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Abstract

This paper proposes a reactive self-learning approach to determine pricing strategies for high-occupancy/toll lane operations. The approach learns recursively motorists’ willingness to pay by mining the loop detector data, and specifies toll rates to maximize the freeway’s throughput while ensuring a superior free-flow travel service to the users of the toll lanes. In determination of the tolls, a multi-lane hybrid traffic flow model is used to explicitly consider the impacts of the lane-changing behaviors before the entry points of the toll lanes. Simulation experiments are conducted to demonstrate and validate the proposed approach, and provide insights on when to convert high-occupancy lanes to toll lanes. 
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1. Introduction 

Road pricing has been advocated as an efficient way to reduce congestion since the seminal work by Pigou (1920) and Knight (1924) (see Lindsey and Verhoef, 2001, and Lindsey, 2006, for recent reviews). However, it has only recently been adopted perhaps due to the advent of electronic tolling and the pressing need for alternative funding sources to finance transportation projects. For example, Singapore implemented its Area Licensing Scheme to restrict vehicular traffic into the city’s central area in 1975. Later (1988) it was renamed Electronic Road Pricing, in part to reflect the use of new technology. In Norway, the first toll ring was operational in Bergen in 1986 and, subsequently, two additional toll rings were established in Oslo and Trondheim. More recently, the city of London introduced in February 2003 a five-pound (later increased to eight) daily fee on cars entering its city center. In the U.S., a more prevalent form of congestion pricing is high-occupancy/toll (HOT) lanes, which refer to high-occupancy vehicle (HOV) facilities that allow lower-occupancy vehicles to pay a toll to gain the access. Since the first HOT lane was implemented in 1995 on State Route 91 in Orange County, California, the concept has been becoming popular among governors and transportation officials, in state legislatures and the media (Orski, 2006).
Often time the operation policies of HOT lanes are to provide a superior free-flow traffic service on the toll lanes while maximizing the throughput rate of the freeway, i.e., the combined throughput of both regular and toll lanes (FHWA, 2003). Between these two objectives, the operators often give higher priority to the former, because the HOV lanes are designed “first and foremost to provide less congested conditions for carpoolers and transit users” (Munnich, 2006). To achieve the objectives efficiently, tolls should be adjusted real time in response to changes in traffic conditions. In practice, several transportation authorities price their toll lanes dynamically, although in an ad-hoc manner. For example, the toll rates for I-394 HOT lanes in Minnesota can be adjusted as often as every three minutes. When a change in the density occurs, the rate is adjusted upward or downward according to a pre-defined “look-up” table (Halvorson, et al., 2006). The literature does not offer a practical and sensible approach either. Previous studies (see, e.g., Arnott et al., 1998; Chu, 1995; Liu and McDonald, 1999; Yang and Huang, 1997 and Kuwahara, 2001) have examined time-varying tolls for bottlenecks. However, most, if not all, of these studies consider hypothetical and idealized situations in which analytical solutions can be derived. For example, the travel demand or the demand function is usually assumed known. 
Recently, Yin and Lou (2006) delivered a proof of concept of a self-learning approach for determining time-varying tolls in response to the detected traffic arrivals. The approach learns in a sequential fashion motorists’ willingness to pay and then determines pricing strategies based upon a point-queue model. This paper further develops the approach with a more realistic representation of traffic dynamics and an explicit formulation for toll optimization. The multi-lane hybrid traffic flow model proposed by Laval and Daganzo (2006) is incorporated to explicitly consider the impacts of the lane-changing behaviors before the entry points of the toll lanes on the freeway throughput and travel time. A nonlinear optimization model is formulated to determine an optimal toll for a rolling horizon to maximize the throughput of the corridor while ensuring the density of HOT lane less than the critical density. This paper also sheds further light on the discussion when HOV lanes should be converted to HOT lanes. 
For the remainder, Section 2 introduces the concept of reactive self-learning and Section 3 encapsulates the multi-lane hybrid model in the toll optimization problem. Subsequently, Section 4 presents a simulation experiment to demonstrate the proposed approach and Section 5 concludes the paper. 
2. Reactive Self-Learning Approach
2.1 Basic concept
The essential idea of the self-learning approach is that in the operation, motorists’ (revealed) willingness to pay can be gradually learned by mining the loop detector data, and the attained knowledge can then be applied to determine optimal tolls for achieving control objectives.
More specifically, given a particular toll rate, we assume the proportion of the motorists willing to pay to gain access to the toll lane can be formulated as an aggregate Logit model whose parameters are unknown. However, since the flow rates before and after the lane choice can be measured directly by loop detectors, and travel times on the toll and regular lanes can be either estimated or directly measured (via additional toll-tag readers installed along the freeway), such revealed-preference information can be used to estimate recursively the parameters of the Logit model. Based on the estimated Logit model (can be viewed as the demand function for the toll lane), the optimal toll rate can be determined explicitly to achieve the operation objectives. 
In summary, the self-learning approach decomposes the toll determination into two consecutive steps: first to use previous revealed-preference information to learn motorists’ willingness to pay, and then to determine the optimal toll rate based on the detected approaching flow rates, the calibrated willingness to pay and the estimated travel times. 

Two sets of detectors are required to implement the idea (see Figure 1). The first set of detectors is installed before the toll-tag reader to detect the approaching traffic flows, while the second set of detectors is installed after the reader to detect the flows on the managed and regular lanes, respectively. Without loss of generality and to facilitate the presentation of the essential idea, this paper discusses a simple setting shown in Figure 1 where there are one HOV/HOT lane and one regular lane, and a bottleneck is activated downstream. Moreover, there is only one segment of HOT lane with one entry, and there is no on/off ramp in between. 
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Figure 1: System configuration for the self-learning approach

In the above figure, 
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 represent the approaching flow rates on HOV and regular lanes during time interval t respectively while 
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 are the flow rates on HOT and regular lanes after the lane choice. 
2.2 Calibration of willingness to pay 
Given a specific toll rate, we use a Logit model to reflect motorists’ decision on whether to choose the HOT lane. Assuming homogeneous motorists with the same willingness to pay, the relationship between the approaching flow rates and the rates on HOT and regular lanes is as follows:
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where 
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 are the (average) travel times on the HOT and regular lanes at time interval t.  In Equation (1), there are three parameters to be estimated, 
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 encapsulates other factors affecting motorists’ willingness to pay. Note that 
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 represents motorists’ trade-off between time savings and tolls, i.e., the value of travel time. For other variables, 
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 is set by the operator. It should be pointed out that here we use volume splits 
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 to approximate the probabilities of lane choices. 
In real-time operations, a recursive least-squares technique or discrete Kalman filtering can be used to estimate the constant parameters, 
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. Equation (1) is essentially the demand function for the toll lane and can be reformulated as follows:
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. According to Equation (2), the system/observation equation can be concisely written as follows:
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where y(t) is the observed system output and ey is a random measurement error with a mean of zero and a known variance of σy  (the value could vary with different types of sensors). 
Applying discrete Kalman filtering technique to estimate the parameters, we have:
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where the variables with “^” are estimates. With an initialization of 
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 real time with newly-obtained information. As time evolves, the impact of the initialization will be diminishing, and accurate estimates of
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 can be expected. 
3 Optimal Pricing Strategies 

The calibrated motorists’ willingness to pay at interval t provides a basis for determining a toll for interval t+1. Consistent with the prevailing operation policies of HOT lanes, we now attempt to specify optimal toll rates to maximize the throughput of the corridor while ensuring a free-flow condition on the toll lane. For a more realistic representation of traffic dynamics, we adopt the multi-lane hybrid traffic flow model proposed by Laval and Daganzo (2006), motivated by the postulate that the lane-changing behaviors before the entry points to the HOT lane may create voids in traffic streams and reduce the throughput of the lane. In Laval and Daganzo’s multi-lane hybrid model, each lane is modeled as a separate kinematic wave (KW) stream interrupted by lane-changing particles that completely block the traffic, and the flow transfers are predicted by using the incremental-transfer (IT) principle (Daganzo et al., 1997) for multiple KW problems, coupled with a one-parameter model for discretionary lane-changing demand. In this paper, discretionary lane changes due to the positive speed difference between lanes are not considered. Of interest are the lane changes made by the low-occupancy vehicles that want to pay to access the HOT lane. The lane-changing demand is given by Equation (1). If the demand plus the arrival flow on the HOV lane exceeds available capacity, the IT principle is used to prorate that available capacity
. 
To implement the hybrid model, all lanes are partitioned into small cells of length 
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, in addition to discretizing the time into each time interval 
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. See Figure 2 for the discretized freeway representation. 

[image: image44]
Figure 2: Discretized freeway representation 
A rolling-horizon framework is used to optimize toll rates. Within the optimization horizon (N time intervals), it is assumed that traffic arrivals remain constant as the one detected at time t, namely 
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is constant as well. The flow rates at cell m and n represent the throughput of the facility, and the density of cell l serves as a level-of-service measure for the toll lane because this cell tends to suffer the most due to the blocking effect of lane changing vehicles. The control objectives can now be more specifically represented as to maximize the sum of the flow rates at the downstream bottleneck (cell m and n) while ensuring the density of cell l less than the critical density. As aforementioned, the flow rates and density are determined by the multi-lane hybrid model and the demand function for toll lane, which essentially function as a mapping 
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where 
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 are the flow vectors for cell m and n whose elements are flow rates at each time interval within the optimization horizon, and 
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 is the density vector for cell l. 
Consequently, the toll optimization problem can be written as: 
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where 
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 is a penalty parameter; 
[image: image55.wmf]k

ˆ

 is the critical density of the HOT lane and 
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 is the maximum toll rate specified by the tolling authority. Note that the objective function is continuous and bounded above, and the feasibility set is compact, therefore the set of maxima is nonempty. A variety of numerical algorithms, such as the golden-section method, can be used to search for a local optimum. 
4. Simulation Study

4.1 Design of Simulation Experiments 
In order to demonstrate and validate the proposed self-learning approach, we conduct simulation experiments. The developed simulation platform consists of three major components: controller, monitor and simulator. The controller mimics the operations of the self-learning approach. The monitor serves as a surveillance system, collecting information at each interval including flow rates before and after the lance choice, densities, and travel times. The simulator attempts to replicate the motorists’ lane choice behaviors. At each interval, based on the toll rate specified by the controller and the instantaneous travel times from the monitor, the simulator applies a Logit model with the true value of 
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 to compute the percentages of the motorists of choosing the HOT lane. 
The simulation site is a freeway segment shown in Figure 3. It is assumed that each lane obeys a triangular fundamental diagram as well as the downstream bottleneck. The relevant parameters are reported in Figure 3 and the small triangle is for the lane in the downstream bottleneck. Additionally, all lane-change vehicles are assumed to have an acceleration rate of 12.22 ft/s2. 
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Figure 3: Simulation settings
The simulation duration is equally divided into discrete time intervals of 0.6 seconds, and all lanes are partitioned into small cells of 0.01 mile. To be consistent with the practice, the toll rate varies every two minutes, and the rolling horizon for toll optimization is 10 minutes. The weighting factor 
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 in the toll optimization problem is set as one and the problem is solved using the golden-section method. In the simulation, random arrivals are generated with an average rate of 2400 vph for the regular lane and 600 vph for the HOV lane. For the simplicity, we assume in the Logit model (1) that 
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is known as 0.5. Hence, only two parameters are left to be estimated. The true values of 
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and γ used in the simulator are 1 and 0.2. 
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and P(0) are initialized as 2, 0 and an identity matrix respectively. 
4.2 Performance of Self-Learning Controller  
Figure 4 is a proof of the concept that motorists’ willingness to pay can be gradually learned. The figure presents the estimates of parameters 
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 and γ. As time evolves, the estimates converge from the initial values of 2 for 
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 and 0 for γ to the true values of 1 and 0.2 respectively.
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Figure 4: Calibrated 
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Figure 5 presents the optimal toll rates determined by the self-learning controller and Figures 6 and 7 report the resulting throughputs and densities. It can be seen that the controller is able to adjust the toll real time to maintain a high and stable throughput of HOT lane while preventing the lane from being congested. The average maximum density along the lane is 30.7 vpmpl, less than the critical density of 40 vpmpl. Although the average throughput is 1170.6 vphpl, only 65% of the capacity of the downstream bottleneck, it is twice of the HOV volume, i.e., the utilization of HOV lane is doubled. The reason for the HOT lane throughput not up to the capacity of the downstream bottleneck is the lane changings before the entry to the HOT lane. The lane-changing vehicles act as moving bottlenecks on the HOT lane while accelerating to the speed prevailing on the lane. They will create gaps in flow in front of them that propagate forward on the HOT lane, and thus reduce the throughput substantially. In ideal situations, the maximum HOT lane throughput we can achieve is 80% of the downstream bottleneck capacity, as discussed later in section 4.3. In this simulation experiment, loss of throughput is experienced due to initial inaccurate estimates of motorists’ willingness to pay. 
Figures 6 and 7 also present the case of opening the HOV lane free of charge after the toll gate. Compared with the HOT lane, such an operation leads to almost the same throughput (1199.4 vph), but causes the toll lane congested (average maximum density is 58.4 vpmpl). 
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Figure 5: Optimal toll rates 
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Figure 6: Resulting HOT throughputs 
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Figure 7: Resulting maximum density along the HOT lane 

4.3 Conversion of HOV to HOT  

There is a heated debate on when and where to implement HOT, HOV and general purpose lanes in the transportation community. For example, Dahlgren (2002) found that an added HOT lane performs (in terms of reducing delay) as well as or better than an HOV lane in all circumstances. This is under the assumption that a toll can be correctly set such that the HOT lane can be fully utilized but not congested. Prevailing wisdom also thinks converting HOV lane to HOT lane will not worsen traffic condition, if charging the right price. However, our observation from the simulation experiments suggests that there is a threshold in terms of HOV inflow, beyond which the HOV lane actually performs better than the HOT lane. 
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Figure 8: The freeway throughputs under HOV and HOT operations
Figure 8 presents the (optimal) freeway throughputs with the operations of HOT and HOV respectively under various HOV inflow rates. The throughputs are obtained under the conditions that motorists’ willingness to pay is known and the inflows are uniform for the entire simulation duration with the initial densities of the two lanes as 0 and 100 vpmpl respectively. Figure 8 shows that the maximum throughput of the HOT lane is around 1440 vph (total freeway throughput reported in the figure minus the regular lane throughput of 1800 vph), 80% of the downstream capacity under optimal pricing control. A higher value can be achieved if the free flow condition of HOV lane is sacrificed. But since the moving-bottleneck effect always exists, HOT lane may never be fully utilized.

Therefore, due to the impacts of the lane changes before the entry points to the HOT lane, if the proportion of HOVs is high enough, it may not be wise to covert HOV to HOT. Our experiments suggest that the threshold is approximately 80% of the downstream capacity. Certainly, if we further consider the costs incurred by toll collection, the value will be even lower. 
5. Concluding Remarks

This paper has developed and demonstrated a self-learning approach to determine dynamic pricing strategies for HOT lanes to provide superior free-flow travel services as well as efficiently utilize the capacities. The approach makes use of the data available from the loop detectors that are typically installed for HOT lane operations, and thus is cost-effective to implement. 
The proposed approach is localized in that it determines a toll price for each segment or each entry point without any coordination with other segments. Localized control may not lead to a system optimum for the whole corridor. More importantly, such uncoordinated approaches may create inequality among users entering the managed lane from different entry points. For example, motorists who enter the toll lane via a downstream entry point may need to pay much higher toll for less amount of time saving. The inequality become severe when the time-saving per unit amount of the toll paid is significantly different among these motorists. The proposed approach is also myopic because it determines a toll rate for each time interval depending only on the inflows measured at that particular time. The toll may thus fluctuate dramatically, which may cause safety issues in reality. If the future inflows can be predicted, a time-varying optimal toll rate with the toll variation constrained may be determined for the rolling horizon. This can be viewed as coordination in time dimension. Future research will be conducted to address these two issues. 
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� In this case, the number of lane changes estimated from the loop detector data does not necessarily represent the lane-changing demand. Therefore, when the HOT lane is congested, the detected flows will not be use to update the estimates of motorists’ willingness to pay.
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