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Abstract
We present an estimation-optimization framework to obtain maintenance and repair policies for infrastructure facilities under performance model uncertainty. The objective is to minimize the total expected social cost of managing facilities over a finite planning horizon. Performance model uncertainty is accounted for by representing facility deterioration as an unknown mixture of deterioration models taken from a finite set. The mixture proportions are assumed to be continuous random variables, and thus, the estimation problem consists of updating the corresponding probability density in response to condition data gathered during the management process. In the proposed framework, maximum likelihood estimates of the mixture proportions are obtained using the Quasi-Bayes approach of Smith and Makov (1980). To illustrate the methodology, we present a numerical example where we analyze the effect of initial performance model uncertainty and bias on the expected total cost of managing a facility. The main observation is that reducing the initial variance in model uncertainty may be more important than reducing the initial bias.  
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1. Introduction
Infrastructure management is the process through which agencies collect and analyze data about infrastructure systems and make decisions concerning M&R of facilities over a planning horizon. In developed countries, where much of the transportation infrastructure is mature and portions are nearing the end of their service lives and need to be replaced, M&R decisions are increasingly important. This is due to both the negative social and economic impact of deficient infrastructure, as well as the scale of management expenditures, which in the United States, for example, are on the order of tens of billions of dollars per year. In turn, the importance of transportation infrastructure management has, over the last 40 years, spawned a great deal of research in developing models that can aid agencies in evaluating and selecting M&R policies (see for example Gendreau and Soriano (1998) and Van Noortwijk and Frangopol (2004) and the references therein).  

In the existing, “model-based”, approach for maintenance optimization, the evaluation and selection of policies are performed under the assumption that an underlying performance model provides a perfect, albeit stochastic, representation of a system’s physical deterioration process. With few exceptions, discrete-time maintenance optimization models are formulated as finite (state and action) Markov Decision Process (MDPs). In these formulations, the model used to represent a system’s performance consists of a set of transition probabilities. Several references describe methods to estimate transition probabilities. At a high level, the process consists of steps: population segmentation where facilities are classified based on attributes such as surface type and structural characteristics, traffic volume and environmental factors; and model estimation where a set of probabilities is estimated for each segment.  

The motivation for our work is that the process described above, which results in the specification of a single, “best choice” model for each segment, may lead to an inadequate representation of facility performance, and consequently, to the implementation of inappropriate/inefficient maintenance policies. These inadequacies are caused by unobserved heterogeneities, and by epistemic and parametric uncertainties. Unobserved heterogeneities refer to the presence of persistent, facility-specific, but unobserved factors such as construction quality. The problem is that the single model approach can only explain unobserved heterogeneities as aleatory uncertainty, which means that the single model leads to overestimation of the variance in the deterioration process. Epistemic and parametric uncertainties, respectively, refer to uncertainty about the structural assumptions that are made to specify and estimate performance models, and to the confidence levels that apply to the parameter estimates. These uncertainties are present in all situations where a model is used to represent a system’s performance.  

In this paper, we propose a framework where a facility’s deterioration process is represented as a mixture of known models taken from a finite set. From a “Bayesian” perspective, the probability density function associated with the mixture proportions represents an agency’s beliefs about deterioration. The density function can be updated in response to condition data gathered during the management process. Over time, such an adaptive scheme can lead to estimates that provide an adequate characterization of the physical deterioration process, and consequently, to the implementation of more efficient M&R policies. The estimation problem in the proposed framework involves finding a mixture proportion that adequately represents the physical deterioration process. In the proposed framework, maximum likelihood a posteriori estimates of the mixture proportions are obtained using the Quasi-Bayes approach of Smith and Makov (1980). 
2. Literature Review
Optimization models to support M&R decisions have been developed from different perspectives to address numerous applications. Extensive surveys of M&R models and applications appear in McCall (1965), Pierskalla and Voelker (1976) and Dekker (1996). With few exceptions, discrete-time M&R optimization models, consistent with the periodic review nature of infrastructure management, are formulated as finite (state and action) Markov Decision Processes (MDPs). In the remainder of this section, we provide a review of MDP models, on which we build. However, we emphasize that our contribution is general because uncertainties in selecting performance models or in measuring facility condition are not unique to the MDP framework (or to the problem of obtaining a joint inspection and M&R policy). Examples of closely-related M&R models building on other frameworks are presented in Tsunokawa and Schofer (1994), Li and Madanat (2002), Ouyang and Madanat (2004) and Suzuki and Pautsch (2005).  

Derman (1962) and Klein (1962) were first to propose the MDP formulations for M&R problems. The first adaptation of the methodology to support the management of transportation infrastructure is discussed in Golabi et al. (1982), where a mixed-criteria, constrained MDP is proposed for pavement management in the state of Arizona (a network of 12,000 km. of highways). The same optimization model drives Pontis (Golabi and Shepard, 1997), a bridge management system licensed to more than 45 state DOTs and other agencies nationally and internationally, and perhaps the most widely used implementation of a M&R optimization model. MDP formulations are appealing to manage infrastructure because they provide a rigorous framework to account for uncertainty, because optimal policies can be obtained by solving a linear program
, and perhaps most importantly, because they have been successfully implemented. For example, savings of $14 million were reported in the first year of implementation of the Arizona Pavement Management System, and $101 million was forecast for the subsequent four years. Not surprisingly, the methodology has been adopted and implemented to support transportation infrastructure in various countries, e.g., Finland (Thompson et al., 1987), Denmark (Ullidtz, 1987) and Portugal (Golabi and Pereira, 2003), and has also been used to support the management of other infrastructure systems, e.g., buildings (Van Winden and Dekker, 1998), dikes (Van Noortwjk and Van Gelder, 1996), and sewers (Wirahadikusumah, 1999).  
MDP models to support M&R decision-making consider the management of facilities over a planning horizon of length 
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 is incurred. This cost structure can be used to capture both agency and user costs. At the end of the planning horizon, (i.e.: for 
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2. The facility’s subsequent state is given by a deterioration model, 
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where 
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 is the conditional probability that the facility deteriorates from state 
[image: image19.wmf]i

 to state 
[image: image20.wmf]j

 during 
[image: image21.wmf]t

, given that it receives activity 
[image: image22.wmf]a

. References such as Carnahan et al. (1987), Jiang and Sinha (1989), Madanat and Wan Ibrahim (1995); Madanat et al. (1997) and Mishalani and Madanat (2002) present different approaches to estimate transition probabilities. 

The objective in M&R optimization is to choose a set of actions, a policy, that minimizes the expected discounted sum of agency and user costs incurred over the planning horizon. Because both the costs and the deterioration are Markovian, i.e., depend only on the last state and decision, there is an optimal policy that can be represented as a mapping, 
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As in other problems of decision under uncertainty, M&R policies are evaluated and selected under the assumption that a single, “best choice” performance model provides a perfect representation of deterioration. This approach ignores the uncertainty that decision-makers face when choosing an appropriate model. As stated earlier, this uncertainty stems from unobserved heterogeneities, as well as epistemic and parametric uncertainties. The problem with ignoring performance model uncertainty in M&R optimization is that incorrect representations of deterioration can lead to the implementation of inefficient policies. Indeed, Carnahan et al. (1987) provides examples of situations where M&R policies are sensitive to the transition probabilities.  

MDP problems with unknown/uncertain transition probabilities are a special class of adaptive control problems that have been studied extensively. Kumar and Varaiya (1986) present an excellent overview and provides extensive references. The fundamental attributes of these models include the characterization of uncertainty, and the scheme used to learn based on observed data. The model presented herein can be seen as a generalization of Durango and Madanat (2002); Guillaumot et al. (2003). In our earlier work, facility deterioration is represented as an unknown element from a finite set of models. In the current paper, we allow for deterioration to be represented as an unknown mixture of known performance models taken from a finite set. The estimation problem involves finding a mixture proportion that adequately represents the physical deterioration process. In the proposed framework, maximum likelihood a posteriori estimates of the mixture proportions are obtained using the Quasi-Bayes approach of Smith and Makov (1980). Finite mixture models provide a rigorous and flexible statistical approach to model unknown distributional shapes. Moreover, from a practical perspective, the approach is appealing because it mimics an agency’s choice from a (finite) set of performance models, each estimated under different structural assumptions, or using different data, or relying on the opinion of different experts. We do note, however, that other characterizations of performance model uncertainty have been used in models to support M&R decisions for transportation infrastructure. In particular, Madanat et al. (2006) and Kuhn and Madanat (2005) present models where every row in the transition probability matrices is assumed to be a random vector. The former model relies on maximum likelihood estimation to update estimates of the probabilities. The latter proposes robust optimization to obtain policies that are appropriate for ranges of the transition probabilities. 

3. Proposed Model
We propose a modeling framework where facility performance is represented by a finite mixture of MDPs. We begin this section by introducing the model parameters. 

3.1 Performance Models
A set of transition probabilities is specified for each of the (stationary, Markovian) deterioration models in the finite set 
[image: image27.wmf]R

. They transition probabilities are denoted: 



[image: image28.wmf](

)

1

()

r

ijttt

aPXYrXiAa

p

+

º|=,=,=


(2)

where 
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[image: image30.wmf]r

. 

We assume that a facility’s true/physical deterioration is given by a mixture of models in the finite set 
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. That means that the transition probabilities that govern the deterioration process are as follows: 
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3.2 Dynamic Programming Formulation
Not having perfect information about a facility’s deterioration means that the decisions taking place at the start of stage 
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, is a function that maps the set of possible information sets to the possible combinations of M&R actions for the current period and technology choices for the following period. An agency’s objective is to minimize the expected sum of discounted costs incurred over a planning horizon. The problem of obtaining such a policy can be formulated as a dynamic program as follows: action is taken with respect to 
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Not having perfect information about a facility’s deterioration means that the decisions taking
place at the start of stage ¢, A¢, depend on the information available to a decision-maker, which we
represent with the vector

I ={I,A1,X2,Ag,..., X¢—1,Ar_1, Xi} (defined over 7, = 71 x [A x S]*"1). A control policy for
the problem, p; : 7, — AXC,t =1,2,...,T, is a function that maps the set of possible information
sets to the possible combinations of M&R actions for the current period and technology choices for
the following period. An agency’s objective is to minimize the expected sum of discounted costs
incurred over a planning horizon. The problem of obtaining such a policy can be formulated as a

dynamic program as follows:

vi(ly) = Atej{lci‘?ﬂec {EXt\It [9(Xs, Aty Cr1)) + 0, 1, [Wt+1(ft+1>]} 3 (4)

vrp1{Ir41) = Expipy, [-5(X141)] (5)
where:

v(Iy): is referred to as the optimal objective value function and corresponds to the minimum
expected sum of discounted costs from the start of stage ¢ until the end of the planning
horizon (start of stage T + 1), given that the set of information available at the start of stage

tis I.
8: Discount amount factor associated with the time value of money (6 < 1).

The first term in the recurrence relation, Equation (4), corresponds to the expected costs in-
curred in the current period. The second term corresponds to the expected minimum costs incurred
from the start of the subsequent stage, ¢ + 1, until the end of the planning horizon. Equation (5)
is the boundary condition. It assigns the salvage value to a facility based on its expected condition
at the end of the planning horizon. An optimal policy can obtained by using the recurrence rela-
tion to evaluate the optimal objective value function for every stage-state combination in reverse
chronological order (T" to 1). The minimum expected costs for the problem are given by evaluating

the optimal objective value function for a given, initial set of information, I;.

°Ey is the expectation operator. The expectation is taken with respect to V. Similarly, Eyw]:] represents the
conditional expectation with respect to Y given W.
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The first term in the recurrence relation, Equation (4), corresponds to the expected costs incurred in the current period. The second term corresponds to the expected minimum costs incurred from the start of the subsequent stage, 
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There are two significant practical obstacles with solving the above problem (as posed). The first one is that the state-space of the problem, 
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. The second problem has to do with specifying and updating probability distribution functions to evaluate the expectations in the above expressions. We consider a Bayesian framework where the distributions are taken to represent a decision-maker’s beliefs regarding deterioration and regarding the precision and accuracy of the available technologies. Inspections, in this context, reveal information about the current condition of a facility. This, in turn, provides information about the measurement errors associated with a given technology, as well as information about the deterioration process. Our approach to address the aforementioned computational difficulties is described in the following section. 

3.3 A Quasi-Bayes Approach for the Estimation of Finite Mixtures of MDPs
The problem of estimating a mixture of a finite set of possible models has recently received a great deal of attention in the statistics and econometrics literature. An extensive and recent review of this literature appears in McLachlan and Peel (1997). The control strategy proposed in this paper builds on the Quasi-Bayes estimation procedure proposed by Smith and Makov (1980). A critical difficulty in estimating finite mixtures is that no reproducing (natural conjugate) densities exist. As a result, the formal Bayes estimation procedure has sometimes been regarded as of little practical use in this context, due to the complex form of the basic likelihood. Below, we explain this point further as we consider an approximation solution approach for the problem.  

The Quasi-Bayes approach to estimate finite mixtures introduced by Smith and Makov (1980) considers the formal Bayesian solution in the particular situation where the prior density, 
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“We assume that the prior density is specified at the start of the first stage, after X is collected.
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where w? = P(Z; = r|L). Z; is a random variable defined over R, where Z; = r means

that the first transition was generated by model r. Note that Z; is a latent variable that follows
a multinomial distribution. We derive an expression to compute w?2,¥r € R in Appendix A. Tt
is easily seen that, in general, the density function f <X|It> builds up as weighted averages of
Dirichlet densities. To avoid the computational problems, it is natural to consider approximating
the subsequent posterior densities by suitable Dirichlet densities. Having just observed X9 consider
the first step. If we were informed of the true model generating the measurement, i.e., if we were

able to observe Zy, the distribution of X would be independent of X5 and would be given by:
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where Ay, = 1if 71 = r and 0 otherwise. Since we are not informed of the true source, we need to
estimate Ay,. In the Quasi-Bayes Learning procedure, Ay, in the above expression are replaced by
their expectations, w}, vr. P <X|Iz> is thus approximated by D (X ag) + w%,ag) +ws,. .. ,a? + w%).
Because the posterior distribution has the same form as the prior, the procedure can easily be re-

peated as additional data are collected. The complete iterative procedure is summarized below:
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Smith and Makov (1980) show that any sequence of estimates, )A\t,t = 1,2,..., generated by
the above procedure converges to the maximum likelihood estimates of the mixture proportions.

This constitutes a significant asymptotic performance guarantee from the point of view of classical
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Smith and Makov (1980) show that any sequence of estimates, 
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Equations (10) through (12) describe how the information available to a decision-maker evolves over time, i.e., they describe what are referred to as the state transitions in the dynamic programming formulation presented in the previous section. The above development also reveals that the parameters of the Dirichlet distribution, 
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. This, in turn, allows us to rewrite the recurrence relation (Equation (4)) as follows: 
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4. Case Study: An Application of the Methodology to Pavement Management
We present a set of numerical examples to illustrate the implementation of the methodology presented herein. The objective is to develop insight about the effect of performance model uncertainty (and bias) on the optimal life-cycle costs of managing transportation facilities. In particular, we consider instances of managing pavement over a planning horizon of 15 years and a discount rate 
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. As in Carnahan et al. (1987), we assume that pavement condition is represented by eight states, each representing 12.5 points on the PCI scale of 100. In our examples we set the initial pavement condition to state 
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. The agency can choose from the following M&R actions: (1) do-nothing, (2) routine maintenance, (3) 1-in overlay, (4) 2-in overlay, (5) 4-in overlay, (6) 6-in overlay, and (7) reconstruction. Three possible deterioration models are considered: (1) slow, (2) medium, and (3) fast. Each model is characterized by a set of seven transition probability matrices (one for each action). The models are taken from Durango and Madanat (2002) and are such that: 

· The effect of M&R actions on transitions is assumed to follow a truncated normal distribution with the mean depending on the action and the model and the variance depending on the model; 

· Actions are less effective in improving pavement condition under faster deterioration models; and 

· Faster deterioration models have higher variance in forecasting. 

The means and standard deviations of the effects of actions are presented in Table 1. The transition probabilities are presented in Durango (2002). 

Table 1. Means and standard deviations of action effects on change in pavement condition
[image: image114.png]matrices (one for each action). The models are taken from Durango and Madanat (2002) and are

such that:

o The effect of M&R actions on transitions is assumed to follow a truncated normal distribution
with the mean depending on the action and the model and the variance depending on the

model;

o Actions are less effective in improving pavement condition under faster deterioration models;

and
o Fagster deterioration models have higher variance in forecasting.

The means and standard deviations of the effects of actions are presented in Table 1. The

transition probabilities are presented in Durango (2002).

Table 1: Means and standard deviations of action effects on change in pavement condition

Deterioration Model:

Slow | Medium | Fast

Std. Dev. | 0.30 | 050 | 0.70

Action Mean Effects

1 -0.25 -0.75 -1.75

2 0.50 0.00 -0.50

3 1.75 1.00 0.25

4 3.00 2.00 1.00

5 4.25 3.00 1.75

6 5.50 4.00 2.50

7 8.00 6.00 4.00

The costs include user costs, as well as costs of applying M&R actions. We restrict the facility
condition to the “non-failed” states by setting the user cost of a failed pavement (state 1) to infinity.
In order to prevent the facility from deteriorating too far at the end of the planning horizon we set
the salvage costs of pavements in states 1 — 4 to infinity. Table 2 summarizes the costs considered

which are taken from Carnahan et al. (1987).
Prior to presenting the results of the study, we note that numerical solutions for the dynamic

program require a finite grid approximation to the continuous state-space. In our implementation,

we discretize the [0, 1] interval into 101 points.
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Table 2. Costs ($/lane-yard)
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Pav. Maintenance & Repair Actions User
State 1 T 2 838 ] a1 5 1T 6 [ 7 Costs
1 0.00 | 6.90 | 19.90 | 21.81 | 25.61 | 29.42 | 25.97 =S
2 0.00 | 2.00 | 10.40 | 12.31 | 16.11 | 19.92 | 25.97 25.00
3 0.00 | 1.40 8.78 10.69 | 14.49 | 18.30 | 25.97 22.00
4 0.00 | 0.83 7.15 9.06 12.86 | 16.67 | 25.97 14.00
5 0.00 | 0.65 4.73 6.64 10.43 | 14.25 | 25.97 8.00
6 0.00 | 0.31 2.20 411 7.91 11.72 | 25.97 4.00
7 0.00 | 0.15 2.00 3.91 7.71 11.52 | 25.97 2.00
8 0.00 | 0.04 1.90 3.81 7.61 11.42 | 25.97 0.00

4.1 Computational Study and Results

Figure 1 (2) compares the expected costs when the physical process corresponds to the slow (fast)
model. For the case of “slow” initial beliefs, we set the belief vector to A= (0.8,0.1,0.1).5 That
is, a probability of 0.8 is assigned to the event that the physical process is governed by the slow
model, 0.1 to the medium, and 0.1 to the fast model. Similarly, for “fast” initial beliefs we set the
vector such that: Al = (0.1,0.1,0.8). We also consider an initial belief vector that corresponds to
a case of high model uncertainty. This case is labeled “no” which stands for the non-informative

initial beliefs A = (0.33,0.33,0.33).

As expected, in both instances, whether the deterioration is slow or fast, when the initial beliefs
are close to the physical process, the expected cost is the smallest. The expected costs are higher
in Figure 2 than in Figure 1 because it is costlier to maintain a pavement that deteriorates faster.
An interesting result is that the non-informative initial beliefs are the worst in both instances.
This result indicates that inaccurate beliefs with low variance are preferred to less biased beliefs of

higher variance.

To understand this surprising result, we conducted a simulation study whose results are pre-
sented in Figure 3. Instead of computing the expected costs analytically we generate instances
for the case where the physical deterioration process corresponds to the fast model. The beliefs
assigned to the fast model in each period, N=P (Y = 3|1;), are averaged over one thousand sim-

ulation runs. We plot the trajectory of the average over time.

*In all cases we set ol = i1,
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4.1 Computational Study and Results
Figure 1 (2) compares the expected costs when the physical process corresponds to the slow (fast) model. For the case of “slow” initial beliefs, we set the belief vector to 
[image: image118.wmf]1

ˆ

(080101)

l

=.,.,..


 That is, a probability of 0.8 is assigned to the event that the physical process is governed by the slow model, 0.1 to the medium, and 0.1 to the fast model. Similarly, for “fast” initial beliefs we set the vector such that: 
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As expected, in both instances, whether the deterioration is slow or fast, when the initial beliefs are close to the physical process, the expected cost is the smallest. The expected costs are higher in Figure 2 than in Figure 1 because it is costlier to maintain a pavement that deteriorates faster. An interesting result is that the non-informative initial beliefs are the worst in both instances. This result indicates that inaccurate beliefs with low variance are preferred to less biased beliefs of higher variance.  

Figure 1. Expected costs for slow deterioration
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The averags )\g converges tuch faster when the initial beliefs are biased (slow), than when they
are non-informative, and therefore the actions taken in the non-informative situation are not as
effcient as those taken when the initial befiefs are wrong. Hence the higher expected cost when the
initial beliefs about, deterioration have a higher variance atfached to thet, The faster convergence
of the beliefs in the biased case compared to the non-informative case can be explained qualitatively
by the contrast hetween the observations and the expectations. This contrast is augmented by the
action taken in both cases: when the nitial beliefs are biased, the MR actions taken will be mild
compared to the non-informative case. Therefore, worse states are more likely to be obssrved, Such
unexpected outeomes provide feedback that leads to drastic and promp revision of the beliefs in
the biased case. This result may not generalise to all situations as it depends on the parameters
used in the study (which were chosen from the paernent menagement literature), Characterizing
{analytically or by simulstion) the conditions {on the parameters) that are sufficient for this result

0 hold seems [ike an iteresting direction for future study.

5 Conclusions and Discussion

In this paper we have presented an adaptive optimization model for the problem of finding main-
tenance and repair policies for infrastructure facifities, The methodology we presens is referred to

a8 adaptive becanse the information from measurements of condition is used to obtain an adequate




Figure 2. Expected costs for fast deterioration
 [image: image122.png]Figure 2: Expected costs for fast deterioration
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representation of a facility’s physical deterioration process over time, 1.e., to learn about deteriora-

tion,

A case study in pavement management leads to several insights about the problem. The results
show that reducing the nitial variance in model uncertainty may be more important than redueing
the initial bias. This means that providing the wrong information may be less costly than providing
no{nformation about deterioration. The reason for this result s that the beliefs about deterioration

can he adjusted drastically and quickly in response to unexpected events.

The scope of this research was purposely limited to the facility-level of the M&R problem. An
immediate extension is to adapt the formulation to the network-level problem with administrative
restrictions. A possible approach to incorporate network-level constraints is to formulate the model

developed herein using randomized policies and to solve it using linear programming,

A significant practical advantage of an adaptive approach such as that presented in this paper
is that it allows public agencies to start managing their infrastructure systems without having
to develop detailed deterioration models of their facilities. Agencies can start managing their
facilities with a set of existing models, possibly those developed by other state or national highway
agencies, and lef the adaptive optimization method described in this paper select the best mixture

of these models. This model refinement is performed over time, simultaneously with the selection
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Figure 3. Probability assigned to fast model
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of maintenance and repair decisions. This practical advantage is the reason why the most widely
used infrastructure management systems in use today such as Pontis (Golabi and Shepard, 1997)

are based on adaptive optimization.

A Derivations

We derive expressions for used throughout the paper.

A.1 Derivation of w?

w? = P(Zy =r|l) =P(Z =r|, A1, Xo)
- /SP (21 :T|X,11,A1,X2>f<X|I2> ax
P(Zl :T,lex,fl,A1>
- /9 P (XX 11, 41, )

(A1) ax (14)

From Bayes’ Law, f <X|I2> can be obtained from the prior, f (X), as follows:

F(X) P (XalX, 11, Ar)
o (X) P (XX Iy, Ar ) X

() = (15)
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In this paper we have presented an adaptive optimization model for the problem of finding maintenance and repair policies for infrastructure facilities. The methodology we present is referred to as adaptive because the information from measurements of condition is used to obtain an adequate representation of a facility’s physical deterioration process over time, i.e., to learn about deterioration.  
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The scope of this research was purposely limited to the facility-level of the M&R problem. An immediate extension is to adapt the formulation to the network-level problem with administrative restrictions. A possible approach to incorporate network-level constraints is to formulate the model developed herein using randomized policies and to solve it using linear programming.  
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From Bayes’ Law, 
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Letting 
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. Now, replacing (15) into (14) we have the following: 
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Thus, given 
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2. On the Equivalence of Sufficient Statistics
We show that, in the Quasi-Bayes approach, the sequence of 
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We see from the last expression that the sequence of 
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�Finite horizon MDP models are usually solved by backwards induction.


�The symbol “�EMBED Equation.DSMT4���” denotes a Cartesian product. We use the power function applied to a set to represent multiple Cartesian products of the set with itself, e.g., �EMBED Equation.DSMT4���.


� �EMBED Equation.DSMT4��� is the expectation operator.  The expectation is taken with respect to �EMBED Equation.DSMT4���.  Similarly, �EMBED Equation.DSMT4��� represents the conditional expectation with respect to �EMBED Equation.DSMT4��� given �EMBED Equation.DSMT4���.


�We assume that the prior density is specified at the start of the first stage, after �EMBED Equation.DSMT4��� is collected.


�In all cases we set �EMBED Equation.DSMT4���.
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