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Abstract
This paper (an abbreviated version of Arnott and Rowse (2007)) develops and calibrates a model of downtown parking in a city without mass transit, and applies it to investigate downtown parking policy.  There is curbside and garage parking and traffic congestion. Spatial competition between parking garages determines the equilibrium garage parking fee and spacing between parking garages.  Curbside parking is priced below its social opportunity cost.  Cruising for parking adjusts to equalize the full prices of on- and off-street parking.  The central result is that raising curbside parking fees appears to be a very attractive policy since it generates efficiency gains that may be several times as large as the increased revenue raised.
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Downtown Parking in Auto City

1.
Introduction

Anyone who drives in a major city will attest to the high cost of parking.  Parking in a convenient parking garage is expensive, while finding cheaper parking typically entails cruising for parking and walking some distance.  To our knowledge, there are no reliable estimates of the proportion of the average downtown auto full trip price associated with parking.  Informal estimates of one half seem too high.  It seems warranted to say however that the attention paid by economists to parking is far less than its importance in urban travel merits.  There is a sizeable literature in economics on urban auto congestion but only a few recent papers on the economics of parking.

Small and Verhoef (forthcoming) provides an excellent and up-to-date review of both bodies of literature. Arnott, de Palma, and Lindsey (1992) and Anderson and de Palma (2004) focus on the temporo-spatial equilibrium of parking when all drivers have a common destination and arrival time, such as for a special event or the morning commute to the central business district.  Arnott and Rowse (1999) examines steady-state equilibria of cars cruising for parking on a circle when parking is unsaturated.  

This paper contributes to an emerging sub-literature that looks at the economics of saturated (fully-occupied) parking, in which cruising for parking plays a central role.  The quantitative importance of cruising for parking is documented in Shoup (2005, Ch.11). Arnott and Inci (2006) presents a model of an isotropic downtown area in steady state, in which all parking is curbside (on-street) and cruising for parking contributes to traffic congestion.  Calthrop (2001), Calthrop and Proost (2006), and Shoup (2005, Ch.13) present steady-state models with both curbside and garage (off-street) parking, in which the stock of cars cruising for parking adjusts to equalize the full prices of on- and off-street parking, but do not take into account that cars cruising for parking contribute to traffic congestion.  Calthrop (2001) and Arnott (2006) consider the potential importance of garage market power, Calthrop by assuming a monopoly supplier, and Arnott by assuming spatial competition between parking garages.  This paper innovates in providing an integrated treatment with curbside and garage parking, cruising for parking, garage market power, and traffic congestion.  

The paper's focus is on some aspects of parking policy in the downtown area of major cities where mass transit plays only a minor role and where density is sufficiently high that curbside parking is fully saturated and garage parking important.  Curbside parking is underpriced while garage parking is overpriced due to the exercise of market power, and the price differential between the two generates cruising for parking.  How much curbside should be allocated to parking? And how should parking meter rates be set? The model is calibrated in order to get some preliminary estimates of the quantitative importance of the various effects identified.  

In the first best, on- and off- street parking should be pricing at their social opportunity costs.  The shadow price of an on-street parking spot is the cost of the increased congestion caused by using the space for parking rather than for traffic, and the shadow price of an off-street parking space equals its marginal cost.  The split between the two should be chosen such that their opportunity costs are equalized.  When, however, parking prices are distorted, the second-best split depends on how the split affects cruising for parking, and on how cars cruising for parking contribute to traffic congestion.  

In terms of policy insights, our principal finding is that, under conditions of even moderate traffic congestion, the social benefits from raising on-street parking rates may be several times the additional meter revenue generated.  Another important finding is that normally less space should be allocated to curbside parking the larger is the wedge between the curbside and garage parking rates.

Section 2 considers a simple model in which off-street parking is supplied at constant unit cost.  Section 3 presents and analyzes the central model that takes into account spatial competition between parking garages.  Section 4 presents the calibrated numerical examples.  And section 5 concludes.
2.
A Simple Model
Understanding the central model of the paper will be facilitated by starting with a simplified variant. A broad-brush description is followed by a precise statement.

2.1 Model description

The model describes the equilibrium of traffic flow and parking in the downtown area of a major city.  To simplify, it is assumed that the downtown area is spatially homogeneous and in steady state, and that all drivers are homogeneous.  Drivers enter the downtown area at an exogenous uniform rate per unit area-time, and have destinations that are uniformly distributed over it.  Each driver travels a fixed distance over the downtown streets to his destination.  Once he reaches his destination, he decides whether to park on street or off.  Both on- and off-street parking are provided continuously over space.  If he parks on street he may have to cruise for parking, circling the block until a space opens up.  After he has parked, he visits his destination for a fixed period of time and then exits the system.  Garage parking is assumed to be provided competitively by the private sector at constant cost, with the city parking department deciding on the curbside meter rate and the proportion of curbside to allocate to parking.  The on-street parking fee (the meter rate) is less than the garage fee.  Consequently, all drivers would like to park on street but the demand inflow is sufficiently high that this is impossible.  On-street parking is saturated and the excess demand for curbside parking is rationed through cruising for parking; in particular, the stock of cars cruising for parking adjusts such that the full price of curbside parking, which is the sum of the meter payment and the cost of time cruising for parking, equals the garage parking payment.  The downtown streets are congested by cars in transit and cruising for parking; in particular, travel speed decreases with the density of traffic and the proportion of curbside allocated to parking.
2.2 Formal model
Consider a spatially homogeneous downtown area to which the demand for travel per unit area-time is constant at D.  Each driver travels a distance ( over the downtown streets to his destination, parks there for a period of time (, and then exits.  A driver has a choice between parking on street, where the meter rate is f per unit time, and off street in a parking garage, at a rate c per unit time, equal to the resource cost of providing a garage parking space. Both curbside and garage parking are provided continuously over space.  By assumption f ( c, and the excess demand for curbside parking is rationed through cruising for parking.  The stock of curbside parking is P per unit area, so that the number of garage parking spaces per unit area needed to accommodate the exogenous demand is D( - P.  The technology of traffic congestion is described by the function t = t(T,C,P), where t is travel time per unit distance, T is the stock of cars in transit per unit area, and C the stock of cars cruising for parking per unit area.  t is increasing and convex in its arguments.  

When there are cars cruising for parking, it is important to distinguish between flow and throughput.  Since density, T + C, is defined in terms of cars per unit area, the fundamental identity of traffic flow implies that flow is defined in units of car-miles traveled per unit area-time, (T + C)/t.  Throughput is defined analogously to flow but includes only cars in transit, and is therefore T/t.  

Steady-state equilibrium is described by two conditions.  The first, the steady-state equilibrium condition, is that the input rate into the in-transit pool, D, equals the output rate, which equals the stock of cars in the in-transit pool divided by the length of time each car stays in the pool, T/((t(T,C,P):
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The second equilibrium condition, the parking equilibrium condition, is that the stock of cars cruising for parking adjusts to equilibrate the full prices of garage and curbside parking:
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(2)
The full price of garage parking is c(.  The full price of curbside parking is f( plus the (expected) time cost of cruising for parking.  The expected time cruising for parking equals the stocks of cars cruising for parking, C, divided by the rate at which curbside parking spots are vacated, P/(, and ( is the value of time.   Eq. (2) can be rewritten as
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which indicates the equilibrium stock of cars cruising for parking as a function of c, f, P, and (.  Note that the stock of cars cruising for parking is larger, the larger is the difference between the garage parking fee and the meter rate and the greater the number of curbside parking spots.  

[INSERT FIGURE 1 HERE]
Figure 1 displays the equilibrium in T-C space.  Eq. (1) is convex from the assumed properties of the congestion function, and (2) is a horizontal line.  We assume that the parameters are such that the two loci intersect.  There are two equilibria, one corresponding to uncongested travel, the other to congested travel.  Based on a stability argument, we focus on the former equilibrium.  

Consider the effect of raising the on-street meter rate.  Eq. (2) drops down and the equilibrium levels of C and T fall.  Raising the on-street meter rate reduces the price differential between on- and off-street parking, which reduces the stock of cars cruising for parking.  With a reduced stock of cars cruising for parking, the stock of cars in transit satisfying the steady-state condition falls. 

2.3 Full social optimum

The full social optimum entails no cruising for parking.  The density of in-transit traffic is determined by (1) with C = 0.  Resource costs per unit area-time, RC, equal the stock of cars in transit per unit-area times the value of time, (T, plus the cost of garage parking spaces per unit area-time, c(D( - P).  The planner chooses T and P to minimize resource costs subject to the steady-state equilibrium condition.  The optimal split between on- and off-street parking is such their costs are equalized, The cost of an extra garage parking space is c, and that of an extra curbside parking space the cost of the increased congestion it induces.  

2.4 Constrained (second-best) social optimum

We now consider how the optimal number of curbside parking spaces changes when the meter rate is set below c, with the stock of cars cruising for parking adjusting to satisfy the parking equilibrium condition. The planner's problem is to choose T, C, and P to minimize resource costs per unit area, subject to both equilibrium conditions.  The cost of a garage parking space remains c but the cost of an extra curbside parking space is higher than in the full social optimum, since having the extra curbside parking space not only increases congestion directly but also increases the stock of cars cruising for parking, which exacerbates congestion.  Thus, the more curbside parking is underpriced, the fewer the optimal number of on-street parking spaces.  

2.5 Revenue multiplier

Raising the meter rate has no effect on the price of garage parking, and therefore no effect on the full price of parking.  Consequently, raising the meter rate causes cruising-for-parking costs to fall by exactly the same amount as parking revenue rises.  Furthermore, the reduction in the stock of cars cruising for parking causes traffic congestion to fall, which benefits everyone.  Thus, raising an extra dollar of meter revenue generates a social benefit of more than one dollar, an amount we refer to as the revenue multiplier.  
3.
The Central Model

In the simple model of the previous section, we assumed that garage parking is continuously provided over space at a unit cost of c per unit time and that garage parking is priced at this level.  In fact, parking garages are discretely spaced and in most cities apply non-linear pricing schedules as a function of the length of time parked.  This section extends the model of the previous section to provide a more realistic treatment of parking garages. 

There are several reasons why parking garages are discretely rather than continuously provided over space.  First, since it is costly to integrate parking with other uses in the same building, most garages are separate structures.  Second, since parking garages are typically unsightly and since entry into them and exit from them generates congestion, planners often site parking garages out of sight on secondary streets.  And third, since parking garages require a ramp, which entails a fixed cost, their provision is characterized by horizontal economies of scale.  In our modeling, we assume that the discrete spacing of parking garage derives from these economies of scale.
3.1 Sketch of the model 

We assume that parking garages are privately owned and operated, that the garage operators decide on capacity and pricing, without regulation, and that there is a grid network of streets. Because parking garages are discretely spaced, a typical customer is willing to pay a premium to park in the garage that is most convenient to him since he does not have to walk as far to his destination. This friction of space confers market power. The discretely spaced parking garages compete with one another via a spatial competition game.  We shall not describe the game or its solution here.  Suffice it to say that in our specification of the game, the equilibrium has the following characteristics: i) garages are uniformly arrayed over space, with each garage having a diamond-shaped market area; ii) entry and exit forces profits to zero; and iii) each garage charges its customers a mark-up over marginal cost equal to the cost of walking to the boundary of its market area.  Let K(x) denote the minimum cost of operating a parking garage with capacity x (which incorporates the decision concerning the number of floors) per unit time,  s the equilibrium grid spacing between parking garages, and S the parking charge for the common parking duration (.  Then 
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the first term on the right-hand side is the marginal cost of a garage parking space times the length of time parked, the second the cost of walking to the boundary of the garage market area (the distance to the boundary is s/2, the customer walks there and back at walking speed w taking s/w units of time and hence at a time cost of (s/w).  

One can also solve for the socially optimal spacing and capacity of parking garages, which minimizes the average walking cost and garage construction cost per parker.  Holding fixed the number of garage parkers, relative to the social optimum the spatial competition equilibrium entails garages that are inefficiently small and closely spaced.  

3.2 Second-best parking policy

The government has a wide range of potential parking policy instruments, including restricting the capacity of parking garages and regulating their spacing and pricing.  Here we ignore the government's regulation of private parking garages, and consider only two policy instruments, the proportion of curbside to allocate to parking and the curbside parking meter rate.  Furthermore, to avoid having to model price competition between the government in setting the meter rate and the parking garages in setting garage rates, we assume that the government sets the meter rate below garage marginal cost.  In that case, curbside parking is saturated and the private parking garages compete only among themselves, taking the residual demand for parking as given.  

The analysis of second-best parking policy is difficult because there are many interacting distortions.  Because travel demand is fixed by assumption, we do not have to consider the distortion associated with unpriced in-transit travel congestion.  Three distortions remain however.  Curbside parking is underpriced.  Garage parking is overpriced, due to the exercise of market power.   And garages are inefficiently closely spaced.  

The next section considers a sequence of calibrated numerical examples for the central model.  
4.
Numerical examples

4.1 Calibration

The following parameters are employed. The units of measurement are hours for time, miles for distance, and dollars for value.

( = 2.0       ( = 2.0       f  = 1.0       ( = 20.0       P = 3712       D = 7424

The in-transit travel distance is 2.0 miles; the parking duration is 2.0 hours; the on-street meter rate is $1.00 per hour; the value of time is $20.00 per hour; the number of curbside parking spaces per square mile is 3712 in the base case; and the inflow rate is 7424 cars per square mile-hour.  We do not know of data on mean non-residential parking duration over the entire downtown area, but two hours seems reasonable when account is taken of non-work trips and auto trips taken by employees during the working day.  Since the model ignores downtown residents, the ratio of one mile traveled on downtown streets per hour parked seems reasonable too.  The hourly curbside meter rate is that employed in Boston.  The value of travel time is consistent with recent estimates for wealthy cities (e.g. Small, Winston, and Yan (2005)). In the base case, it is assumed that curbside parking is on only one side of the street.  Assuming 8 city blocks per mile on a Manhattan grid gives 64 blocks per square mile and 128 block-lengths of parking. With a street width of 33 feet, a parking space length of 21 feet, and allowance for crosswalks, 29 cars can be parked per block-length of curbside parking, and hence 3712 per square mile.  Since parking duration is two hours, the stock of parking spaces needed to accommodate the exogenous demand is 14848 per square mile, so that in the base case one-quarter of the cars park on street and three-quarters off street. Taking the ratio of downtown employment in Boston to downtown off-street, non-residential, non-hotel parking spaces (Boston Transportation Department (2001)) as representative, the assumed figure for D corresponds to downtown employment densities for such cities as Winnipeg, Perth, San Diego, Sacramento, and Phoenix (Demographia (2007)).

The form of the congestion function is
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This assumes that velocity is related to effective density according to Greenshield's relation.  If there is no parking on street, there are three lanes available for traffic and jam density is (; if there is parking on street, jam density equals ( times the proportion of lanes available for traffic (which equals (1 - P/Pmax)). Effective density is the number of in-transit passenger-car equivalents in terms of congestion, and a car cruising for parking equals  ( PCE's.  This congestion function has four parameters:
t0 = 0.05       ( = 5932.38        Pmax = 11136       ( = 1.5

Free-flow travel speed is 20 m.p.h.  Jam density with no parking on street is consistent with data given in the Transportation and Traffic Engineering Handbook (1982, Table 16-17) on maximum lane service volumes. Pmax is set based on the assumption that each street has three lanes of traffic.  And a car cruising for parking is assumed to generate 1.5 times as much congestion as a car in transit.  

We assume the garage (amortized) cost function, which includes the cost of land, to have the form 
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where h is garage height in floors. The cost function incorporates horizontal economies of scale due to ramp fixed cost, as well as increasing marginal construction cost with respect to garage height. This functional form was chosen for analytical convenience. Based on garage construction cost data presented in Shoup (2005), rather than on engineering cost data, we chose the following parameter values:
 
R = 3.5 ∙ 105       A0 = 4.52 ∙ 10-5       a = 1.44 ∙ 10-5       k0 = 0.7       k1 = .0875       F0 = 7   F1 = 0.875.

4.2 Numerical results

All the numerical exercises, which are presented in Table 1, are for the central model.   Each of the columns corresponds to a different exercise.  Each row gives the value for a particular variable across the various exercises.  Column 1 describes the social optimum with the base case allocation of curbside to parking of P = 3712.  Column 2 provides the numbers for the social optimum with the first-best allocation of curbside to parking.  Column 3 presents the base case equilibrium.  Column 4 displays results for the same case as column 3 but with the allocation of curbside to parking optimized.  Column 5 gives the results for the base case equilibrium but with the meter rate raised from $1.00 to $1.50 per hour.  Finally, column 6 shows the equilibrium for the same case as column 5 but with the allocation of curbside to parking optimized. 

Consider first the social optimum, described in column 1, in which curbside parking is allocated on one side of the street, so that one-quarter of drivers park on street.  The Manhattan spacing between parking garages is 0.168 miles, and each garage holds 157 cars and has 7.36 floors.  All traffic is in transit and travel speed is 15.0 m.p.h.  GC is garage cost per unit area-time, and D is throughput in cars per unit area-time, so that GC/D is garage cost per driver (or, equivalently, per trip), including those who park on street, or average garage cost.  Similarly, WC/D is average walking cost, TT/D average in-transit travel cost, CP/D average cruising for parking cost, and RC/D average resource cost.  Average garage cost is $3.32, average walking cost $0.56, average in-transit travel cost $2.67, average cruising-for-parking cost zero since there is no cruising for parking in the social optimum, and average resource cost $6.55.  The cells for S (the garage parking charge) and F (the average full price of a trip) are blank since the social optimum allocation does not entail prices, and P is blank since its value is exogenous. The relative importance of average garage parking costs (GC/D + WC/D) to average driving cost (TT/D + CP/D) reflects the ratio of travel distance to parking duration, which in the example is 1.0.

Column 2 describes the social optimum in which the amount of curbside allocated to parking is chosen to minimize resource costs.  Comparing columns 1 and 2 indicates that the optimal amount of curbside to allocate to parking is not very different from that assumed in the base case.  Not surprisingly, therefore, optimizing the amount of curbside parking results in only a small resource saving.  

Column 3 describes the equilibrium in which the meter rate is $1.00/hr. and curbside parking is on one side of the street.  Comparison of columns 3 and 1 is of particular interest since it indicates the effects of moving from the social optimum to the equilibrium, holding constant the proportion of curbside allocated to parking.  There are two qualitative differences between the equilibrium and the social optimum.  First, spatial competition results in suboptimal spacing between parking garages.  Second, since curbside parking is underpriced and garage parking overpriced, there is cruising for parking in the equilibrium, with the stock of cars cruising for parking adjusting such that the full prices of on- and off-street parking are equalized, and the cars cruising for parking slow down traffic.  

In this equilibrium, the capacity of each parking garage is about half that in the social optimum, while the spacing between them is about two-thirds that in the social optimum.  Since average garage parking cost is $3.88 in the social optimum and $4.02 in the equilibrium, the average social cost associated with this distortion is $0.14.  The distortion generated by cruising for parking is considerably larger.  The distortion has two components.  The first, average cruising-for-parking cost, is $0.84. The second, the increase in average in-transit travel cost due to the increased congestion caused by the cars cruising for parking, is $1.17.  The average deadweight loss caused by cruising for parking is therefore $2.01, which is an order of magnitude larger than that generated by the suboptimal spacing between parking garages.  Cars cruising for parking constitute 18% of the traffic density and slow traffic down from 15.0 m.p.h. to 10.4 m.p.h.  The results indicate that even a modest proportion of cars cruising for parking can cause a substantial increase in congestion.  Since free-flow travel speed is 20 m.p.h., congestion causes travel speed to fall by 5.0 m.p.h. in the social optimum and by 9.6 m.p.h. in the equilibrium.  Thus, even though they constitute only 18% of cars on the road, cars cruising for parking cause the time loss due to congestion to almost double.  The combined effect of the two distortions is to raise average resource cost by $2.14, an almost one-third increase relative to the social optimum.  The full price of travel exceeds average resource cost because of the curbside parking fee, which is a transfer from curbside parkers to the government.  One-quarter of drivers pay $2.00 for curbside parking, causing the full price of travel to exceed average resource costs by $0.50.

Column 4 gives the second-best equilibrium, in which the meter rate remains at $1.00/hr. and the proportion of curbside allocated to parking is optimized conditional on the distorted meter rate.  Comparing columns 3 and 4 indicates by how much the deadweight loss due to the two distortions is reduced by optimizing the amount of curbside allocated to parking.  It is second-best efficient to completely eliminate curbside parking; even with no curbside parking, the marginal cost of a curbside parking space exceeds the marginal benefit.  Average resource cost falls from $8.69 to $7.90.  Thus, optimizing the amount of curbside parking reduces the deadweight loss from the two distortions by about 35%.   

Column 5 shows the equilibrium when one side of the street is allocated to curbside parking, as in the base case, and the parking fee is raised from $1.00/hr to $1.50/hr. Raising the fee has no effect on average garage or walking cost, but, by reducing the difference between the on- and off-street parking prices, reduces the stock of cars cruising for parking by about 30%, which reduces congestion and hence average in-transit travel time cost.  It is of particular interest to examine the revenue multiplier -- the ratio of the increase in social benefit to the increase in parking fee revenue due to the rise in the meter rate, holding fixed the curbside allocated to parking.  Average meter fee revenue rises by $0.25 and average social benefit by $0.80.  The revenue multiplier is therefore about 3.2; for every extra dollar of revenue raised from the increase in the meter rate, the social benefit rises by about $3.20.  This seems almost too good to be true but reflects how distortionary is the wedge between the on- and off-street parking rates.  

Comparing columns 5 and 6 shows how the equilibrium changes when the allocation of curbside to parking is optimized conditional on the higher on-street meter rate.  Comparing columns 4 and 5 shows how the equilibrium changes when the meter rate increases, with the allocation of curbside to parking being optimized conditional on the meter rate.
4.3
Principal insights
The city described in the numerical examples is of only moderate density and has only moderate traffic congestion. The cruising for parking generated by the combination of the underpricing of curbside parking and the overpricing of garage parking nevertheless caused substantial deadweight loss. In the base case numerical example, with curbside parking on only one side of the street, the deadweight loss due to cruising for parking was $2.01 per trip, more than thirty percent of the full trip price in the social optimum.  Two dollars per trip might not appear substantial but with the assumed entry rate of cars into the downtown area for 1600 hours per year, this translates into $24 million per square mile every year.  

In the examples, either eliminating curbside parking or increasing the meter rate from $1.00/hr. to $1.50/hr. reduced the deadweight loss by about $0.80 per trip.

Considering how much valuable time is lost due to cruising for parking, why do local governments almost everywhere persist in setting the curbside meter rate so low?  We have posed this question to several seminar audiences.  The most common answer we have received is that the downtown merchants' association lobbies city hall to set the meter rate low because the merchants fear the loss of customers to suburban shopping centers.  But in the model of this paper, lowering the meter rate increases the full price of a trip downtown; it has no effect on the full price of parking and increases traffic congestion.  Do downtown merchants simply not understand that keeping the meter rate low actually discourages shopping downtown, or is some essential consideration missing from the model?
5.
Directions for Future Research and Conclusion

This paper is the fourth of an integrated series that investigates the steady-state equilibrium of downtown parking and traffic congestion when the underpricing of curbside parking leads to cruising for parking.  Chapter 2 of Arnott, Rave, and Schöb (2005) is a preliminary essay that presents the basic model framework, discusses some aspects of the economics and puts forward a tentative research agenda.  Arnott and Inci (2006) looks at a variant of the model with price-sensitive demand for downtown travel and only on-street parking.  Arnott (2006) provides a detailed derivation of the spatial competition equilibrium among parking garages.  The next paper in the series will extend the model of this paper to treat driver heterogeneity with respect to visit length and value of time, and the paper after that will add mass transit.  Once resident and hotel parking, subsidized employer-provided downtown parking, validated parking for shopping, downtown freight delivery, and perhaps taxis and pedestrians have been added, the stage will be set to simulate the effects of various downtown parking policies in an actual city, Boston, which is the ultimate goal of the project.  Boston is a particularly interesting city to analyze since it has a soft downtown parking freeze, with the aim of encouraging drivers to switch to mass transit (Boston Transportation Department (2001)).  The freeze is soft since a formula is applied to determine the maximum number of parking spaces new buildings may construct.  

This paper has presented a stylized model of the interaction between downtown parking and traffic congestion when there is both curbside and private garage parking.  Curbside parking is underpriced.  Private garage parking is overpriced due to garage operators' exercise of market power.  The price differential between curbside and garage parking generates cruising for parking, which contributes to traffic congestion.  The paper's model was calibrated for a medium-density city.  The deadweight loss deriving from the mispricing of parking was calculated, as well as the reduction in deadweight loss achieved by various changes in parking policy.  The principal findings were that raising curbside parking fees generates social benefits several times the increased fee revenue collected, and that the optimal amount of curbside to allocate to parking is typically smaller with a lower meter rate.
References
Anderson, S. and de Palma, A. (2004) ‘The economics of pricing parking’, Journal of Urban Economics, 55, pp. 1-20.
Arnott, R. (2006) ‘Spatial competition between downtown parking garages and downtown parking policy’, Transport Policy, 13, pp. 458-469.

Arnott, R., de Palma, A. and Lindsey, R. (1992) ‘A temporal and spatial equilibrium analysis of commuter parking’, Journal of Public Economics, 45, pp. 301-335.

Arnott, R. and Inci, E. (2006) ‘An integrated model of downtown parking and traffic congestion’, Journal of Urban Economics, 60, pp. 418-442.
Arnott, R., Rave, T. and Schöb, R. (2005) Alleviating Urban Traffic Congestion, MIT Press, Cambridge, MA.
Arnott, R. and Rowse, J. (1999) ‘Modeling parking’, Journal of Urban Economics 45, pp. 97-124.
Arnott, R. and Rowse, J. (2007) ‘Downtown parking in auto city’, Boston College Working Paper 665.

Boston Transportation Department. (2001) Parking in Boston.

Calthrop, E. (2001) Essays in Urban Transport Economics, Ph.D. thesis. University of Leuven, Leuven, Belgium.

Calthrop, E. and Proost, S. (2006) ‘Regulating on street parking’, Regional Science and Urban Economics, 36, pp. 29-48.

Demographia (2000) Employment density in international central business districts ranked by density. http://demographia.com/db-intlcbddens.htm.

Institute of Transportation Engineers (1982) Transportation and Traffic Engineering Handbook, 2nd edition, Homburger, W. (ed), Prentice-Hall, Englewood Cliffs, NJ.

Shoup, D. (2005) The High Cost of Free Parking, American Planning Association, Chicago, IL.
Small, K. and Verhoef, E. (forthcoming) Urban Transportation Economics, Manuscript.
Small, K., Winston, C. and Yan, J. (2005) ‘Uncovering the distribution of motorists' preferences for travel time and reliability’, Econometrica, 73, pp. 1367-1382.

Table 1: Numerical results with garage construction costs 40 percent higher than in base case
	
	1
	2
	3
	4
	5
	6

	
	SO

P=3712
	SO(P*)
	E

f=1

P=3712
	E(P**)

f=1


	E

f=1.5

P=3712
	E(P**)

f=1.5

	s
	0.168
	0.172
	0.116
	0.106
	0.116
	0.111

	x
	157
	153
	75
	83
	75
	78

	h
	7.36
	7.35
	7.13
	7.17
	7.13
	7.15

	S
	
	
	4.84
	4.77
	4.84
	4.80

	P
	
	4506
	
	0
	
	2188

	v
	15.0
	14.0
	10.4
	15.0
	12.2
	13.5

	CP/(TT+CP)
	0
	0
	0.18
	0
	0.15
	0.10

	GC/D
	3.32
	3.09
	3.63
	4.76
	3.63
	4.10

	WC/D
	0.56
	0.53
	0.39
	0.47
	0.39
	0.42

	TT/D
	2.67
	2.86
	3.84
	2.67
	3.29
	2.97

	CP/D
	0
	0
	0.84
	0
	0.59
	0.34

	RC/D
	6.55
	6.48
	8.69
	7.90
	7.89
	7.82

	F
	
	
	9.19
	7.90
	8.64
	8.26

	Notes:

1 The unit of time is an hour, of distance a mile, and of value a dollar.

2 GC/D is the garage cost per driver (including those who park on street) or average garage cost. Similarly, WC/D is average walking cost, CP/D average cruising-for-parking cost, TT/D average in-transit travel cost, and RC/D average resource cost.

3 A driver's in-transit travel time per mile is calculated as his in-transit travel cost (TT/D), divided by ρδ, and v, velocity, as the reciprocal of in-transit travel time. CP/(TT+CP) measures the mean proportion of traffic flow that is cruising for parking. And F, the average full price of a trip, is calculated as average resource cost per driver plus curbside parking revenue per driver.

4 Blank cells correspond to variables that are not relevant for the exercise.


Figure 1: Equilibrium, and the effect of an increase in P on equilibrium
Notes:
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