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Abstract 

One of the most important decisions for shipowners is to determine how big a containership to order. The optimal containership problem represents a trade-off between the cost and revenue resulting from size and speed. In reality, there is a tendency toward increasing containership size and speed, which is resulted from some factors related to profit. However, most of the past studies devoted their attention to the problem only from the cost perspective. These models neglected the effect of ship speed on profit, and might result in inadequate solutions to the problem. Based on the cost-volume-profit (CVP) analysis, a nonlinear programming model is formulated to approach the problem. The objective function is a strictly concave function with a globally unique optimal. An example of the Trans-Pacific Route is employed to test the model’s formulation. The results provide shipowners with a beneficial reference for planning the size and the speed of their containerships.
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1. INTRODUCTION

One of the most important decisions for shipowners is to determine how big a containership to order for providing shipping services. The decision of an optimal containership represents a trade-off between the cost and revenue resulting from ship size and ship speed. Since Jasson and Shneerson (1982) proposed a mathematical model for solving the optimal containership problem, some advances have been made on this issue in the maritime transportation field. However, most of the past studies devoted their attention to the problem only from the cost perspective. These models neglected the effect of ship speed on profit, and might result in inadequate solutions to the problems. This paper constructs an analytical model for addressing the optimal containership problem with maximizing the profit for shipowners.

Jasson and Shneerson (1982, 1987) contend that the main check on optimal ship size problem depends on port costs. The deployment of larger containerships implies that economies of ship size are enjoyed at sea and diseconomies of ship size suffered in port. Cullinane and Khanna (1998, 2000) develop a disaggregated function to determine the optimal containership size. The results reveal that economies of containership operation are crucially dependent on port productivity, and suggest that the deployment of larger containership depends on voyage distance. Tally (1990) proposes a cost model to investigate the effect of the changes in ports calls, sailing distance, and time in port on the same problem. Pope and Tally (1988) formulate a periodic-review inventory model for testing the work of Jasson and Shneerson (1985), and conclude that one may not make general statements about optimal ship size. Lim (1994) formulates a revenue model to examine the ship size problem. Some consider the key determinants of ship size growth and forecast a limit to the advantages of larger scale ship (Mclellan, 1997; Hsieh and Wong, 2000). These studies showed that the factor of ship size has only been used considered in the problem. Furthermore, the cost approach pointing to ship size economies does not guarantee that a containership can maximize profit to shipowners.
In addition to ship size, one key decision factor to consider the containership problem is ship speed (Gilman, 1981). The factor of ship speed can be easily misleading in analyzing the nature of the problem. The rationale for the consideration of ship speed is that: (1) for two same size containerships, one that has more power of speed costs more to purchase; (2) for a given route a containership that takes faster speed can execute more roundtrips within a horizon planning time, thus increasing amount of the cargo carried and revenue; (3) for a given route a containership that takes faster speed needs more fuel consumption within a horizon planning time, thus increasing bunker cost. Consequently, this trade-off effect of ship speed will shift profit balance, then affecting an optimal decision to the problem. 
In this study we propose a model which is based on the CVP analysis (i.e., profit = revenue - cost) for approaching the optimal containership problem. Another aim is to examine the distortion of ship speed that “fast is better” by some scenarios such as changes in loading rate, labor work time, sailing distance and bunker price. Differing from past models, a nonlinear programming model includes three functions as below: (1) the evaluation of ship size economies and ship speed; (2) cost and revenue perspectives for optimal decision; and (3) an objective function of strictly concave function, meaning that its solution is globally optimal and unique. Finally, an example of the Trans-Pacific Route is employed to test model formulation and stability. The next section presents the model formulation and solution process. Section three provides regression analysis for various costs related to decision variables. Section four provides a real case along with implication of the problems. Finally, we present our conclusions and directions for future research.
2. MODEL FORMULATION

2.1. Mathematical Models
To specify the problem for model formulation purposes, some postulates are used in this process as set forth below:
· The fixed cost of a containership depends on its ship size and ship speed.

· Tariff between ports follows up market, and shipping liners are price followers.

· Loading rate for a containership between ports is available and given. 
· No limitation of gantry crane out-reaches for a bigger containership.
· No consideration for empty container leasing cost and shipper inventory cost.

· Containership service on a given route is defined as port-to-port trips.
Objective Function
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Where the decision variables are defined as Vi, representing the average speed of a containership i in knot on a voyage leg, and Si, size for containership i in TEU (twenty- foot equivalent unit). Input parameters for the mode are described below: 
R
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i

：Revenue for containership i within one-year planning horizon in USD per year,
C
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i

：Total cost for containership i within one-year planning horizon in USD per year,
Q
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i

：Frequency of service for containership i within one-year planning horizon, 
Fab：Freight rate between ports a and b in USD per TEU,

Fba：Freight rate between ports b and a in USD per TEU
Lk ：Loading rate for containership i at port k, k
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(a,b) in percentage, 
Dab：Sailing distance between ports a and b in nautical mile, 

Cfi ：Bunker cost for containership i in USD per ton,
N
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i

：Number of cargo loading for containership i at port k in TEU per hour,
O
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i

：Loading fee for containership i at port k in USD per TEU /hour,
C
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：Purchasing price for containership i in USD, 

C
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ci

：Annual capital cost for containership i in USD per year,
C
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pi

：Annual operation cost for containership i in USD per year,
C
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wi

：Daily wharfing fee for containership i at port k in USD per day,
E
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i

：Number of berthing days for containership i berthing at port k in day,
E
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i

：Number of sailing days for containership i per voyage leg (a, b) in day,
The purpose of the model is to observe the effect of ship size and ship speed on profit, respectively, that is, for a basis to analyze the problem. The objective function (1) maximizes the profit based on an analysis of the relationship among freight rate, loading capacity, fixed cost and variable cost of a containership. The model (2) represents the revenue function and (3) the cost function. The revenue is determined by freight rate, number of cargo carried and frequency of service, which is related to ship size and ship speed. The costs used in our approach for a quantitative test will be classified into capital cost, operation cost, bunker cost and wharfing cost, which are related to ship size and ship speed. The model (4) is the frequency of service for containerships, depending on ship speed, and (5) is the berthing time for a ship at port. The time in port was determined by number of cargo carried and cargo loading per hour in port, which is related to ship size. Constraints (6) and (7) ensure that the observed range of the size and speed of a containership is restricted. 
2.2. Solution Methods
The model formulation procedures to the problem are as described below: Step1. Define decision variables, parameters and costs related to the problem. Step 2, Formulate a profit maximization model based on a CVP approach. Step 3, Estimate regression equation model of cost related to decision variables. Step 4, Transform the profit model into a log function with the two variables. Step 5, Interpret the effect of decision variables and parameters on the objective value.

As the model is a strictly concave function, its solution is globally optimal and unique. Its solution can be obtained by the algorithm steps as outline below: Step 1, Determine if the optima of the functions exists, by given the first order condition, FOC,
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, then locating the value at X* = {Vi , Si}. Step 2, Compute the second order condition, SOC, by Hessian Matrix donated H. Step 3, If 
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 >0, then d2f(X*) <0, the value at X* = {Vi , Si} is the global optimum. Step 4, Compute the objective value of the model at different locations of X* = (Vi , Si) (where d2f(X*) = [dX] H(X*) [dX],
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3. COST REGRESSION FORMULATION
To observe the characteristics of decision variables, this section will employ regression estimation to examine the relationship between cost and the two variables (Jasson and Shneerson, 1982; Tally, 1990). The equation of 
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 is equivalent to the powder model as below: 
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Where β is the elasticity of capital cost (
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) related to ship size (Si), meaning that a 1% increase in the ship size results in a β % increase in its capital cost, regardless of ship speed (Vi.).When the value of β is less than 1, there are economies of capital cost related to ship size; γ is the elasticity of capital cost related to ship speed. Each of elasticity values depends on costs related to ship size and ship speed. As in previous discussion, the containership costs used for data fitting consist of capital cost, operation cost, bunker cost and wharf fee. 

3.1. Capital Cost Equation 
Capital costs are a major cost component, about 59 % of total containership cost, in the evaluation in deciding how big a containership to build (Heaver, 1985). The estimation of annual capital costs depends on containership useful life and the cost to purchase a containership (Talley, 1990). The approach taken in estimation is through capital recovery factor (CRF) to compute. This equation may be expressed as CRF = [r (1+r) n]/ [(1+r) n-1]. i.e., if the purchase price is P, then its annual capital cost is obtained by multiplying CRF by P (Viton, 1981). The actual cost data used for estimation of regression function consists of 107 different size containerships from Containerization International (CI, 1999~2003). In the model, it is assumed that average interest rate (r) is to be 10 % and the useful life for a containership (n) 20 years similar to that as assumed by Talley (1990). The effective capital cost equation appears as below:
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    ( R2 = 0.930, F = 721.159, P < 0.001)            (9)
The regression (9) above certainly supports that there is economies of capital cost related to ship size and ship speed, respectively since the statistics of regression are significant.
3.3. Operation Cost Equation
The operating cost of containerships is the sum of wages, subsistence, stores, supplies, maintenance, repairs and insurance. The costs are much sensitive to business operation so that it is not easy to obtain real data for model estimation purposes. Facing a similar data problem as Cullinane and Khanna (1999) and Lim(1994), we use the estimated value by Buxton (1985), who asserts that the average operation cost are approximately 10~15 % of the total cost for containerships, close to the cost construct from Lloyd’s Shipping Economist (2002). In doing so, we employ the data of annual capital cost for further computing of operation cost in contrast proportions (Buxton, 1985). The effective operation cost equation is obtained as below: 
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    ( R2 = 0.902, F = 499.526, P < 0.001)            (10)
The regression (10) also supports that there is economies of operation cost related to ship size and ship speed, respectively as the regressions are statistically significant.
3.2. Bunker Cost Equation
Bunker costs are a slightly lower proportion of capital and operation costs. The data for estimation are mainly based on bunker oil consumption of 655 different size containerships (CI, 2000~2002), omitting lubricating oil because it shares only 3 % of the total consumption (Cullinane and Khanna, 1999). The effective bunker cost equation is obtained as below: 
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    ( R2 = 0.947, F = 5821.341, P < 0.001)           (11)

It is noticeable that the equation is not consistent in coefficient of ship size and ship speed in the regression estimation. As the regression (11) is statistically significant, it supports that there is economies of bunker cost with related to ship size; however, diseconomies of bunker cost to ship speed.
3.4. Wharf Cost Equation
Wharf fee is the major factor to be related to ship size among port charges, and the rest of the charges may be only negligible because of no significance (Cullinane and Khanna, 1999). In the model, it is assumed that there is no difference in wharf fee offered for a containership between ports. Consequently, the data used for cost function is provided by the Kaoshiung Harbor Bureau, Taiwan (2004). As wharf fee is related to ship size only, the effective equation is obtained as below: 
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    ( R2 = 0.943, F = 83.34, P < 0.001)               (12)
As the regression figure is statistically significant, it supports that there is economies of wharf cost related to ship size.

As the cost functions (9~12) resulted in extremely high R2 (> 0.9), i.e., a better fit 
Table1 Elasticity value of costs with related to ship size and ship speed
	Elasticity
	Capital cost
	Operation cost
	Bunker cost
	Wharfing fee

	Ship size ( β )
	0.598
	0.603
	0.493
	0.582

	Ship speed ( γ )
	0.586
	0.506
	2.001 (>1)
	--


to the data, both explanatory variables are significant at the 0.01 level or better. The regression coefficients of estimation are listed in Table 1. As one would expect, holding

ship speed constant, there are cost economies of ship size since all β values to ship size are less than 1. However, it is unable to determine if the cost economies of ship speed exist. As it can be seen, Table 1 shows that there is a remarkably different elasticity value in cost regressions related to ship speed. The γ value of capital cost and operation cost with related to ship speed are less than 1; however, the γ value of bunker cost is found to be 2.001, more than 1, thus indicating that a 10% increase, for example, in ship speed will result in 5.86 % increase in capital cost, 5.06 % in operation cost, and 20.01 % in bunker cost. 
The difference between the impact of ship size and ship speed on bunker cost can clearly be seen. As a result, does this symptom lead one to think the fact that containerships achieving faster speed can produce more profit to shipowners within one-year planning horizon? The answer to the question depends on the effect strength of ship size and ship speed on cost and revenue, respectively. As previously discussed, high bunker price should be one of the key determinants to analyze the problem. This finding of different characteristics of ship size and ship speed to the problem has not been mentioned in previous literature.
4. NUMERICAL RESULTS
4.1. Numerical Example
To demonstrate the results of the proposed model, this paper uses the Kaoshiung to Los Angeles (KA) route for an example. This route consists of main container ports with large traffic flow and different sailing distance among ports, such as Hong Kong, Shanghai, Pusan and Tokyo, which are suitable for our analysis. The experimental data used for model test are from various sources. This paper uses Mathematica 4.0 to implement the solution algorithms. To simplify the analysis of the problem, it is assumed i to be 1 (i.e., one containership) on a route service for model algorithms. After the calculation of model with two variables condition, the objective value (
[image: image34.wmf]p

) is found to be 37,534,700 at X*= {Si =16,000 TEU, Vi = 24 knot}, meaning that the value is the maximal profit under ship size and ship speed obtained on the KA route.
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Figure 1 The relationship between the optimal value and ship speed

holding ship size constant 
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Figure 2 The relationship between the optimal value and ship size

holding ship speed constant

Next, holding ship size at Si = 16,000 TEU constant, we adjust the value of ship speed to examine the objective value of model. Fig.1 shows the relationship between the objective value and ship speed. It can be seen that the objective value rises with the increases of ship speed between 10~20 knot, leveling at stationary 24~26 knot, and then sharply declining over 26 knot. This curve pattern reveals that ship speed at 24 knot is a maximal point for objective value, at which margin revenue equals margin cost. When ship speed is faster than the knot, it means margin revenue is less than margin cost, for the model (i.e., profit = revenue – cost), thus resulting in the objective value declines. The same rationale can be used to explain the situation where ship speed lower than the knot. This outcome is resulted from the effect of different ship speeds for a ship on the costs. As expressed in the regression equation, the γ value of bunker cost equation is 
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Figure 3 The three dimensions plot of a nonlinear programming model
with the variables of ship size and ship speed

more than 1, indicating diseconomies of ship speed. Therefore, this result indicates that for shipowners’ profit, ship speed is not the faster, the better.

Holding ship speed at Vi =24 knot constant, we change the value of ship size to observe the objective value. The result of regressing the objective value against ship size is shown in Fig.2. The pattern shows that the objective value rises with the increases of ship size. This increase seems intuitively to be that there is no limit with ship size. The outcome appears to be supported by economies of large ship scale. The β value of various cost equation are less than 1, indicating economies of ship size.
Fig. 3 is the three dimension plot of the model with its global optimal. As it can be seen, from the axis of Si, an optimal point rises up as ship size increases under the range given; from the axis of Vi, the point moves up to a highest point, then declines as ship speed increases. When the axis of Si and Vi are involved in the model, the highest point in the pattern is not located at {Si =16,000 TEU, Vi = 40 knot}, but at X*= {Si =16,000 TEU, Vi = 24 knot}, meaning a global optimal. As in previous discussion, the reason for this outcome is primarily because of economic characteristics of the two variables. As seen in Table 1, both variables affect not only capital cost, operation cost and bunker cost, but also revenue to a different degree. Observing the Fig.1 and Fig.2 reveals that an increase in margin cost as ship speed exceeds 24 knot is much greater than an increase in margin revenue as ship size increases. As a result, the objective value decreases as ship speed is faster than 24 knot whatever ship size increases, shown in Fig.3. In other words, speed over the knot would not be easy for a containership to make more profit if other conditions remain unchanged. An analysis of two variables involved in this study reveals that it is an advantage for shipowners to use bigger containerships with an optimal speed on the KA route. High bunker price should be reasonable one to explain this decision. 
4.2. Sensitivity Analysis
The postulate involved in the model solution is that market demand is available and constant, meaning that both traffic flow and traffic price are determined by an external market where shipping liners are only price followers. A discussion regarding the transportation demand level is not included in this study. Now, we will examine if the optimal decision is influenced by the parameters in model, such as loading rate, labor work time, sailing distance and bunker price. 
In the previous discussion, we assumed that loading rate for a ship in port is a given and constant. Now, when using a voyage leg from Kaoshiung to Tokyo as an example, we alter the loading rate for a ship to examine the objective value, ship size and ship speed in the model, as shown in Table 2. The result of sensitivity analysis reveals that as the loading rate decreases, the profit and ship size decrease and the ship speed increases. When the loading rate for a ship decreases, the revenue decreases; but cost remains unchanged, resulting in profit decrease. To achieve the profit maximization, the model tends towards a decision to adopt smaller containerships for enhancing ship capacity utility and decreasing unit cost, and to utilize faster speed to increase the number of roundtrips for cargo carried per year. 
Table 3 shows the result of changes in sailing distances. It reveals that as sailing distance increases, the profit, ship size and ship speed increase. A review of the output on Table 3 indicates that there are cost economies of ship size to sailing distance. The rationale for the conclusion is that as distance increases, the time for a ship at sea increases, resulting in cost decrease (Jasson and Shneerson, 1985; Tally, 1990). The conclusion is that bigger containerships are suitable for providing long distance service (e.g., Kaoshiung-Los Angeles). However, it is also noticeable that an increase in profit and ship speed resulted from Kaoshiung to Shanghai Route is higher than those of Kaoshiung to Pusan and Toyko. The reason is that the Shanghai port affords much lower loading fee per container than the two other ports. A similar result was also found in a previous study (Hsieh and Wong, 2004). This result could be considered for liner operators while choosing their optimal ports for routing purposes, especially for two adjoining ports. 
Table 2 Sensitivity analysis of the model with changes in loading rate
	Loading

rate
	Ship size (TEU)
	Increase (%) in ship size
	Ship speed (knot)
	Decrease (%)

in ship size
	Profit

(USD)

	0.9
	6,998
	--
	20.61
	--
	15,442,000

	0.8
	7,416
	5.63%
	19.71
	-6.57%
	14,493,900

	0.7
	7,709
	5.89%
	18.34
	-6.64%
	13,469,500

	0.6
	8,016
	5.95%
	17.60
	-6.67%
	12,296,100

	0.5
	8,237
	6.18%
	15.97
	-6.70%
	11,247,800


Table 3 Sensitivity analysis of the model with changes in sailing distance 
	Item/Voyage
	Kaoshiung  Hong Kong
	Kaoshiung - Shanghai
	Kaoshiung- Pusan
	Kaoshiung - Tokyo
	Kaoshiung - 
Los Angeles

	Ship speed (knot)
	18.01
	20.31
	19.80
	20.61
	24.00

	Ship size (TEU)
	3,651
	3,894
	5,284
	6,998
	16,000

	Profit (USD)
	12,657,600
	15,823,700
	14,341,300
	15,442,000
	37,534,700


Table 4 Sensitivity analysis of the model with changes in labor work time 
	Labor work time

Per day
	Ship size

(TEU)
	Ship speed

(knot)
	Profit

(USD)

	18 hours
	16,000 
	19
	23,825,300

	20 hours
	16,000 
	22
	28,297,400

	22 hours
	16,000 
	23
	32,877,900

	24 hours
	16,000 
	24
	37,534,700


From the analysis of Table 2 and Table 3, two general conclusions can be made. First, liner operators may consider choosing optimal hubs or operation alliances for satisfying the capacity needs of bigger containerships. Second, liner operators need to establish a network routing system for their mixed containerships, such as hub-and -spoke networks, in which bigger containerships run in hub links; whereas, smaller ones operate on spoke links.

Table 4 shows the relationship between the objective value, ship size and ship speed related to labor work time. It should be noted that as labor work time increases, the profit and ship speed increase; ship size remains unchanged. This result is similar to real-world cases. Since long labor work time is beneficial to shipowners, some of hubs usually have a distinct tendency towards 24 hour operation in order to increase their competitiveness (e.g., Kaoshiung).
The result of bunker price is presented in Table 5. It can be seen that as bunker price increases, profit and ship speed decrease; ship size increases. The rationale for this outcome is that as bunker price rises, cost also increases but revenue remains unchanged; the optimal decision tends to foster the use of lower speed and larger containerships to decrease cost. However, the effect of diseconomies of ship speed is stronger than that of larger ship size, thus resulting in profit decrease. The γ value of bunker cost to ship speed is higher than that of ship size. There is some possibility that changes in crude oil price in the market; then the issue of ship speed is not negligible for shipowners to consider as an optimal decision to this trade-off problem.

Table 5 Sensitivity analysis of the model with changes in bunker price 
	Price/Item
	Ship size (TEU)
	Increase in Ship size
	Ship speed (knot)
	Decrease in Ship speed
	Profit 

(USD)

	$100/Ton
	5,593
	--
	26.17
	--
	15,729,100

	$120/Ton
	5,927
	5.63%
	24.45
	-6.57%
	15,651,500

	$140/Ton
	6,299
	5.89%
	22.82
	-6.64%
	15,568,300

	$160/Ton
	6,698
	5.95%
	21.30
	-6.67%
	15,484,100

	$180/Ton
	7,140
	6.18%
	19.81
	-6.70%
	15,397,800


5. CONCLUSIONS
In this paper we propose a nonlinear programming model to analyze the optimal containership problem. Different from the previous studies, the paper evaluates cost and revenue perspectives, but ship speed in examining the problem. The model is tested by using a real case, with reasonable results. The numerical results show that the optimal containership problem can be determined by the model. 
 The results indicate that fast sailing speed for a containership would not guarantee that it will increase profit; an optimal speed zone exists for different containership sizes. Big containerships can enjoy benefits of ship size economies. Other results demonstrate that the optimal ship size and speed are sensitive to loading rate, labor work time, sailing distance and bunker price; however, these parameters would not deviate from the economies of ship size and diseconomies of ship speed.
One advantage of the study for shipowners is to consider the optimal decision of containership size and speed for routing strategy, especially in hub-and -spoke networks. Moreover, the model introduced can be expanded to examine the optimal number of containerships for a fleet and frequency of service required. Future research may modify the model for approaching real situations by relaxing some of the assumptions of the problem, such as shipper inventory cost and calling ports. 
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