C)/CVSS

Mean expected value of capacity
	mean sd(C)/CVSS

Mean standard deviation of capacity

	0-5%
	1.327
	0.197
	1.361
	0.197

	5-15%
	1.294
	0.180
	1.329
	0.171

	15-25%
	1.206
	0.164
	1.227
	0.149

	


Table 1 Estimated relative capacity: mean and median of expected value and standard deviation of all sites. CVSS denotes the deterministic capacity based on methods of VSS (2006) for low shares of heavy vehicles (< 5%).

Figure Captions

Figure 1 Standard deviation of 5-minute volume to capacity ratios (sd(r5)=sd(q5)/CVSS) vs. hourly flow to capacity ratio (r60=q60/CVSS) with 95%-interval (grey) covering 95% of the mean values of all sites.
sd(r5)=sd(q5/CVSS)
standard deviation of 5-minute volume to capacity ratio
r60=Q60/CVSS

normalised by capacity given by (VSS, 2006: SN 640 018a)
A to F


quality of service by (VSS, 2006: SN 640 018a)
Figure 2 Breakdown probability Pb vs. given hourly volume to deterministic capacity ratio (Q60/CVSS) for three classes of heavy vehicle shares (0-5%, 5-15%, 15-25%).
Figure 3 Undisturbed flow speed vm on Swiss motorways with speed limits of 120 km/h (black) and 100 km/h (grey) for heavy vehicle shares of 0-5% (a), 5-15% (b), and 15-25% (c).
Figure 4 Factor fmb = vb/vm, ratio of speed during breakdowns vb and speed vm vs. hourly volume to capacity ratio r60 for three classes of heavy vehicle shares (0-5%, 5-15%, 15-25%).
Figure 5 Mean duration of breakdowns tb for a given hourly volume to capacity ratio r60 with 95%-confidence interval (dotted line) and 95%-interval of measured durations across all sites (dashed line).
Figure 6 Expected travel speed vs. hourly volume to capacity ratio (r60=Q60/CVSS) for given heavy vehicle shares (0-5%, 5-15%, 15-25%) and speed limits of 120 and 100 km/h on Swiss motorways.
Figure 7 General design of breakdown cost function based on the occurrence function and the breakdown function (numbers are illustrations), Source: adapted from (DVWK, 1989).
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a) 0-5% heavy vehicles
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b) 5-15% heavy vehicles


c) 15-25% heavy vehicles
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