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Abstract

This paper presents a conceptual modeling framework of Residential Mobility and Location Choice process consisting of three sequential steps. It develops a random parameter model for the first step of making residential mobility decision at the disaggregate level of the household that incorporates individual heterogeneity in the panel data model. A 1998 retrospective residential mobility survey of 280 households in the Greater Toronto Area is used to demonstrate the effects of residential stressors on the decision to become active in the housing market. The paper finds that most stressors that relate to life cycle events, neighborhood dynamics and housing market conditions are significant determinants of residential mobility.
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1. Introduction

While the residential mobility and location choice process is considered as an important and integral part of integrated land use and transportation models, process-based models that capture the complexity of residential mobility/location choices are not well developed. Mostly social scientists, geographers and urban economists investigated the process in a greater detail whereas transportation researchers frequently relied on overly simplified abstractions of the process to link with travel demand models within integrated urban models. The most common approach towards the residential location process in relation to travel behavior is confined to zone-based utility maximizing location choice models (such as McFadden, 1978; Weisbrod et al., 1980; Friedman, 1981; Ben-Akiva and Palma, 1986; Gabriel and Rosenthal, 1989; Abraham and Hunt, 1997; Sermons, 2000; Sermons and Koppelman, 2001; Sermons and Seredich, 2001 among others) that are not adequately representative of the process itself. Therefore, it is necessary to investigate micro-level and more behaviourally sound location choice processes that explain why households consider moving, what are the triggering events to be active in the housing market, how they search alternative dwellings and the bidding process that decides their locations. Having such a detailed representation of residential location choice decision dynamics would make it possible to evaluate the influence of the transportation system at each step of household decision-making. In this context, a conceptual model of Residential Mobility and Location Choice (REMLOC) has been presented in Habib and Miller (2005), which is intended to be implemented within the Integrated Land Use, Transportation and Environment (ILUTE) modeling system (as described in Miller and Salvini, 2000; Salvini, 2003; Salvini and Miller, 2005). This paper discusses modeling of the mobility decision, the first component of the REMLOC model, which answers the key question of why people consider moving and decide to search for alternative dwellings. This is an extension to our earlier work (Habib and Miller, 2005, 2006) that investigated behavoural reasons and stressors that could contribute in making mobility decisions. This paper pioneers the measurement of residential stressors based on life cycle events, neighborhood dynamics and market condition, and empirically establishes relationships between stress-producing elements and residential mobility.  

The paper is organized as follows: the next section discusses microbehavioural location choice process in general, followed by a brief introduction of the components of the proposed REMLOC model in Habib and Miller (2005). Section 3 provides a background discussion of the concept of stress and how it relates to residential mobility. Section 4 describes the data used for the empirical application and measurement of stressors. Section 5 briefly reviews the model structure and estimation procedures. Section 6 discusses empirical findings. Finally, Section 7 concludes with a summary of contribution of this study along with limitations and future research directions.
2.  Microbehavioural location choice process and REMLOC

2.1 Conceptual framework

In conceptualizing microbehavioral model of residential relocation, Brown and Moore  (1971) viewed relocation as a sequential decision process comprising two distinct phases of (1) the decision to search, and (2) the decision to relocate after searching and evaluating alternative locations. Speare et al. (1974), however, proposed a three-stage model that consists of (1) the development of a desire to consider moving, (2) the selection of an alternative location and (3) the decision to move or stay. Both models were criticized by Porell (1982) who raised the question concerning the discrete separation of the decision to search and the search process itself. Although Smith et al. (1979) put forward the idea of a simultaneous decision process for relocation by integrating two processes; their work remained a merely attractive mathematical formulation instead of an empirically supported model. Subsequently, many researchers extended the concept of a sequential decision process and adopted a hierarchical modeling system that consists of the following three components: (1) the decision to become active in the market, (2) an explicit spatial search process, and finally, (3) a bid formation/acceptance process within which buyers and sellers interact (see Miller and Haroun, 2000; Salvini, 2003). This paper also adopts this view of the three-stage process as a starting concept, which is also consistent with other decision-making processes within ILUTE (for example, firm location choice process proposed by Elgar and Miller, 2005). This simplification of the entire process of residential mobility and location choice into three stages also facilitates focusing on individual components as a practical approach to the piece-wise construction of the overall model (as argued by Cadwallader, 1992). However, once each component is individually modeled with empirical tests, attempts will be made to identify potential linkages to include feedbacks or collapsing stages where applicable.

As such, the proposed REMLOC model consists of the following three interrelated components: (1) Decision to search model, (2) Spatial dwelling search phase and (3) Modeling the disaggregate bidding process. At this stage, the models are being developed for time-driven microsimulation, where the nominal time step would be a year. The process is modeled at the disaggregate level of the household, which will be considered as a Decision Making Unit (DMU) for the purpose of residential location choices. In the following section, a brief discussion on the decision to search module is presented.

2.2 Decision to search or mobility 

This first component of the REMLOC model determines at each time step whether each Decision Making Unit (DMU) will become active in the housing market or not. The main objective of this step is to identify the triggering events that cause DMUs to actively search for alternative dwellings, and to measure the magnitude of “push and pull factors” that contribute to this mobility decision.

Typically, three key mobility processes exist in an urban area. First, people immigrate from another country, province/state or town, which is predominantly a migration process. Second, ongoing major life cycle events (such as marriage, divorce, etc.) result in household formation and dissolution that trigger residential mobility. Both migrating and new households are “forced movers” who must secure a residential location through the search and bidding process. In contrast, existing or already formed households are “choice movers” who can decide to move or not in response to their housing needs and other life cycle events, as well as the perceived availability of suitable/affordable dwellings to move to. This paper only deals with the mobility decision mechanisms of these intra-urban choice movers. The former two processes will be dealt with separately in the REMLOC model with exogenous input from the migration and demography modules of ILUTE.

Since this model is to be tested in a time-driven microsimulation context, this paper investigates a binary choice logit model of the decision to become active in the market at each time step. The key focus is on identifying potential stressors that initiate mobility decisions and how they relate to the decision to search. The final outcome of the process is the number of decision making units that enter into the housing market in order to search for alternative dwellings in a given time step.  

3. Mobility and Stress

3.1 Concept of stress and applications in mobility research

The key assumption of modeling intra-urban residential mobility is that decision making units reevaluate their residential location decision in response to dynamics in their own household structure, neighborhood and housing markets, which create distinguishable stress leading to actively searching for alternative dwellings in order to relieve those stresses. The original “stress” concept was introduced by Cannon (1932) and Selye (1936) and has wide applications in the field of psychology, physiology and medical sciences, where stress refers to the state of an organism subjected to stressors as defined by environmental or physiological changes (Selye, 1956). The concept was later extended to be viewed as an adjustment process where stress is termed as the discrepancy between current and expected environments (Goldstein, 1990). Since the seminal work of Rossi in investigating why families move (Rossi, 1955) in which he argued residential mobility is a process of adjusting housing needs generated by shifts in family composition that accompany life cycle events, the concept of residential stress has evolved in modeling residential mobility. Mobility research has taken at least three directions in incorporating the concept: early satisfaction-based stress models, stressor-based approaches and utility-driven stress-threshold models.

While a few studies theoretically examined the concept (Wolpert, 1965; Brown and Moore, 1971) by introducing the first approach, others tried to formulate early mobility models (Clark and Cadwallader, 1973; Brummer, 1981; Phipps and Carter, 1984; Phipps, 1989) by assuming the decision to move as a function of the household’s present level of satisfaction and of the level of satisfaction it believes may be attained elsewhere, with the difference between these levels being defined as a measure of stress (Clark and Cadwallader, 1973; Cadwallader, 1992). However, these approaches largely depend on subjective ratings of satisfaction for current and future situations obtained through housing surveys. One notable interesting work was that of Huff and Clark (1978) who attempted to extend the modeling framework by introducing the concept of cumulative stress and cumulative inertia. This approach gave rise to new families of residential hazard duration models (as seen in Henderson and Ioannides, 1989; Pickles and Davies, 1991; Davies and Pickles, 1991; Hollingworth and Miller, 1996; Vlist et al., 2001; Clark and Huang, 2003; Clark and Ledwith, 2005 among others) and disequilibrium models (as seen in Hanushek and Quigley, 1978; Weinberg et al., 1981; Clark and Dieleman, 1996 among others). The focus of much of this work was primarily methodological rather than dealing with advancing the concept of stress, but some of these applications (such as Davies and Pickles, 1991; Hollingworth and Miller, 1996; Clark and Ledwith, 2005) did try to identify and utilize individual-level stressors in explaining mobility. For example, room-stress was measured from the difference between actual available rooms and ideal room requirements. The question then arose concerning how to define required rooms, as this could vary according to socio-economics, tastes and preferences of DMUs. Moreover, almost all of the existing literature that utilized the stressor-based approach did not take into account many of the adjustment factors that should be tested as contributing stressors (as detailed in Section 3.3), instead they relied on static characteristics of the decision makers. 

On the other hand, admitting a natural analogy between satisfaction and utility, Sarjeant (1986) treated stress as the difference between the utility at the current residence and desired/expected/optimal utility derived from a hypothetical new residence (see Sarjeant, 1986; Miller and Sarjeant, 1987) and proposed a cusp-catastrophe model of residential search. In a follow-up study, Miller et al. (1987) formulated a prototype microsimulation residential mobility model that tried to measure residential stress from the difference between the estimated present residential utility depending upon four selected variables (tenure, structural type, persons per room, work accessibility) and the expected residential utility estimated by generating average values of each of those variables for all vacancies seriously considered by the households during the search process. This measurement of expected utility is ad-hoc, and illustrates the difficulty in estimating “expected utility” before the search process begins. 

3.2 Stress concept in REMLOC model 

In REMLOC it is assumed that a DMU does not have enough information prior to the active search stage regarding alternative possible dwellings to evaluate expected vs. current utility. It only knows its current (or immediately past) state and the changes in state that occur at each point in time. This means that the decision to be active in the market is based only on information concerning its current state and the stresses that result from changes of states triggered by life-cycle events and other environmental forces (which might include general market forces). Thus, this research attempts to measure stressors rather than stress directly. These residential stressors are defined as changes in state at each point in time in the DMU life cycle. That is, birth/adoption/death of a DMU member, increase/decrease of the DMU size, job change, income change, increase/decrease of jobs in the household and many other life-cycle factors as well as change in neighborhood quality, market conditions and transportation options define the residential stressors that create stresses that lead to mobility decisions.

Beyond the conceptual appeal and estimation benefits of the stressors, the approach has at least three additional advantages. First, it facilitates inclusion of a variety of policy sensitive variables (i.e. stressors) in the model, potentially making the model sensitive to a variety of land use and transportation policies that affect relocation decisions. Second, it might provide the mechanism to link REMLOC with activity-based travel demand models (such as with TASHA developed by Roorda, 2005; Miller and Roorda, 2003) without additional conceptual arguments, by identifying appropriate stressors that arise from changes in DMU travel options and activity schedules. Thus it would aid in integrating long-term residential location decisions with the short-term activity based paradigm (as envisioned in the conceptual framework of ILUTE discussed in Salvini, 2003; Miller, 2005). Third, the notion of stressors is quite compatible with the architectural design of prototype ILUTE software that explicitly incorporated a stress-manager class which is responsible in resolving stresses arising from different sub-models of ILUTE (Salvini, 2003). Identifying residential stressors would allow evaluating other household decisions (such as auto-ownership) in relation to those stressors. For an example, in response to a change in job location a DMU might decide to buy a car instead of considering moving. Thus, a stressor-based approach provides flexibility to establish interactions between linked decisions within households. 

3.3 Stressors that affect mobility decisions 

The first set of stressors that are hypothesized to be responsible for triggering mobility decision comes from the elements of life cycle events (Habib and Miller, 2005). Hence, DMU composition dynamics such as increase and decrease in DMU size, birth/adoption, expectation of birth of a child, retirement, leaving home to form a new household, school transition etc. need to be investigated. Additionally, job dynamics, such as increase and decrease in number of jobs in the DMU, retirements etc. could also affect mobility decisions. Change of job location might have a significant impact, as it would create substantial stress in commuting, depending on the distance of the new job from the current home. Duration at a residence could also be a contributing factor, which might work as inertia (being a proxy for kinship with the neighborhood). There could be differing impacts of duration: short durations might not be a deterrent to mobility whereas medium to long durations might have noticeable impact. Again, each episode within the life cycle, with increasing age, being single or a couple, etc. might be a factor in considering a move. Certain situational factors such as presence of children, numbers of children, education level, living in suburban areas etc are also worth of investigation. Again, it is also possible that certain life cycle stressors might have delayed effects on mobility. Even some decision making units might consider moving in advance of the stressor event. Therefore, these lag and lead effects for the key stressors need to be examined.    

On the other hand, neighborhood changes such as percentage of movers in the last five years, percentage of non-movers, dwelling density, average dwelling value, unemployment rate, labour force participation rate etc. could also influence mobility decisions. Another important set of stressors might come from aggregate changes in housing supply. Changes in average market prices, mortgage rates, bank interest rates, etc. can be tested in order to incorporate market dynamics into the model. 

4. Data for empirical application

4.1 Data 

Implementation of the concept of stressors within a residential mobility model necessarily requires a panel dataset. A 1998 retrospective Residential Mobility Survey (RMS II) for the Greater Toronto Area (GTA, which in this case includes the city of Hamilton) is used for the purpose. RMS II is a follow-up survey of RMS I (a detailed description of RMS I can be found in Hollingworth, 1995 and Hollingworth and Miller, 1996). While RMS I dealt with only the last five years housing career of the households, RMS II asked respondents to report their housing careers starting from the formation of the household, or the point of time the household moved to GTA, or at least the three previous dwelling units the household had lived in within GTA. Thus, the survey provides a rich panel dataset that can be used to derive longitudinal residential mobility data over a long time period (1971-1998).      
RMS II was a mail-back survey of 1500 randomly selected households.  These households were contacted by telephone one week after they had been mailed the survey to encourage their participation in the survey and to answer any questions the respondents might have. However, only 281 complete responses were obtained. Haroun and Miller (2004) validated the sample against Statistics Canada 1996 Census data and Transportation Tomorrow Survey (TTS) 1996 data, and found fair consistency in representing the population within a few percentage points. 

The survey collected a wide range of information including households’ housing career, market activity, household composition history, employment history etc. For each house, detailed information on dwelling type, number of rooms, number of bedrooms, tenure, purchase price etc. were obtained. In addition, location (address) of the house, year of moving and reason of the move were recorded. For each household, person-specific detailed employment history (each of which includes the job location, category, hour of employment etc.) was collected. Finally, detailed socioeconomic characteristics of the household supplemented by the history of household composition change (as well as reason for the change) were obtained. 

Apart from actual moves, instances in which the household became ‘active’ in the market but did not end up moving were also recorded, including explicit information describing the nature of the search activity involved and why the move was not successful. This ‘active but did not move’ information is unique in the literature and provides an unbiased database for mobility model development.  That is, most data sets only include successful moves and so underestimate mobility participation rates.

In addition to RMS II data, this research also uses Statistics Canada census data (1971-2001) to create neighborhood attributes and Canadian Socio-Economic Information Management System (CANSIM II) data for market condition indicators such as key interest rates and mortgage rates for the period (1971-1998).   

4.2 Data preparation

In total a 28-year longitudinal dataset was created from the RMS II survey data, representing yearly snapshots from the year 1971 to 1998. All dwelling locations and job locations are geocoded. After cleaning for the missing values and some special cases (such as immigrated to another province after living for a while at GTA and then later returning back from that province to the GTA), out of the original 281 households 270 households were considered for further investigation. Since this study is only concerned with intra-urban mobility, initial residential location decisions resulting from formation of a household and immigration into the GTA region are not included in the analysis. In the end, 4097 observations were retained for analysis, where each observation represents the decision of an individual household to be active or not active in the GTA housing market in a given year.

In order to estimate the stressors such as increase/decrease of DMU size, each year’s observation for each household is compared against that of the previous year and the difference is recorded as the measure of stress. Accordingly, birth of a child, duration at the current home (or immediately prior home), change of job, etc. are identified. As discussed above, in addition to actual moves, instances of willingness to move (i.e. became active in the market but did not end up moving) have also been identified within RMS II and are included in the estimation dataset. Typical market activity includes communication with real estate agents, attending open houses, inspecting vacancies etc. 

Data from five census years (1971, 1981, 1986, 1991, 1996, 2001) were utilized to create yearly changes in the census tract level aggregate statistics. These include population density, dwelling density, average value of dwellings, non-movers in the last five years, unemployment rate, labor force participation rate, etc. In total twenty-three variables were created from the census tabulations. Due to changes in census tract boundaries over the years and inter-censual variation in the definition of the variables, extensive efforts were needed to create consistent yearly census tract level data using GIS operations (such as overlays) and interpolations between census intervals. 

4.3 Lag and lead effects 

Since it is hypothesized that there might be lag or lead effects of the stressors, dummy variables were created indicating lags and leads of the events. Arbitrarily three years at each side of the occurrence of the stressor event were considered for the investigation. For example, in case of job change, three dummy variables were created for the three consecutive previous years of the occurrence of the change to indicate the lead of the particular stressor for a given DMU. On the other hand, three dummy variables were created for years following the change to capture possible lagged responses.   

5. Model structure

5.1 Panel data model

Within a panel data setting, each individual faces a sequence of choices over time. The fundamental tenet of modeling this panel structure involves capturing the relationships of these repeated choices. Recently, several researches investigated “mixed logit” formulations in order to capture panel effects within the discrete choice framework. While early applications (such as Boyd and Mellman, 1980, and Cardell and Dunbar, 1980) were restricted to situations in which explanatory variables do not vary over individuals, recent literature (such as Revelt and Train, 1998; Train, 1998; Brownstone and Train, 1999; Greene, 2001 and Train, 2003 among others) extended the concept to incorporate individual heterogeneity, taking advantage of current computer power and advanced simulation techniques for parameter estimation. This has resulted in the development of random parameter (RP) models for panel data. The RP models in fact generalize the standard logit model by allowing the parameters of observed variables to vary randomly over individuals rather than being fixed. The variation in parameters implies that the unobserved utility associated with any alternative is correlated over time for each decision-maker. This correlation is incorporated into the estimation from the panel observations of repeated choices for each individual. 
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The unconditional probability is simply the integral of this product over all values of 
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Here, the integrand involves a product of logits, one for each time period. Therefore, the probability is estimated through simulation taking a draw of 
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from its distribution. The logit formula is calculated for each period, and the product of these logits is taken. This process is repeated for many draws, and the results are averaged over draws (Train, 2003).
5.2 Binary choice random parameter model

Greene (2002) extends the mixed logit model for binary choice random parameter models. The structure of the model is based on the conditional probability 
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Since it is assumed that the parameters are randomly distributed (representing heterogeneity across individuals), E
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However, it is often found in practice that some of the parameters are random while others are nonrandom. In this case, denote two kinds of parameters, 
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can be assumed as a specific distribution. In most applications such as Revelt and Train (1998), Mehndiratta (1996), and Ben-Akiva and Bolduc (1996) it has been specified to be normal or lognormal. On the other hand, Revelt and Train (2000), Hensher and Greene (2001), and Train (2001) have used triangular and uniform distributions. This paper assumes all random parameters to be normally distributed.  

Since the true log likelihood function is a multivariate integral that cannot be evaluated in closed form, the parameters are estimated by simulation (See Greene, 2003; Train, 2003 and Greene, 2002 for details). In the following section, the simulation technique for parameter estimation is briefly described. 

5.3 Simulated maximum likelihood estimation of RP model
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As such, the probability density function can be expressed as 
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Then the joint probability for the ith individual becomes 
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In order to obtain the unconditional density, the random terms are integrated out from the conditional distribution using simulation. So
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Where R represents replications that are averaged. Without an autocorrelation assumption for periods, each replication involves drawing a single random vector since each 
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By maximizing this simulated log likelihood function (equation 6), estimates of structural parameters and estimates of their asymptotic standard errors are obtained. It should be also noted that calculation of the derivatives of equation (6) requires approximation (details of derivatives of the simulated log likelihood can be found in Greene, 2002) 

Finally, goodness of fit statistics are obtained by calculating the log likelihoods of the full model (L) and of the constant only model (L0), which are used to calculate Rho-square estimates (1-L/L0).  

6. Results 

This section provides estimation results for the binary choice logit panel data model where the decision outcome is whether the decision making unit will be active in the market in each year or not. Most of the stressors have been found to be statistically significant at the 95% level of confidence or better. While dynamic variables are found mostly to be random parameters, all of the static variables are nonrandom. Table 1 gives means and standard deviations for the random parameters and coefficients for non-random parameters.

The most significant stressors in explaining mobility decisions are the decrease in number of jobs, birth of a child, job change and increase in jobs. While decrease in jobs has the highest coefficient value (0.474) that increases the probability of moving, a dummy variable reflecting retirements doubles this effect. Interestingly, these stressors are found to be non-random across the sample population. On the other hand, although birth of a child increases stress to consider a move, this effect varies across decision making units with a standard deviation of 0.22. A similar effect is also observed for job change, where the mean of the parameter is 0.296 with a standard deviation 0.76. This means that although change of job location on average significantly encourges a relocation decision in order to relieve commuting stress, this effect varies considerably across households, with certain DMUs preferring other stress-release mechanisms (possibly such as buying a new car) and do not become active in the housing market in response to this stressor. 

Increase in jobs shows a very interesting behaviour in two ways. First, our prior hypothesis was that such an increase would increase the probability of becoming active in the housing market. But the model result shows the opposite effect. This could partly be explained by the results of the static variable number of jobs, which is found to be nonrandom with a coefficient of – 0.086. That means if there are more workers in the household, the probability of becoming active is lower, all else being equal. This presumably reflects inertia effects associated with having more job locations within which they have already been settled in terms of mode choice, commuting patterns and other short-term activity agendas. Therefore, an increase in jobs in a DMU actually brings a similar stationary effect that prevents considering a residential relocation. However, the second issue is that this varaible’s parameter exhibits a very high variability among the decision makers having a standard deviation of 1.254 compared to the mean of – 0.198. So, the model suggest that in some cases an increase in jobs actually does increase the probability of moving. 

Duration at the current home is also found to be one of the significant determinants of mobility decision. The higher the duration in the current location, the lower the probability of moving. It proves the hypothesis of inertia that impedes relocation due to strong community linkages created by longer durations of living in a neighborhood. It is very much consistent with many other previous findings (such as McHugh et al., 1990). This study also tried to capture duration effects at different time scales using dummy variables (such as the first three years in the GTA, three to five years, more than five years, etc. as well as other different combinations), none of which provides expected impacts on mobility. Hence, in the final model, only total duration is retained, which is also found to be a random parameter.

Age of the household head, which is used as the only proxy for different stages in the life cycle in almost all earlier mobility research, is negatively related with the decision to move in this study, which, again, is consistent with earlier findings (in Clark et al., 1986, Mulder, 1993, Vlist et al., 2001 among others). However, in this model we find considerable variability of the effect. This study also tested other indicators such as married/single, presence of children, number of children, year of education, etc. to mark different life stages. The parameters are not found to be statistically significant. One of the interesting applications was using age of the children to depict school transition periods. But the variable also was found to be statistically insignificant.    

In many cross-sectional studies (as well as in some longitudinal mobility research), tenure was considered to be an important factor in explaining residential mobility. Often it was found that renters are more mobile than owners. Again, it was found that highly educated tend to have higher mobility rates compared to less educated workers. Similarly, household size, dwelling type, number of rooms, number of bedrooms, number of people per room etc. were found to be contributing factors for mobility (see Vlist et al., 2001 for a recent review). But this research indicates that most of these static attributes of the dwelling as well as decision makers are not significant when dynamic variables are taken into account in the mobility model.

It is also found that neither job-residence distance nor distance to CBD is significant in explaining mobility decisions. Rejection of distance to CBD could be explainable due to the GTA being a multi-centric metropolitan area (although the Toronto CBD is still a very important employment, shopping and cultural centre within the region). However, the study was expecting to see effects of job-residence distance or changes in average job-residence distance within the mobility decision, but these hypotheses were not confirmed. One possible reason for this unexpected result might be that the stressor “job change” already captures some of the effects of change in commuting distances.    

Although this research examined three years of lag and lead effect for each of the life cycle stressors, the only significant lag/lead effect found was a two-year lagged response to a decrease in DMU size. That is, if the DMU size decreases it take two years to have an impact on the mobility decision. In other words, the probability of moving increases  two years after a DMU size decrease. This is a plausible response, since it may well take a household some time to decide to adjust its dwelling size and/or location in response to a change in household size. 

Regarding neighborhood dynamics, the model indicates that if a DMU lives in a stable community, represented by the fraction of non-movers (in the last five years) in the neighborhood, it is less likely to consider moving. On the other hand, the neighborhood labor force participation rate has a positive impact on household mobility. Both of these variables are found to be non-random. A large set of other neighbourhood attributes has also been examined (for example, average dwelling value, dwelling density, renter/owner ratio, percentage of immigrants etc.). None of those variables are found to be statistically significant.

Although housing supply data for a long period was not available for use in this study, the study uses some housing market indicators such as change in mortgage rate, bank interest rate, etc. to include market dynamics in the model. Although this study finds both mortgage rate and bank interest rate to be significant, due to obvious correlation issues, only one of these two variables can be included in the final model. Since mortgage rates can vary for individual cases and RMS II does not provide any information of mortgage premiums, equity or savings, the bank interest rate has retained in the final model. Note that this interest rate only differs across years, not for individual decision makers. Finally, it is found that changes in interest rate are negatively related with mobility decisions. The interpretation is that if interest rates increase, decision making units are less likely to be active in the market and vice versa. This key market indicator is found to be a random parameter with a statistically significant standard deviation.  

Most of the parameters included in the final model, including means and standard deviations, are statistically significant at the 95% confidence level or better. One or two estimates fall short of the corresponding t statistics value (1.64). However, they are retained in the model due to their importance as policy variables (such as change in interest rate) in an expectation that with larger sample the variables would be statistically significant. The goodness-of-fit statistic (Rho-square) for the logit model is 0.064, which seems reasonable for our case. Note that we are modeling a relatively rare event (becoming active in the housing market) in relation to the number years of living in an urban area. Among the 4097 DMU-year observation, only 408 (10%) instances of market activity were observed in the sample. 

7. Conclusion 

This paper identifies key stressors that induce residential mobility decisions.  It uses a rich retrospective panel dataset collected from the Greater Toronto Area (GTA). It provides key insights about the first stage of a sequential three-step relocation decision process of households, the Residential Mobility and Location (REMLOC) model, which differs substantially from the abstracted location choice models widely used in the transportation field. The paper utilizes a mixed logit modeling framework and estimates a random parameter model of residential mobility that captures individual heterogeneity in a panel data setting. Empirical estimations of the parameters are found to be statistically significant with a reasonable goodness-of-fit statistics, where most of the dynamic variables are found to be random across individuals. 

It is seen that for GTA households stressors mainly arising from job dynamics and household composition dynamics prove to be significant factors in explaining a household’s desire to change residential location. These stressors include increase and decrease in the number of jobs within the DMU, change of job location, retirement, birth of children and a two-year lagged effect for decrease in DMU size. On the other hand, neighbourhood dynamics defined by non-movers over the last five years also have a significant effect on relocation decisions. Housing supply side influence is also captured in terms of changes in interest rates over time. Other determinants of residential mobility within the GTA include: age of the household head, duration at a dwelling and labour force participation rate in the neighbourhood. This implies that household life cycle events and changes in the neighborhood characteristics and market conditions are the determining factors in mobility decision-making.

Since most of the static dwelling attributes, tenure, commuting distance etc. which were previously used in the literature to explain mobility are found in this analysis to be non-significant, it is necessary to divert mobility research towards more behavioral process modeling that can explicitly address dynamics within decision making units and their surroundings. Finding job-related stressors to be highly important in the model, it seems that households’ long-term residential location decisions have strong ties with short-term day-to-day activity planning and scheduling. Therefore, investigating residential mobility in relation to an activity-based travel model might be an interesting next step if activity diary data with mobility decision information are available. The concept of stressors proposed in this paper provides a sound starting point for finding appropriate stressors within short-term activity/travel decision-making that result from shifts in households’ states, as well as investigating how these daily stressors “feed back” into longer term residential mobility decisions (among others).

However, this research has certain limitations. Although it examined a wide range of attributes of neighbourhood, some potentially key factors (such as crime rate) could not be tested due to unavailability of data over a long period of time (this paper needs data for a time frame of 1971-1998). Moreover, neighborhoods experience many changes and evolve over time. This evolution and its subsequent stimuli are not fully explicit in the model. Therefore, it is necessary to observe those dynamics using time series data to clearly understand how neighborhoods change through time and create stress on households.

In essence, this paper provides a solid start in conceptualizing residential mobility as a function of stressors. Residential stressors are clearly defined and estimated. Identification of these stressors has important policy implications. It helps to understand the fundamental stimuli affecting household decision making in an urban area. It can also aid in integrating different system components within an integrated urban model by which additional land use and transportation policies could be tested.
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Table 1: Estimation Results of Residential Mobility RP Model

	Variable
	Parameter
	t-statistics

	Nonrandom parameters
	
	

	Constant
	-0.08359
	-0.503

	Lag of two years for decrease in DMU size
	0.133476
	1.779

	Decrease in number of jobs in DMU
	0.473588
	4.506

	Dummy variable representing retirement
	0.447987
	1.471

	Number of jobs in DMU
	-0.08619
	-2.875

	Non-movers in the neighbourhood for last five years 

(divided by number of households)
	-0.10977
	-2.189

	Labour force participation rate in the neighbourhood
	0.004109
	1.935

	Means for Random parameters
	
	

	Age of head of DMU
	-0.02918
	-12.637

	Duration in the dwelling
	-0.05393
	-11.367

	Birth of a child
	0.325699
	3.549

	Change of job (any member of the DMU)
	0.295775
	4.290

	Increase in jobs in DMU
	-0.19755
	-1.690

	Change in bank interest rate
	-0.01312
	-1.233

	Standard deviations for random parameters
	
	

	Age of head of DMU
	0.002097
	2.119

	Duration in the dwelling
	0.044609
	8.839

	Birth of a child
	0.219424
	1.509

	Change of job (any member of the DMU)
	0.762255
	8.609

	Increase in jobs in DMU
	1.254014
	7.942

	Change in bank interest rate
	0.034653
	1.976

	Number of observations

Number of decision making units (unbalanced panel)

Simulation based on 

Rho-square
	4097

270

100 random draws

0.064
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