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Abstract: Container fleet management is currently incurring a huge and growing cost in shipping industry. Recently, industrial practices such as SynchroNet and InterBox, which serve as a neutral platform to facilitate container or slot sharing between companies, have shown promising, particularly for relatively small operators. This paper provides a theoretical analysis to a collaborative strategy in shuttle transport systems with random demands. The objectives are to evaluate and quantify the cost saving of the collaborative strategy under different container dispatching policies, and identify the critical factors that affect the performance of such strategy. Numerical examples are given to illustrate the results.

1. Introduction

Empty container repositioning has been an important problem in shipping industry for many years. Drewry Shipping Consultants estimated that about 20% of all ocean container moves have been involving repositioning of empty boxes since 1993 (Mongelluzzo 2004). The growth in world trade, and in trade imbalance has worsened the problem.  For example, on the Europe-Asia trade route, European ports are experiencing a high surplus of empty containers, while Asian ports are facing severe shortage. The container traffic from Asia to Europe increased by 10 times the increase in the opposite direction in 2003 (United Nations, 2004). It is estimated that the current cost of moving empty containers around the globe now exceeds US$25 billion per annum and could exceed US$50 billion by 2010 on present trends (Jarman, 1999). 

The rapid growth and the globalisation in container shipping market gave rise to intense competition among shipping lines. Empty containers represent a huge and growing cost that cannot always be passed on to customers. Moreover, uncertainty in customer demands increases the complexity and makes the problem even worse. In order to survive competition and gain more business, shipping lines are forced to adopt innovative, productivity enhancing and cost-cutting strategies (Imai and Rivera, 2001, Song et al 2005). A very important cost-cutting strategy is to efficiently and effectively repositioning empty containers.

    In the literature, much work has been undertaken to achieve the efficiency of repositioning empty containers within a single company, e.g. mathematical decision models (Crainic et al. 1993, Shen and Khoong 1995, Cheung and Chen 1998, Choong et al 2002, Erera et al 2005) and inventory-based control policies (Lai et al 1995, Li et al 2004, Song 2005, 2007). However, little work has been reported in the area of the inter-company strategies. 

Recently internet-based support systems (e.g. SynchroNet, InterBox), provided by third-party vendors, have emerged as a neutral platform to facilitate container sharing among shipping lines and leasing companies. By obtaining information from carriers or lessors about their container-inventory surpluses and deficits at different ports, the support system matches the deficits with the surpluses and gives its customers specific opportunities to provide or secure an empty container. Essentially, the neutral platform implements the cooperation between companies by exchanging their empty containers as needed. The idea is gaining increasing popularity. As Mongelluzzo (2004) cited the comment of the chief executive of Synchronet: “There are still pockets of resistance, but the search to reduce costs outweighs the resistance to sharing containers”. 

Motivated by the emerging third-party information services, this paper aims to perform a theoretical analysis of the collaborative container sharing strategy. The main objectives are to evaluate and quantify the cost-saving of the strategy in a shuttle transport system with uncertain customer demands, examine the relationships between container dispatching policies and the collaborative strategy, and identify the critical factors that affect the performance of the strategy.

    In this paper the theoretical analysis is limited into shuttle transport systems with deterministic travel times, finite transport capacity, and general random demands. We focus on two-terminal (or port) service systems for the following reasons: firstly, two terminal service systems widely exist in container shipping networks. According to Containerisation International online (http://www.ci-online.co.uk/), in 2002, among total 1521 regular shipping services, 253 of them are two-port shuttle services, e.g. Tilbury/Rotterdam, Felixstowe/Scheveningen, Liverpool/Dublin services. More recently, Cosco has started a shuttle service between Shanghai and Long Beach from 2006, which has the fastest transit time (12 days) in the Trans-Pacific route. Secondly, three major routes (i.e. Trans-Pacific, Trans-Atlantic, and Europe-Asia) are featured with a dominant long-distance deep-sea leg and could be approximated by two-port services. Thirdly, two-terminal systems are relatively easy to analyse and can serve as a starting point to examine more complicated systems. 

The rest of the paper is organised as follows. In section 2, the container-dispatching problem within a single company is formulated mathematically. In section 3, different container dispatching policies are presented. In section 4, the inter-company collaborative strategy and its relationship with the dispatching policy are discussed. In section 5, numerical examples are given to quantify the benefit of the collaborative strategy, which lead to the main findings. Finally, conclusions are made in section 6.

2. Problem formulation

Consider a shuttle service with two terminals (ports or depots). Empty containers are requested at each terminal to satisfy trade demands. In reality, two types of containers, twenty-foot equivalent unit (TEU) and forty-foot equivalent unit (FEU), are often used. Since one FEU equals two TEUs in terms of volume, we only focus on TEU, i.e. one commodity type (Cheung and Chen 1998, Choong et al 2002). 

We treat the container transit time from one terminal to the other as one period. The arrived loaded containers in the current period become empty and available to use at the beginning of the next period. Empty containers may either be stored as inventory to satisfy the demand at the current terminal or repositioned to the other terminal. The dispatching decisions are about how many loaded and empty containers should be dispatched from one terminal to the other. These decisions are made periodically and are subject to shipping capacity constraints. At each period, if there are not enough empty containers available to meet the trade demands, the unmet demands will be lost. This assumption corresponds to the situations that customers are impatient or have limited patience. Different from Song (2005, 2007), this paper does not consider the container-leasing decision because our focus will be on the inter-company container management. The following notation is adopted.

n: the nth period.

N: the container fleet size.

di,n: the number of demands arrived at terminal i during the nth period, which follows an independent probability distribution.

xi,n: the number of containers available at terminal i at the beginning of the nth period.

ui,n: the number of containers dispatched from terminal i to the other in the nth period, which is a decision variable.

ri: the maximum shipping capacity at one period from terminal i to the other terminal.

ci: the holding cost per container per period at terminal i. 

ei: the cost to reposition per unit of empty container from terminal i to the other.

bi: the lost-sale cost per container at terminal i.

    It should be pointed out that x1,1 + x2,1 = N, which reflects the initial allocation of container fleet over two terminals. The sequence of events in one period is described as follows: a) at the beginning of the period, the operator makes decisions on how many containers to be dispatched to the other terminal; b) meet customer demands that arrives during the previous period and dispatch those loaded and empty containers; c) at the end of the period, receive shipments (i.e. dispatched loaded and empty containers); d) receive customer demands for the current period. The evolution of the system state can be described by


x1,n+1 = x1,n – u1,n + u2,n  
(1)

where x1,n+1 is the inventory of empty containers at terminal 1 at the beginning of the (n+1)th period. Due to the conservation of container flows, the inventory of containers at terminal 2 at the beginning of the (n+1)th period is given by x2,n+1 = N – x1,n+1.

The dispatching decisions u1,n and u2,n are subject to the constraints of the shipping capacity ri and the available containers xi,n. Namely, we always have 0 ( ui,n ( min(ri, xi,n). Note that at the beginning of nth period, the customer demands to meet are given by d1,n-1 and d2,n-1. Intuitively, dispatching en empty container implies that all demands at that terminal have been satisfied. Therefore, among ui,n containers, min(ui,n, di,n-1) is the number of loaded containers, and max(0, ui,n - di,n-1) is the number of empty containers. The unmet demands (or lost sales) is given by max(0, di,n-1 - ui,n). The following costs will be incurred during the nth period:

g(xn , dn-1, un) = (ci (xi,n – ui,n) + (bi max(0, di,n-1 – ui,n) + (ei max(0, ui,n – di,n-1)  
(2)

Where xn := (x1,n, x2,n), and dn-1 and un are similarly defined. The first term on the right-hand-side (RHS) of (2) represents the empty container inventory costs; the second term on the RHS of (2) represents the lost sale costs; the last term on the RHS of (2) represents the empty container repositioning costs. The optimal dispatching policy u = {un | n=1, 2, …} can be found by minimizing the long-run average cost


J* = 
[image: image1.wmf]å

=

-

¥

®

T

n

n

n

n

T

u

u

d

x

g

E

T

1

1

)

,

,

(

1

lim

min


(3)

3. Container dispatching policies

The stationary dispatching policies are often of interest in practice. Following the standard dynamic programming method (Puterman 1994, Sennott 1999), the Bellman optimality equation is given by


w(x, d) + J* = min{g(x, d, u) + Ew(x(, d() | 0 ( u1 ( min(r1, x1); 0 ( u2 ( min(r2, x2)} 
(4)

Where w(x, d) is a finite function. With a slight abuse of the notation, we denote u := (u1, u2), and x := (x1, x2) and x( := (x1(, x2(), satisfying x1(= x1 – u1 + u2 and x2(= N –  x1(. In addition, d := (d1, d2) and d( := (d1(, d2(). Owing to the lost-sale assumption, di and d i( are independent random variables and follow the same probability distribution. They are exogenous inputs and characterise the uncertainty of customer demands. From (4), the optimal dispatching policy is determined by


u*(x, d) = 
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{ g(x, d, u) + Ew(x(, d() | 0 ( u1 ( min(r1, x1); 0 ( u2 ( min(r2, x2)} 
(5)

The optimal average cost J* and the optimal policy u*(x, d) can be calculated by using the value iteration algorithm (Sennott 1999, p119). 

    However, in reality shipping operators often have difficulty to implement the optimal dispatching policies due to the complexity of the policy structure and unavailability of the accurate data. Next we introduce two simple dispatching policies that are more applicable in practice. 

    The first policy is termed as a naive dispatching policy, which is defined by:

· If (d1 < (d2, then u1,n = min(r1, x1,n) and u2,n = min(r2, x2,n, d2,n-1);

· If (d1 > (d2, then u2,n = min(r2, x2,n) and u1,n = min(r1, x1,n, d1,n-1);

· If (d1 = (d2, then u1,n = min(r1, x1,n, d1,n-1) and u2,n = min(r2, x2,n, d2,n-1).

    Under this policy, if the average demand at terminal 1 is less than that at terminal 2, then we will dispatch as many containers as possible from terminal 1 to terminal 2, while only dispatch loaded containers in the opposite direction. The rationale is to minimize the empty movement from high-demand terminal to low-demand terminal and maximize the empty container repositioning from low-demand terminal to high-demand terminal. For example, some shipping lines use this kind of dispatching policies in the Europe / Far East route due to its severe imbalance. In the case both terminals have the same expected demands, which implies that the demands are balanced in the long term, then no empty container will be repositioned. 

    The second policy is a heuristic dispatching policy, determined by a single threshold parameter H1, which physically sets an upper bound for the empty containers in terminal 1. The upper bound of empty containers in terminal 2 is implicitly given by H2 = N – H1. The policy is defined by:

· If x1,n < d1,n-1, then u1,n = min(r1, x1,n); otherwise, u1,n = min{r1, d1,n-1 + max(0, x1,n – d1,n-1 – H1)};

· If x2,n < d2,n-1, then u2,n = min(r2, x2,n); otherwise, u2,n = min{r2, d2,n-1 + max(0, x2,n – d2,n-1 – H2)}.

    The threshold parameter H1 is heuristically determined by N ( (d1 / ((d1 + (d2), where(di represents the expected demands arriving at terminal i during one period. The logic behind this threshold value is that empty containers should be allocated to terminals proportional to the average demands at the corresponding terminals. This heuristic policy will dispatch as many containers as possible to meet the trade demands. However, if there are more than enough empty containers available, then only the volume that exceeds the threshold H1 will be repositioned to the other terminal. The repositioning decision is triggered by a single threshold value H1.

4. Collaborative strategy

As we mentioned before, the majority of literature in container management focused on the internal operational efficiency. Little analytical work has been reported in the level of inter-company collaboration such as sharing container fleet and sharing vessel slots. One form of the inter-company cooperative strategies is that two companies can freely exchange their empty containers and make full use of their vessel capacity to meet demands and reposition empty boxes. This can be regarded as the full-scale inter-company collaboration. The purpose of this paper is to quantify the benefits of such collaborative strategy compared with the separate operations.

    To simplify the narrative, we assume that two companies (say A and B) have the same cost structure and cost coefficients. In other words, parameters ci, ei, and bi are the same for both companies. This may be justified by the facts that inventory and repositioning costs mainly depend on the geographical location and distance rather than individual companies. For other parameters or variables, we use superscript A and B to indicate their dependency on the company, e.g. NA, diA, xiA, uiA, and riA, represent company A’s fleet size, demand, inventory of empty containers, dispatching decision variable, and the shipping capacity.

    Without cooperation, two companies will operate independently. Clearly, the main issue is how to effectively manage its own container fleet. For a fixed container fleet, the problem is to seek the optimal dispatching policy for both loaded and empty containers.  This problem has been mathematically formulated in the above section. The total cost is simply the sum of the cost incurred by two separate companies.

If two companies are willing to collaborate in full-scale with regard to container sharing and vessel space sharing, the container management problem becomes an aggregated one with a larger fleet size, larger capacity, and the combination of demands. In other words, it is equivalent to deal with a new container-dispatching problem as follows
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Where

NA+B = NA + NB;

diA+B = diA + diB;

riA+B = riA + riB;

x1,nA+B + x2,nA+B = NA+B;
0 ( ui,nA+B ( min(riA+B,  xi,nA+B).

The optimal container dispatching policy for this aggregated problem can be derived similar to (4). It should be pointed out that because diA and diB are independent random variables, the probability distribution of their sum diA+B is the convolution of each of their distributions.

Intuitively, the optimal solution to (6) must be better than the solutions to (3), because the solutions to (3) satisfy all the constraints of (6) and therefore can form a special solution to (6). In other words, two collaborating companies will achieve a better performance than two separate companies. However, there are more important questions to be answered such as: how much benefit can be achieved through the collaboration? Which circumstances are more beneficial and worth the effort to share containers and vessel spaces? What are the relationship between the collaborative strategy and different container dispatching policies? 

From the formulation (1)~(4), it can be seen that the optimal container dispatching policy depends on the parameters describing the cost structure, and also the parameters such fleet size, customer demand, and shipping capacity. Since sufficiently large fleet size or reliable and balanced trade demands will diminish the need of empty container repositioning, therefore, fleet size and the demand pattern are two of the most important factors that affect the performance of the collaborative strategy. Moreover, the collaborative strategy is closely related to the container dispatching polices. Therefore, the interacting effects between them should be investigated.

In the above formulation, we have made the following assumptions that: a) each company operates a fleet of vessels and a fleet of containers; b) the collaborative strategy between two companies is in full-scale, which means that they have a common container pool and share the vessel spaces in order to meet customer demands and reposition empties. The model could be applied to the situations with two shipping lines or two NVOCCs (Non-Vessel Operating Common Carrier). However, in reality, there are other issues to consider, e.g. shipping lines may not be willing to share containers or vessel spaces with potential competitors, and it may be difficult for NVOCCs to share vessel slots with other companies since they do not actually own the vessel. 
5. Numerical examples

This section first compares the container dispatching policies and then quantifies the benefits of the collaborative strategy. The analysis mainly focuses on the situations with varying fleet sizes and demand patterns. The value iteration algorithm is used to compute the costs under different dispatching policies. It should be pointed out that in order to use the value iteration algorithm to calculate the costs under a specified dispatching policy (HP or NP), the control actions u1 and u2 in (4) should be determined by the fixed policy rather than take all feasible solutions.

    Consider two independent shipping companies A and B. The trade demands from terminal 1 to terminal 2 follow uniform distributions U(a1A, b1A) and U(a1B, b1B); trade demands from terminal 2 to terminal 1 follow uniform distributions U(a2A, b2A) and U(a2B, b2B), for company A and B respectively. In our experiments, we set parameters as follows: ci = 1; ei = 2; and bi = 5 for i =1, 2. Here the lost sale cost is 5 times of the container inventory cost, and the empty container repositioning cost is twice of the container inventory cost. The shipping capacities in both directions for each company are the same (i.e. r1 = r2). We also set NA = NB and riA = riB = 10.

    A variety of combinations of demand patterns (with different degrees of uncertainty and imbalance) will be examined. For example, table 1 gives five scenarios. In the first three scenarios each company has balanced trade demand between two terminals, but the degree of uncertainty is decreasing. In the last two scenarios each company has imbalanced trade demands and the degree of uncertainty is decreasing. The sum of average demands at two terminals is equal to 10, which is given by (a1A+ b1A)/2 + (a2A+ b2A)/2 and (a1B+ b1B)/2 + (a2B+ b2B)/2 for two companies respectively. It is reasonable to assume that the container fleet size for each company is greater than 10 so that the majority of customer demands can be satisfied. Three types of container dispatching policies: optimal policy (OP), heuristic policy (HP) and naive policy (NP) are tested.

Table 1 gives the sum of costs for two independent companies in each scenario with different container-dispatching policies and different container fleet sizes. Here the fleet size NA takes 12, 14, 16, 18, and 20. In table 1, two companies have the same demand patterns.

[Insert Table 1 here]

It can be seen from table 1 that 

· The optimal policy significantly outperforms other two dispatching policies (up to 60% for HP and 40% for NP). The heuristic policy is better than the naive policy in the first three scenarios, in which the naive policy suggests no empty repositioning due to the balanced demands. This implies that reasonable empty repositioning is beneficial in situations with uncertain demands even if demands are balanced in long term. For the last two imbalanced scenarios, the naive policy is generally better than the heuristic policy. For the last scenario, the naive policy is actually quite close to the optimal policy. This reveals that for imbalanced-demand situations with relatively low level of uncertainty, the naive policy could work quite well. 

· For a specified dispatching policy, as the fleet size increases, the cost is decreasing first and then increasing. This is in agreement with the intuition that insufficient container fleet incurs high lost-sale cost, while large fleet size incurs inventory cost due to over-capacity, and the optimal fleet size should be a trade-off between them. 

· As the variance of demands decreases (e.g. from scenario 1 to 3, or from scenario 4 to 5), the cost is decreasing. This can be explained by the fact that larger variances result in more unmet demands. 

· Under the optimal policy, the best fleet sizes for each company (based on the data in table 1) are 16, 14, 12, 16, and 14 for the above five scenarios respectively. It can be observed that higher degree of demand uncertainty requires larger container fleet size. 

Now we turn to quantify the benefit of the collaborative strategy. In the full-scale collaboration, two companies operate in such a way that they share the container fleets and the vessel spaces. It essentially becomes an aggregated container-dispatching problem. 

Firstly, we assume that two companies have the exact same demand patterns at two terminals, which implies that two companies have the same shortage and surplus terminals in the imbalanced-demand situations (e.g. all major shipping lines have shortage of containers in Far-East ports and surplus of containers in American ports). The total costs for two collaborating companies in the above five scenarios with different dispatching policies and different container fleet sizes are given in table 2. To have a clearer view of the effect of the collaborative strategy, the percentage of cost reduction from those without collaboration (given in table 1) is also presented in table 2.

[Insert table 2 here]

It can be seen from table 2 that

· The cost-savings achieved by the collaborative strategy are significant in many cases (up to 36.28% in table 2). For a specified dispatching policy, the cost saving is decreasing as the fleet size increases; e.g. from 36.28% to 11.57% under the optimal policy in scenario 1. This reflects the fact that if both companies have enough containers to meet demands, there is little need to share empty containers. 

· As the variance of demands decreases from scenario 1 to scenario 3, the percentage of cost saving is decreasing; e.g. from 36.28% to 31.87% under the optimal policy with NA+B=24, and from 11.57% to 2.10% under the optimal policy with NA+B=40. For the imbalanced-demand scenarios, the similar cost-saving pattern can be observed. However, for the last scenario with NA+B=36 or 40, the collaborative strategy achieves zero cost reduction. This indicates that if demands are severely imbalanced with relatively low level of uncertainty and the companies have reasonably large size of container fleet, the benefit of sharing containers is minimal. 

· For the last scenario, under the heuristic policy the cost reduction is negative for NA+B=24 and 28. From table 1, we have observed that the heuristic policy is not suitable for the scenario 5, together with the results in table 2; it appears that the collaborative strategy may deteriorate the performance if the adopted dispatching policy is inappropriate.

· Under the optimal policy, the best fleet sizes for two collaborating companies (based on the data in table 2) are 28, 24, 24, 28, and 24 for the above five scenarios respectively. Compared to the sum of the optimal fleet sizes of two independent companies in table 1 (i.e. 32, 28, 24, 32, and 28 for five scenarios respectively), it reveals that by adopting the collaborative strategy the optimal total fleet size can be reduced, meanwhile much lower total costs are achieved. 

Secondly, we assume that two companies have the complementing demand patterns, i.e. the demand distribution from terminal 1 to terminal 2 for one company is the same as the demand distribution from terminal 2 to terminal 1 for the other company.

Consider scenarios 2, 4 and 5 (scenarios 1 and 3 are not considered here because they have symmetric demands). The total costs for two collaborating companies with the complementing demand patterns under three dispatching policies and different container fleet sizes are given in table 3. Because two terminals have the same cost coefficients in the parameter settings, the sum of costs for two independent companies is the same as those given in table 1. The percentage of cost reduction achieved by the collaborative strategy from those in table 1 is also presented.

[Insert table 3 here]

It can be seen from table 3 that 

· For the first balanced-demand scenario, the cost saving achieved by the collaborative strategy is comparable to that in table 2. However, for the last two imbalanced-demand scenarios, the cost saving is significantly greater than that with the same demand pattern (in table 2). For example the cost reduction percentage is 46.32%~14.50% under the optimal policy for the last scenario, which is much greater than 16.57%~0.00% in table 2. This is in agreement with the intuition that sharing containers and vessel spaces in complementing demand situations would better match supply and demand, and therefore improve the utilisation of containers and reduce the lost sales. 

· Interestingly, when two companies have complementing demand patterns, all three dispatching policies can achieve significant reduction of total costs by adopting the collaborative strategy. Nevertheless, efficiently dispatching is still important since the total cost under the optimal policy is significantly less than that under other two dispatching policies. 

· The optimal fleet size under the optimal dispatching policy is 28, 28 and 24 for the above three scenarios in table 3. Compared to the corresponding results in table 2, they are quite similar.

Based on the above results, the main findings are summarised as follows: 1) in some cases the optimal dispatching policy significantly outperforms the heuristic policy (up to 60%) and the naïve policy (up to 40%). The heuristic policy and the naive policy have relatively merits in different situations, e.g. the naive policy could work quite well for imbalanced-demand situations with relatively low level of uncertainty; 2) when two companies have the same demand pattern (e.g. same shortage and surplus terminals), the collaborative strategy can generally reduce the total cost under a specified dispatching policy; while more benefit can be achieved in situations with smaller fleet size or higher degree of uncertainty. In our examples, the cost savings are up to 36%; 3) it appears that the collaborative policy may deteriorate the performance in some special cases if the adopted dispatching policy is inappropriate. For example, the heuristic dispatching policy works badly in imbalanced-demand situations with low level of uncertainty. However, this may be caused by the inappropriate value of the control parameter; 4) when two companies have complementing demand patterns (particularly with imbalanced demands), the collaborative strategy can achieve significant cost-savings for all three dispatching policies; 5) the total container fleet size can be reduced by adopting the collaborative strategy if a good dispatching policy is implemented.

6. Conclusions

This paper presents an analysis to the collaborative strategy in container fleet management. Dynamic programming is used to formulate the container-dispatching problem for shuttle transport systems with uncertain demands. Different container dispatching policies are presented, including the optimal policy, a heuristic policy, and a naïve policy. The model can be used to evaluate and quantify the cost saving of the collaborative strategy under specified container dispatching policies. It is identified that the factors such as the fleet size, the variance of demands, the demand patterns (balanced or imbalanced), and the container dispatching policy have significant impacts on the performance of the collaborative strategy. For example, the collaborative strategy can achieve more cost saving in situations with smaller fleet size or higher degree of uncertainty. In our experiments, it is observed that the cost savings are greater than 20% in many cases, particularly when two companies have complementing demand patterns. On the other hand, if two companies have relatively large fleet size, low degree of demand uncertainty, and similar patterns of imbalanced demands, then the collaborative strategy can only achieve limited cost saving. This might be one of the reasons that major shipping lines are reluctant to share containers with others in severely imbalanced routes such as Asia-Europe and Trans-Pacific.

    Further work can be done by experimenting with other distributions of customer demands and other forms of dispatching policies, or extending the model to more complicated transport networks, or including more companies.
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	17.27
	20.96

	U(3,7)
	U(3,7)
	HP
	15.16
	15.43
	17.30
	19.75
	22.54

	
	
	NP
	15.16
	15.60
	17.78
	20.66
	23.90

	U(0,8); 
	U(0,8); 
	OP
	25.22
	22.12
	21.59
	23.26
	25.79

	U(2,10)
	U(2,10)
	HP
	30.36
	28.55
	28.51
	29.53
	31.11

	
	
	NP
	29.61
	27.44
	27.76
	30.10
	33.68

	U(2,6); 
	U(2,6); 
	OP
	14.42
	13.78
	16.14
	20.00
	24.00

	U(4,8)
	U(4,8)
	HP
	23.89
	24.99
	26.00
	27.04
	28.44

	
	
	NP
	15.87
	15.46
	18.24
	22.24
	26.24


Table 1 Sum of costs of two independent companies with varying fleet size

	Collaborating companies U(a1A, b1A)+U(a1B, b1B);

U(a2A, b2A)+U(a2B, b2B)
	Policy


	NA+ NB = 24


	28


	32


	36


	40



	U(0,10)+U(0,10); 
	OP
	19.07
	17.71
	18.68
	20.97
	23.61

	U(0,10)+U(0,10)
	HP
	23.86
	22.37
	22.65
	23.99
	25.99

	
	NP
	24.80
	23.72
	24.48
	26.33
	28.82

	
	OP
	36.28%
	31.91%
	23.03%
	14.86%
	11.57%

	
	HP
	30.90%
	29.28%
	25.47%
	21.24%
	17.44%

	
	NP
	32.59%
	31.19%
	27.60%
	23.53%
	19.88%

	U(3,7)+U(3,7); 
	OP
	14.19
	14.57
	16.19
	18.68
	21.77

	U(0,10)+U(0,10)
	HP
	18.12
	17.78
	19.06
	21.11
	23.60

	
	NP
	18.73
	18.61
	20.21
	22.68
	25.64

	
	OP
	32.27%
	22.00%
	15.98%
	10.75%
	7.36%

	
	HP
	30.65%
	26.59%
	21.01%
	16.06%
	12.33%

	
	NP
	33.04%
	29.64%
	24.53%
	19.75%
	15.85%

	U(3,7)+U(3,7); 
	OP
	7.74
	9.87
	13.00
	16.67
	20.52

	U(3,7)+U(3,7)
	HP
	10.59
	12.24
	15.02
	18.10
	21.30

	
	NP
	10.59
	12.26
	15.14
	18.49
	22.06

	
	OP
	31.87%
	13.12%
	6.68%
	3.47%
	2.10%

	
	HP
	30.15%
	20.67%
	13.18%
	8.35%
	5.50%

	
	NP
	30.15%
	21.41%
	14.85%
	10.50%
	7.70%

	U(0,8)+U(0,8); 
	OP
	17.89
	17.10
	18.67
	21.36
	24.50

	U(2,10)+U(2,10)
	HP
	26.20
	26.43
	26.24
	27.54
	29.18

	
	NP
	20.00
	19.11
	21.09
	24.61
	28.57

	
	OP
	29.06%
	22.69%
	13.52%
	8.17%
	5.00%

	
	HP
	13.70%
	7.43%
	7.96%
	6.74%
	6.20%

	
	NP
	32.46%
	30.36%
	24.03%
	18.24%
	15.17%

	U(2,6)+U(2,6); 
	OP
	12.03
	12.82
	16.01
	20.00
	24.00

	U(4,8)+U(4,8)
	HP
	25.80
	27.28
	26.00
	26.33
	27.33

	
	NP
	12.22
	13.00
	16.63
	20.63
	24.63

	
	OP
	16.57%
	6.97%
	0.81%
	0.00%
	0.00%

	
	HP
	-7.99%
	-9.16%
	0.00%
	2.63%
	3.90%

	
	NP
	23.00%
	15.91%
	8.83%
	7.24%
	6.14%


Table 2 Sum of costs of two collaborating companies with same demand patterns

	Collaborating companies U(a1A, b1A)+U(a1B, b1B);

U(a2A, b2A)+U(a2B, b2B)
	Policy


	NA+ NB = 24


	28


	32


	36


	40



	U(3,7)+U(0,10); 
	OP
	14.30
	13.65
	15.82
	18.60
	21.79

	U(0,10)+U(3,7)
	HP
	18.60
	18.07
	19.24
	21.25
	23.73

	
	NP
	18.90
	18.63
	20.20
	22.68
	25.64

	
	OP
	31.69%
	26.93%
	17.90%
	11.13%
	7.28%

	
	HP
	28.74%
	25.39%
	20.27%
	15.51%
	11.85%

	
	NP
	32.46%
	29.57%
	24.57%
	19.75%
	15.85%

	U(0,8)+U(2,10); 
	OP
	15.10
	14.69
	16.44
	19.08
	22.16

	U(2,10)+U(0,8)
	HP
	19.50
	18.78
	19.81
	21.70
	24.10

	
	NP
	19.90
	19.50
	20.93
	23.30
	26.18

	
	OP
	40.29%
	33.59%
	23.85%
	17.97%
	14.08%

	
	HP
	35.87%
	34.22%
	30.52%
	26.52%
	22.53%

	
	NP
	32.89%
	28.94%
	24.60%
	22.59%
	22.27%

	U(2,6)+U(4,8); 
	OP
	7.74
	9.87
	13.00
	16.67
	20.52

	U(4,8)+U(2,6)
	HP
	10.60
	12.24
	15.02
	18.10
	21.30

	
	NP
	10.60
	12.26
	15.14
	18.49
	22.06

	
	OP
	46.32%
	28.37%
	19.45%
	16.65%
	14.50%

	
	HP
	55.67%
	51.02%
	42.23%
	33.06%
	25.11%

	
	NP
	33.27%
	20.70%
	17.00%
	16.86%
	15.93%


Table 3 Sum of costs of two collaborating companies with complementing demand patterns
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