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Abstract

The present paper extends past research in the field of identifying transitions in short-term urban traffic flow by studying the temporal evolution of coupled information of volume and occupancy. The coupled information is defined by the cross-recurrent behavior met in the temporal patterns of urban traffic flow. Transitions are detected at singularity points of the temporal evolution of cross-recurrent patterns. The proposed approach is compared with previous efforts on the basis of the compactness and separation of the revealed traffic flow conditions after clustering the singularities using a two-stage self-organizing neural network approach. Results indicate that analyzing the singularities of the cross-recurrent behavior of volume and occupancy results in better accuracy in identifying traffic flow areas than in the case of analyzing separately the transitional behavior of the two variables. 
1 Introduction
Literature has for long supported the complex and irregular manner of traffic flow evolution (Kerner 2004). The criticality of such behavior is related to the ability to predict future states of traffic flow evolution; irregularities and transitional behavior imply a possible instability in the statistical structure of the data that, most likely, a single model cannot successfully describe (Kantz and Schreiber 1997). Signs of irregularity and complexity are usually reflected in traffic time-series as shifts to extreme (congested) conditions (Stathopoulos and Karlaftis 2003b), a general propensity to oscillate, as well as a transitional movement between different traffic flow phases (Kerner 2004).
Regarding the predictability of traffic flow, empirical evidence shows that transitions to boundary conditions, as well as the oscillating behavior, usually encountered in time series of traffic variables collected in urban signalized arterials, are difficult to be accommodated by a single model either being a statistical time series model, such as the ARIMA, or an advanced structure of neural network (Head, 1995; Smith and Demetsky 1997; Ishak and Alecsandru, 2003, Vlahogianni et al. 2005). The literature indicates several means of bypassing irregularity in time series, such as smoothing (Williams et al. 1998) or working with aggregated data (Smith et al. 2002, Bassan and Faghri 2005). The effect of such approaches is to provide traffic prediction models that have an overall good prediction capability (reduced relative percent error), but do not succeed in predicting “extreme” conditions (congestion), as well as during transitions between different traffic conditions.
Current short-term traffic forecasting research indicates that there is a need for adopting techniques that do not engage the simplifying assumption of traffic flow being a continuous process (for example a classical time series approach to prediction). This assumption blurs the real image of traffic flow evolution as it contradicts empirical evidence on the existence of phenomena such as shifts to extremes and oscillations. The last are indications of traffic flow containing disruptions known as singularities in its dynamics (Jang and Adeli 2004, Vlahogianni et al. 2007). In light of the above, the role of discontinuities seems to be important in the predictability of traffic: a singularity (e.g. random or stochastic event) disrupts the determinism in that the past is forgotten and the future cannot be predicted (Zbilut 2004). This could imply that most times short-term traffic predictions fail not because traffic is nonlinear or time irreversible, but because a statistical prediction model cannot move backward in time through a singularity. Singularities could probably indicate the occurrence of critical events that force traffic flow shifts between different areas of traffic characteristic behavior. 

The conceptual issue of singularity detection in traffic flow encompasses a multivariate consideration. Previous researches have indicated that singularities detected in the series of both volume and occupancy are critical in acquiring information about the transitional nature of traffic flow (Vlahogianni et al. 2005, Vlahogianni et al. 2007). This is due to the fact that volume and occupancy have different behavior regarding the way they evolve over time, particularly in the case of the onset of congestion. However, in the above analyses traffic flow is studied using a bivariate consideration in terms of identifying the prevailing areas of traffic flow and not in terms of singularity detection; singularities were detected separately in each variable. In this way the synchronized behavior of volume and occupancy is overlooked.
The present paper extends past research on the field of identifying transitions in urban arterials by studying the transitional behavior of coupled information of volume and occupancy series in signalized arterials. Coupled information is defined on the basis of the cross-recurrent behavior of volume and occupancy temporal patterns. Using a self-organizing neural network framework, the approach to detecting transitions using coupled information of traffic flow will be evaluated in terms of the ability to best distinguish the boundaries of traffic flow conditions in the occupancy-volume relationship.
2 Recurrent patterns of Nonlinearly coupled traffic variables
The analysis of recurrent patterns of traffic flow is based on the coupled evolution of the reconstructed vectors of volume and occupancy in the State-Space: 
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. The parameters τ and m are the time delay and dimension respectively; these parameters define the depth of information a traffic pattern carries (Kantz and Schreiber 1997). There are many methodologies that are used to estimate time delay and dimension. Typically, they are calculated by the mutual information that measures the information flow between sequential time delays (Fraser and Swinney 1986), and the false nearest neighbors that examines the behavior of near neighbors under changes in the dimension from m to m+1 (Kennel et al. 1992).

Let Wi be a window N measurements of volume and occupancy that slides though time and is updated every T: 
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And, let the series of volume and occupancy be reconstructed in the Phase-Space. In this time window Wi a pattern defined by the evolution of volume and occupancy can be recurrent or isolated in the State-space. Recurrent behavior is quantified based on the closeness of volume and occupancy trajectories in the m-dimensional State-Space (Zbilut et al. 1998):
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where Ν is the number of states of volume V and occupancy O in Wt and ε is the threshold of distances 
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. Equation 2 provides a nonlinear measure of cross-correlation of volume and occupancy over time. In this framework, the interdependency of volume and occupancy in the evolution of traffic flow is taken into account. Moreover, the divergence between volume and occupancy is incorporated in the analysis of transitions. The main advantage of this technique with respect to other nonlinear data analysis methods is that it can be applied to non-stationary and rather short time series (Zbilut et al. 1998, Webber and Zbilut 2005). Moreover, traffic flow is considered as the outcome of the synchronization of two coupled systems (volume and occupancy.)
3 Transitions Detection Using Wavelets

The wavelet transform (W) provides a consistent and mathematically solid framework for the methodological aspect of detecting singularities (Mallat 1989). A basic property of a singularity is that it manifests itself distinctly by displaying a specific type of scaling behavior throughout a wide scale range (Mallat and Hwang 1992). The wavelet transform is capable of performing the above type of analysis because it decomposes a signal into its multi-scale constituents (Addison 2002). In mathematical terms, a singularity is the point at which the derivative of a given function of a complex variable does not exist but where the neighborhood of which contains points for which the derivative exists. Singularities are related to the Lipschitz exponents: a function 
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 has Lipschitz exponent equal to 1. Lipschitz exponent is a precise measure of regularity in a function indicating its differentiability.
According to the definitions given by Mallat and Hwang (1992), for a given function 
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 when t belongs to either a right or a left neighborhood of t0 and 
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 when t belongs to the opposite side of the neighborhood of t0. In order to detect singularities as points where wavelet transform modulus maxima exist, the wavelet transform is written as a multi-scale differential operator; if ψ has exactly n vanishing moments and there exists a θ of compact support such that 
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The above equation illustrates that if the wavelet has only one vanishing moment, the modulus maxima are the maxima of the first derivative of f smoothed by 
[image: image24.wmf]s

q

, where 
[image: image25.wmf]s

q

 is the dilation of 
[image: image26.wmf]q

: 
[image: image27.wmf]1

s

t

ss

qq

æöæö

=

ç÷ç÷

èøèø

. Moreover, wavelet modulus maxima transform not only detects singular behavior but can lead to its characterization by following the modulus maxima lines (the connected curve in the scale space along which all points are modulus maxima) across scales. The described technique for singularity detection is applied in a dyadic sequence of scales 
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, the position of the local maxima of the wavelet transform at the corresponding location is recorded. A dyadic wavelet transformation is given by: 
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. It can be proven that the relation between modulus maxima and Lipschitz conditions remain valid if the scale is restricted to a dyadic sequence 
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4 Evaluating transitions of Cross-Recurrent Traffic Behavior
Clustering Singular Behavior of Traffic Flow

As already discussed, traffic’s singular behavior is modeled via the recurrent behavior of the coupled volume and occupancy series. In order to model the complex and variable bivariate singular behavior of traffic and produce a valid and, as much as possible, unaffected from noise clustering of traffic a hybrid approach to clustering that involves two distinct stages. The first stage is a data compression process in which a transition form N samples (data) to M Prototypes in 2-Dimensional space. The final stage provides a refinement of the clustering by moving from the produced M Prototypes into C clusters. More specifically, the first level involves a process of representing jointly considered series of volume and occupancy measurements into a 2-dimensional map of M Prototypes where each prototype is described by a vector of the following form: 
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. The reconstruction is based on a Self-organizing Kohonen Map (SOM). After training, the process results in mapping similar patterns of volume and occupancy into contiguous locations in the output space marked by the location of the M prototypes. The second level is the final stage of clustering where a simple k-means algorithm is applied to the M prototypes and refines the clustering. Details about the methodology and its implementation can be found at Vlahogianni et al. (2007).
Evaluation metrics
The resulted clustering should be evaluated both in terms of the optimum number of clusters and their degree of separation, as well as regarding the clustering provided by studying separately the transitional behavior of volume and occupancy. In order to find the optimum number of clusters in data the Davies-Bouldin validity index is adopted. Let clustering Q defines the partitioning of the data in a set of clusters Qi, i=1,2,…,C, then, the optimum clustering is the one that minimizes the following quantity (Davies and Bouldin 1979):
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where C is the number of clusters, 
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 is the mean within-cluster centroid distance, 
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, Nk is the number of samples in cluster Qk and 
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The two different partitions that result from clustering the singular behavior of 
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 and the singular behavior of volume and occupancy separately are compared using the Corrected or Adjusted Rand Index. Let 
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 be the partition given by the clustering solution, and let 
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 be the partition defined by the a priori classification (partition based on clustering the singularities detected in series of volume and occupancy), then the Corrected Rand index (CR) is defined by (Milligan and Cooper 1986):
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CR can take values in [-1,1], where the value 1 indicates absolute agreement between the partitions, whereas values near 0 (or negatives) correspond to cluster agreement found by chance (Milligan and Cooper 1986).
5 Implementation And Empirical Findings
Real-time collected volume and occupancy every 90 seconds (average cycle length) from a highly congested three-lane signalized arterial in the core of Athens (Greece) (www.transport.ntua.gr/map/) will be used to study the singular behavior of traffic flow. Figure 1 shows the time series of volume and occupancy for a typical day. The first step is to generate the pattern of traffic flow. For this, the mutual information and false nearest neighbors algorithms are applied to the series of volume and occupancy. These algorithms are sensitive to the length of the data used especially in non-stationary time series. For this reason, algorithms are primarily tested using one day time series data of volume and occupancy. Following, the length of the series is gradually reduced to two hours in different time periods (for example periods with increased observed demand, off-peak periods and so on). Results indicate that traffic flow is dependent on traffic flow information 7.5 minutes in the past (τ=1 and m=5). Moreover, we compute the 
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 (Equation 2) for sliding time windows of 1-hour updated every 90 seconds. Figure 1 shows the evolution of cross-recurrent behavior of traffic flow over time. As can be observed recurrent behavior of temporal patterns of traffic flow fluctuate significantly.
Next the transitional points reflected in singularities in the series of 
[image: image43.wmf]t

ij

R

 are detected using wavelet analysis. The singularity detection is based on the observation and detection of modulus maxima of the wavelet transform of the 
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 In order to avoid the effect of noise in the detection of transitions, the modulus maxima of the wavelet transform are detected at scale 24 (Mallat and Huang 1992). Figure 2 shows the wavelet transform modulus maxima for volume and occupancy series, as well as for the series of recurrent behavior of coupled information of volume and occupancy (
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). As can be observed, at fine scales, there is an abundance of singularities that may be the reflection of noise in the series of traffic flow variables. Figure 3 shows the number of transitions observed (maxima in the wavelet transform) in the series of volume, occupancy and 
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. A glance at the time series shows that volume and occupancy have different transitional behavior. Moreover, recurrence seems to exhibit more frequent transitional behavior than the two traffic variables do.
Two Stage Clustering of Singularities

An effort to evaluate the differences between the observed transitions in coupled information of volume and occupancy and in separately studied series of volume and occupancy is conducted through clustering. The scope is to assess the manner the boundary traffic flow conditions are formed using singularity information 
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 as detected by the wavelet transform modulus maxima of 
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. For this purpose, the two-stage approach for clustering applied to Vlahogianni et al. (2007) is adopted with the main goal to compare the partition produced from clustering the singularities 
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 detected from the series of 
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 with the one that resulted from clustering singularities detected in volume and occupancy series. The SOM developed is a 4×60 grid, meaning 240 prototype neurons of the form: 
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. After training, the average quantization error of the SOM is 0.04. In the second stage, a k-means algorithm is used to cluster the ordered map that resulted from the SOM training. The calculation of the Davies-Bouldin validity index for a range of values of clusters C (
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) (Equation 4) has minimum in C=4. This means that the recurrent behaviour of coupled information of volume and occupancy defines the boundaries of four distinct areas in the occupancy-volume relationship.
The specifications of the resulted areas are seen in Table 1. Figure 4 shows a graphical representation of clustering the 
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 detected (a) separately at series of volume and occupancy and (b) at the cross-recurrent behaviour of traffic flow. Interestingly, as in the case of clustering information of separately detected singularities in volume and occupancy, the wavelet-based traffic singularity detection and clustering approach seems to have defined the boundaries of the different traffic states; the congested conditions are clearly separated by free-flow conditions. Moreover, the onset and the offset of congestion are distinguished in two distinct areas.

Furthermore, the calculated value of the Corrected Rand Index (CR=0.62) shows that the two approaches result in identifying traffic flow areas that are not in absolute agreement regarding their boundary conditions. Regarding the difference of two approaches, Figure 5 shows the values if D-B index for different number of clusters (C). As can be observed, for the same value of optimal clustering (C=4) the proposed approach that is based on clustering singularity information detected in the 
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 series seems to provide a better partitioning with regards to how compact and well-separated are the resulted areas of traffic flow.
It should be noted that the proposed approach has several conceptual benefits over the univariate thinking. First, it encompasses a multivariate pattern-based consideration to traffic flow evolution and relates the prevailing conditions with past information on the temporal evolution of volume and occupancy. Moreover, the interdependencies of traffic variables are taken into account. The cross-recurrence analysis can also reveal the similarities or divergence in the states of the volume and occupancy and lead to the further quantification of the statistical evolution of temporal traffic flow patterns in time.

6 Conclusion

Traffic flow studied in short time intervals exhibits an irregular behavior. This behavior is usually considered to be the main reason for reduced accuracy of short-term predictions of series of traffic variables such as volume, speed and occupancy. The present paper extends past research on the identification of transitional behavior of short-term urban traffic flow and concentrates on detecting the singular behavior of the coupled information of volume and occupancy patterns. The coupled information is provided by the cross-recurrent behavior of jointly considered series of volume and occupancy. The detection of singularities is based on the wavelet transform modulus maxima algorithm.

Results indicate that the observed singularities in the cross-recurrent behavior of traffic flow reflect a more frequent transitional behavior of traffic flow than the one observed from separately considered volume and occupancy series. Moreover, using a two stage self-organizing neural network clustering framework, the clustering of singularity information that lie in the series of cross-recurrence result in a more accurate (in terms of compactness and separation) set of areas in volume-occupancy relationship than the one provided by clustering singularities detected in separately considered volume and occupancy series. The proposed approach to detecting singularities encompasses a pattern-based consideration of traffic flow evolution and can account for the short-term interdependence of volume and occupancy.
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APPENDIX
Self-Organizing Maps
The Self-organizing Kohonen Map (SOM) neural network is a special case of k-means algorithms with the basic difference that the training algorithm imposes a certain structure to the representative centers of the clusters 
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. A SOM usually consists of a 2-dimensional grid of neurons. Each neuron represents a vector of the form 
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 where n is the number of input data. Neurons known as the prototypes are related with the ones that are near a certain neighboring relationship. During training, SOM places an ‘elastic’ net of neurons to the input data space. The spatial relationship on the map reflects the characteristics of the input space (Kohonen 1995).

In every training step, an input vector x is randomly chosen by the input space. The distance of x from all prototypes is then calculated. The winning neuron b is the one that is closer to x:
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The prototype vectors are then updated by the rule:
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Where for the training cycle t, α(t) is the learning rate and hbi(t) the neighbor of the winning neuron. The literature suggests using a Gaussian form of neighbor: 
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, with ri and rb are the position of i και b to the map grid (Kohonen 1995). The parameter σ(t) defines the width of the neighbor. The α(t) and σ(t) decrease monotonically with time (Kohonen 1995). The “goodness of fit” of the SOM algorithm is based on the average quantization error which is the mean distance of each input from the winning neuron. The lower the error the better the representation of the input space gets. By increasing the number of neurons/ prototypes the average quantization error decreases. However, the clustering is not affected after a certain number of neurons. As such, the proper grid dimensions should be selected in order to avoid producing a network that has a computationally extensive training procedure (Principe et al. 1999).

Table 1: The clustering results for the two approaches to study transitions.
	AREA
	Volume (vh/90sec)
	Occupancy (%)

	Singularities in V and O

	1(()
	18±11
	5.62±3.95

	2(()
	45±7
	17.04±7.77

	3(()
	70±5
	36.75±11.57

	4 (()
	59±9
	69.21±11.23

	Singularities in R

	1(()
	28±7 
	6.23±2.19

	2(()
	51±7
	13.89±3.74

	3(()
	68±7
	27.97±10.48

	4 (()
	64±8
	56.52±7.19


[image: image60.png]" Fotume (v 90:8c)

100 y <= Occupancy ()





(a)

[image: image61.png]s

evs

=3

(28]





(b)

Figure 1:Time series (a) of volume and occupancy collected from loop detector in a signalized arterial and (b) of cross-recurrent behavior of traffic flow during a typical day.
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Cross-recurrent behavior

Figure 2: wavelet transform modulus maxima lines across scales for volume, occupancy and cross-recurrent behavior of traffic flow.
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Figure 3: Number of transitions observed in the series of volume, occupancy and R for a typical day.
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Figure 4: Graphical Representation of the clustering of singularity information detected in (a) series of volume and occupancy studied separately and (b) in the cross-recurrent behavior of traffic flow.
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Figure 5: D-B index with respect to number of clusters for clustering of transitions of both cross-recurrent behavior of traffic patterns and separately considered volume and occupancy series.
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