Cover page

An application of ant colony systems for DUE and SUE assignment in congested transportation networks

Matteo Matteucci 1, Lorenzo Mussone 2*

1Department of Electronics and Information, 

Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy 

tel: +39 02 2399 3470 e-mail: matteucci@elet.polimi.it
2 Dep. of Building Environment Science and Technology, 

Politecnico di Milano, Via Bonardi 9, 20133 Milan, Italy
tel: +39 02 2399 5182 e-mail: mussone@polimi.it

*corresponding author

ID: 634

Topic area: D6 Scenario Development & Analysis

An application of ant colony systems for DUE and SUE assignment in congested transportation networks

Matteo Matteucci 1, Lorenzo Mussone2*

1Department of Electronics and Information, Politecnico di Milano, Italy
Piazza Leonardo da Vinci 32, 20133 Milan 

tel: +39 02 2399 3470 e-mail: matteucci@elet.polimi.it 

2 Dep. of Building Environment Science and Technology,

Politecnico di Milano, Italy
Via Bonardi 9, 20133 Milan
tel: +39 02 2399 5182 e-mail:vmussone@polimi.it

*corresponding author

Abstract

The paper deals with deterministic and stochastic user equilibrium (DUE and SUE respectively) well known problems in the transportation field. In order to solve these problems a modified version of the ant colony system is proposed. The ant colony heuristic is adapted in order to take into account all aspects characterizing the transportation problem: multiple ODs (Origin-Destination), link congestion, non-separable cost link functions, elasticity of demand, multi classes in demand and different user cost models including stochastic cost perception. Applications to four different networks are finally reported. 
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1. Introduction

An analysis of transportation networks requires mathematical tools capable of managing all information related to the interaction between demand and supply and solving the complex problems developed by this interaction. The features that must be taken into account concern both the supply and the demand characteristics. Supply first is made up by four elements: the graph, the flow propagation model, the route choice model, and the congestion model. Transport demand characterizes mobility with respect to different choices of travel (e.g. frequency and reasons of trips, origins and destinations, modal split, paths). Except the very particular case of non-congested networks, route choice depends on congestion giving rise to the interaction between demand and supply. If only route choice depends on congestion a rigid demand assignment model is considered. If other characteristics of demand depend on congestion an elastic demand assignment model must be considered. 

The traffic assignment problem can be formulated and solved by following two main approaches depending on the prevailing traffic patterns (steady-state or dynamics) of the transportation system to be simulated or on the aim of the analysis. In turns, dynamics can refer to within-day-dynamic day-to-day-dynamic or both. In this paper the steady state both within-day and day-to-day traffic assignment will be referred to. The best known approaches to this analysis are deterministic user equilibrium (DUE) and the stochastic user equilibrium (SUE). 

DUE was formulated by Wardrop (1952) as a criterion to find the distribution on the routes. This criterion states that as the journey time on all the routes actually used are equal and less than those which would be experienced by a single vehicle on any unused route. This is based on strong assumptions that the network travel times are deterministic for a given flow pattern and that all travelers are perfectly aware of the travel times on the network and always capable of identifying the shortest travel time route. To overcome the limits of the deterministic model, some researchers have proposed different SUE models to relax the assumption of perfect knowledge of network travel times, allowing travelers to select routes based on their perceived travel times. 

The ant colony system (ACS) is a particular implementation of the Ant Colony Optimization meta-heuristic (Dorigo and Stützle, 2004; Dorigo and Blum, 2005). They have both been successfully applied to many discrete optimization problems also in the transportation field. Typical applications of ant systems are Travelling Salesman Problem (Dorigo et al., 1996; Dorigo and Gambardella, 1997b; Li and Gong, 2003), network routing (Di Caro and Dorigo, 1998), the Quadratic Assignment Problem, QAP, (Gambardella et al., 1999). More recently, ant colonies have been applied to road traffic management (Bertelle et al., 2003) and resource allocation in transportation (Doener et al., 2001). D’Acierno et al. (2006) proposed an MSA (Method of Successive Averages) algorithm for a SUE simulation based on an ACO paradigm. Other applications of ACO technique in the transportation field can be found in (Mussone et al., 2005; Matteucci and Mussone, 2006)

The aims of this paper are manifolds and concern the application of ACS to cope with several aspects of DUE/SUE traffic assignment. We developed an algorithm, based on an ACS, able to search the optimal (or quasi-optimal if stopped in advance) solution of the assignment problem especially when uniqueness of solution is not guaranteed or when no a-priori hypotheses can be done about the objective function. Experimentally we have validated this algorithm also on realistic network scenarios showing that it achieves good solutions, especially for the SUE assignment, with a reduced computing time with respect to traditional algorithms. Moreover the algorithm we propose does not require any assumption on the link cost function or the user choice model so it is suitable, as we tested in the experiments, also for link cost functions with non-separable costs (that is the case of links ending with a T-intersection or a roundabout) and user cost perception such as Gaussian and Lognormal.

In Section two the transportation problem is analytically described in a greater detail; Section three explains the ACO (Ant Colony Optimization) meta heuristic and the particular version used, Ant System; in Section four we propose a modified version of Ant System in order to solve the above mentioned  transportation problems . Section five shows the results obtained by the application of the modified ant system on some transportation networks characterized by different size and link cost functions; Section six deals with conclusions and future research.

2. The Traffic Assignment Problem

2.1 Problem definition

A transportation system may have different admissible states during time. The evolution mechanism is represented by the circular dependence between traffic demand, flows and costs (Figure 1). In some cases the circular dependence evolves to steady state conditions where demand flow and costs are mutually consistent. In the following paragraphs some basic notations and formalization for the steady-state (equilibrium) case are introduced and discussed.

Given a directed graph G(V,E), with E being a set of N nodes and V a set of l arcs, we can identify a subset of n  nodes in E and call them centroids. Let d be a vector with components representing the average number of trips going from centroid origin o to centroid destination d within a give time period. Each origin-destination flow generates on the network path flows Fi, with iIod, where Iod is the subset of all admissible paths connecting the pair of centroids o and d. For a given link/edge eE, the sum of all path flows crossing this link is called the link load: 
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where aik is 1 if the link i is crossed by the path k and 0 otherwise. In matrix form 


f=AF
(2)

where F, f are the vectors of path and link flows, respectively, and A is the link-path incidence matrix.

A model of a transportation system describes the behavior of traffic demand d and its relationship with link flows. By introducing a cost ce(f) for traveling on a certain link e, depending on the observed traffic f, one can express traffic demand and the way it is distributed on links in function of the vector of costs c, in particular the relationship between F, f and d becomes 


F=P(c(f))d(c(f)) or F*=P(ATc (ATF*))d(ATc (ATF*)) 
(3)


f=AP(c(f))d(c(f)) or f*=AP(ATc (f*))d(ATc (f*))
(4)

where P is the path choice probability matrix, known also as path choice map, whose every element expresses the probability that traffic demand di (of the i-th od-couple) is routed on path k; C=ATc represents the vector of path choices costs. Equations 2 and 3 or equation 4 describe the circular dependencies, the consistency of which is at the base of the equilibrium problem. As Figure 1 shows, neither the way the system evolves nor how it reaches equilibrium is studied. It is assumed that when the system reaches equilibrium it becomes stationary, because demand is constant so its link performance only can modify the balance between demand and costs.
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Figure 1: Equilibrium relationship between traffic demand, flows and costs.

Equilibrium can be analyzed with a further condition on OD trip matrix elasticity. The OD trip matrix can be rigid, in the sense that the cost variation caused by congestion affects only the choice of path. This means that vector d is assumed invariant to link costs. Vector f* or F* are then defined by the equations:


F*=P(C(F*))d where C(F*)=ATc(AF*)
(5)


f*=AP(C(f*))d where C(f*)=ATc(f*)
(6)

Otherwise demand can be elastic; this means that it depends on congestion costs as well as on system attributes. 

2.1.1 Rigid demand: deterministic case

The problem of finding vectors f* and F*, under the assumption of a deterministic path choice model (DUE) in order to avoid some mathematical difficulties due to the fact that in the deterministic case equations 3 and 4 (even in the case of rigid demand) are multi-valued maps, is studied by means of formulations based on the variational inequalities:


C(F*)T(F-F*)≥0 (F ( SF
(7)

where SF is the set of admissible path flow vectors. Equivalent variational inequality models are based on link flow leading to 


c(f*)T(f-f*)≥0 (f ( Sf
(8)

where Sf is the set of admissible link flows. 

The calculation of equilibrium link flow with rigid demand and symmetric Jacobian of cost functions is based on algorithms that solve the previous variational inequalities by an optimization model. One of the most famous is the Frank-Wolfe algorithm (FW) (Frank and Wolfe, 1956) from which many variants were derived. When link costs are non-separable, the Jacobian may not be symmetric and other algorithms must be used, for example the diagonalization algorithm, which uses an approximation of the variational inequality by using separable cost functions. It is worth noting that this not ensures that the underlying equilibrium has a unique solution.

2.1.2 Rigid demand: stochastic case

A stochastic equilibrium assignment is obtained by applying the equilibrium approach to the assignment of congested networks on the hypothesis of a probabilistic behavior of choice. SUE was first introduced by Daganzo and Sheffi (1977) and developed later in a limited form by Sheffi and Powell (1981); a first model for optimization was proposed by Daganzo (1983) for symmetric SUE. In Daganzo and Sheffi (1977) the authors applied the method of fixed point in order to solve deterministic or stochastic equilibrium. A plain complete review of SUE models is presented by Cascetta (1988 and 2001). 

More recently Ceylan and Bell (2005) presented a bi-level technique oriented to signalized network design which involves an assignment model to calculate SUE: genetic algorithms are used to solve the upper-level problem for the signalized network and a SUE traffic assignment is applied at the lower-level.

A solution to SUE exists under very mild assumptions but uniqueness is assured in the case of separable cost functions. In other cases more than one equilibrium solution may exist and the solution found may not be the one that interests the transportation analyst (i.e. it may not be that of total minimum cost). New methods to analyze these transportation problems are therefore of general interest.

3. ACO: Ant Colony Optimization

3.1 The meta-heuristic technique

Ant Colony Optimization (ACO) (see for example Dorigo et al., 1999) is a meta-heuristic technique (in Figure 2 the flow chart of ACO technique process is described) that implements a colony of artificial ants cooperating in order to find a solution to a difficult combinatorial optimization problem (Di Caro and Gambardella, 1999; Dorigo and Stützle, 2004; Gutjahr, 2002; Zlochin et al., 2004). From a general point of view, ants in ACO can be seen as simple agents cooperating to build a complex solution by communicating indirectly through the modification of the environment: this process is called stigmergy (Di Caro and Dorigo, 1998). Actually each ant builds independently a possible poor solution to the problem (or part of it) and the optimal solution is obtained as the emerging behavior of the colony due to stigmergy. Information collected by each ant while searching for the solution is, in fact, shared with other ants in the colony by leaving a clue to the solution in the form of a pheromone trail. 

Pheromone knowledge built-up by ants is a shared local long-term memory that influences their decisions. When and how much pheromone should be released on the “environment” depends on the problem and on the implementation of the specific solution. It can be released while ants build the solution (on-line step-by-step), or after a solution has been built moving back to all the visited states (on-line delayed), or both. While ant internal states can be used to build feasible solutions using knowledge about effects of actions that can be performed in that state, pheromone trails and problem-specific heuristic information guide the ant decisions as a long-term memory playing auto-catalysis on the whole optimization process. This is clearly explained by thinking that the more ants choose an action, the more this action is favoured by adding pheromone to its trail and the more interesting it becomes for the following ants.

Locally available pheromone and heuristics form ant decision tables, i.e., probabilistic tables used by each ant decision policy to direct the solution search towards the most interesting regions of the search space. The stochasticity of ant action choice and a pheromone evaporation mechanism avoid a rapid drift of the colony towards the same part of search space. The level of stochasticity in policy selection and the strength of the updates in pheromone trails determine the balance between the exploration of new points in state space and the exploitation of accumulated knowledge. If necessary, ant decisions can be enriched with problem-specific components like backtracking procedures or looking ahead (Russel and Norvig, 1995). Finally, some extra components which use global information called daemon actions can be allowed to observe the ants’ behavior, and collect useful global information to deposit additional pheromone information, biasing, in this way, the ant search process from a non-local perspective. 
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Figure 2: The general Ant Colony Optimization technique.

3.2 Ant System

To better understand the functioning of our algorithm for traffic assignment, we introduce the classical example of ACO used to solve the Travelling Salesman Problem (TSP) (Dorigo and Gambardella, 1997a and 1997b; Li and Gong, 2003; Dorigo et al., 2002): the Ant System.

At each iteration m ants compute m possible tours performing a stochastic local search. When in node i each ant chooses the node j to move, and the link (i,j) is added to its tour and this is repeated until the ant has completed its tour. Once the tour is completed, each ant deposits the pheromone on pheromone trail variables associated with the visited links in order to make these links more “desirable”. In AS the pheromone evaporation procedure, which happens just before ants start to deposit pheromone, is interleaved with the ants’ activity. 

The internal state of each ant contains cities already visited and it is called tabu list. It is used to define, for each ant k, the set of cities it still has to visit. Pheromone information is changed during problem solution to reflect the experience acquired by ants during the optimization process. The amount of pheromone deposited is usually proportional to the quality of the solutions they produced: the shorter the tour generated by an ant, the greater the amount of pheromone it deposits on the links belonging to the tour. Pheromone evaporation is then interspersed to the ants’ search to avoid “stagnation”, i.e., the situation in which all ants end up making the same tour.

In TSP, the ant-decision table 
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 of node i is obtained by the composition of the local pheromone trail values with local heuristic values as follows:
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(9)

where ij(t) is the amount of pheromone trail on link (i,j) at time t, ij=1/dij is the heuristic value used in this problem for the movement from node i to node j, Ni is the set of neighbors of node i, and  and  are parameters controlling the relative weight of pheromone trail and heuristic value, respectively. The probability an ant k chooses to go from city i to city j Nk when constructing its journey at the t-th algorithm iteration, is given by:
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where 
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is the set of nodes connected to node i that ant k has not visited yet (nodes in 
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 are selected from those in Ni by using ant memory Mk).

After all the ants have completed their tour, pheromone evaporation on all links is triggered, and, after that, each ant k deposits a quantity of pheromone 
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where Tk(t) is the tour made by ant k at iteration t, and Lk(t) is the tour length. It is clear from (11) that the value 
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depends on ant performance: the shorter the tour made, the greater the amount of pheromone deposited. In practice, the addition of new pheromone by ants and pheromone evaporation are implemented by the following rule applied to all the links:
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where 
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, m is the number of ants at each iteration (maintained constant), and (0,1] is the pheromone trail decay coefficient. The initial amount of pheromone 
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 is set to the same small positive constant value0 on all links in order to randomly explore the network at the first iteration of the algorithm.

4. Ant Colony System for traffic assignment problems

In this paper a modified version of Ant System algorithm, the Ant Colony System (ACS), to mimic user behavior in a transportation network, is proposed, in order to solve the different versions of the transportation problems described in the previous sections (i.e. deterministic and stochastic user equilibrium with separable and non-separable cost functions). In practice, ACS is a variant of ACO algorithms that uses IB-update (Iteration Best) or BS-update (Best-So-far) rules instead of an AS-update (Ant System) rule and additionally includes mechanisms to avoid premature convergence (Dorigo and Blum, 2005). These characteristics allows to achieve better results than algorithms using AS-update. 

In this approach, ants are used like agents routing traffic in a transportation network and each OD is represented by one colony because equations 3 and 5 (or 4 and 6) require a different choice probability for each path. The final traffic assignment flow will be the result of the cooperation of ants belonging to the same colony that explores the space of feasible flows in order to find the best equilibrium flow. For this reason the solution cannot be a system optimum but  it is an equilibrium solution because cooperation does not involve ants of different colonies and therefore the final result cannot take into account the performance of other colonies.

An ant decides to travel on a path using the information left before by other ants, then it distributes a new quantity of pheromone in function of the “goodness” of the path. In order to effectively explore the space of solutions there must be a relationship between pheromone and flow, because ants deposit pheromone not flow. For each link, for instance, a quantity of flow proportional to the pheromone present on it can be associated. Then, after pheromone distribution, the new proportional flow assignment implies a variation of costs that leads the ants following to have a different evaluation of paths. This implies a positive or negative feedback that takes the system to an equilibrium state, for which a variation in flow assignment implies a variation in pheromone distribution that re-establishes the equilibrium. All this can be viewed in the same manner as the circular relationships of equilibrium between traffic demand, flows and costs explained previously (Figure 1), where pheromone substitutes traffic demand (Figure 3).
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Figure 3: Equilibrium relationships between pheromone distribution, flows and costs.

At every iteration step each ant deposits a quantity of pheromone 
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where Tk(t) is the tour made by ant k at iteration t, and Ck(t) is its cost. For every od-couple there is an ant colony, with its own nest (centroid O) and a food source (centroid D). Every ant of the same colony distributes pheromone of the same type, so that the ants in that colony can recognize and follow only paths that lead to the same food source. 

Every ant colony is independent and its ants have to route a quantity of flow equal to the corresponding flow demand from an origin O to a destination D. This leads to have on link(i,j) at time t a quantity of flow equal to:
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where dc is the flow demand of colony c, NOD is the number of colonies, 
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 is the quantity of pheromone of colony c on link(i,j) and 
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 is the sum of pheromone quantities present on the links of the forwarding star of node i of colony c.

Convergence for ACS is discussed in (Dorigo and Blum, 2005). Usually convergence criterium is based on the following test:
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where 
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is the value of variable on link i at iteration (t-1), 
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is the value of variable on link i at iteration t and  is a threshold value. The variable considered for the test is the link flow but it can be useful to verify convergence on link costs and total cost as well.

4.1 User decision model for DUE and SUE
As we introduced previously an ant decides to travel on a path using the information left before by other ants. In particular, an ant must follow paths leading to the food source (i.e., its destination) belonging to its colony, and so it has to pay attention only to the information (pheromone) left by the other ants of the colony. According to this vision we have a colony for each origin destination pair.

The ant-decision table 
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 of node i and colony c is obtained by the composition of the local pheromone trail values with a heuristic weight of the minimum path as follows:
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where 
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 is the amount of pheromone trail of colony c on link (i,j) at time t and wcij(t) is a weight value of link (i,j), set as follows:
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As described in the previous section, the pheromone trail for the specific colony is updated by 
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 according to the inverse cost of the path found. 

The use of w introduces an heuristic improvement of the algorithm to speed up the convergence process through the calculation of the minimum path for each colony by Dijkstra algorithm. To take into account the cost circular relationship between cost and flow, w needs to be iteratively updated on the value of 1/C(t) of the shortest path; this implies that finding the optimal values of the weights wcij(t) requires the computation of the minimum path for every od-couple. As a side effect, this heuristic assures that an ant can decide to choose links that belong to the minimum path, even if there is no more pheromone on them. It can be seen as a probability biasing which always gives an ant a chance of finding a good solution.

To take into account the deterministic or stochastic nature of user decision we introduced a further improvement in the ant decision table. The value of 
[image: image29.wmf])

(

t

c

ij

t

 used in equation 16 may be the exact amount of pheromone released by ants or the perceived one extracted according to a certain. This turns out to model a deterministic user model in the case the exact pheromone value is used (i.e., the user choice is the one that deterministically select the minimum cost), as well as a stochastic one when the pheromone trail is treated as a random variable. 

It is worth stressing that the algorithm does not make any assumption on the distribution of this random variable so we can apply a normal distribution to represent a symmetric uncertainty on the actual estimate of link cost, or a lognormal distribution modeling to represent an asymmetric optimistic uncertainty.

5. Experimental Validation

Tests have been conducted to verify the actual properties of ACS in different scenarios with both deterministic and stochastic user equilibrium. Four networks with different structures and OD demand are tested. In Table 1 the main features, number of links, number of nodes and OD centroids of the networks are reported. Link type and number of parameters refer to the cost function and parameters used for that specific network: specifically cost function type 2 is equation 2.3.4 in (Cascetta, 1998) and type 3 is the BPR function (Bureau of Public Roads).

Two networks are simulated in laboratory: 

•
the trial network (Figure 4) is used as a preliminary test bench for the research and as in the case of the Naples network (described in the next paragraphs), a specific project produced and studied the demand for each day in the course of a year and we used the demand of a typical weekday and that of 8 a.m.; 

•
the non separable cost trial network (Figure 5) is created in order to verify the capacity of ACS to solve the problem of non-separable links, therefore links and demand are created with this purpose in mind. 

The other two networks are real networks so as the demand used for assignment: 

•
the network of Milan represents the so called “area Maggi” (Figure 6) which is quite a large area in the southern part of the city and the demand is that of the morning peak hour; it is characterized by a limited number of paths and has a high number of ODs (1283) ;

•
the network of Naples (Figure 7) represents the very large area of the extra-urban network of Naples (1363 links); it was the object of the PRIN2002 project (Bifulco, 2005) which produced and studied the demand for each day in the course of a year; also in these experiments we used the demand of demand of a typical weekday and that of 8 a.m. 

	
	Link Type
	No.of Param.
	Links
	Nodes
	OD

	Trial (Rete 1)
	2
	7
	12
	6
	4

	Non Separable Costs
	3
	8
	28
	12
	8

	Maggi (Milan)
	3
	8
	373
	189
	1283

	Extra-urban (Naples)
	2
	7
	1363
	994
	1483


Table 1: The characteristics of the networks used in experimental validation.
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Figure 4: Layout of the trial network.
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Figure 5: Layout of the trial network with non-separable costs link functions.
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Figure 6: Layout of the "area Maggi" (Milan) network.
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Figure 7: Layout of the Naples extra-urban network.

The role of pheromone and its evaporation is investigated by varying the pheromone trail decay coefficient, (eq. 12), in the range (0.005, 0.5), that is from a very low to a very high level of decay. The max number of iterations is 500 for all experiments though this is excessively high and useless in many cases. Comparisons of ACS-DUE results (except for the non-separable costs trial network) with those obtained by a Frank-Wolfe (FW) algorithm are proposed to verify performance. Ten  simulations for each SUE scenario are carried on and in the following tables the average solutions are reported.

SUE are evaluated varying standard deviation of the distribution from 0.01 to 100 on the pheromone trail corresponding respectively to a standard deviation from 100 to 0.01 [s.] on the perceived path cost; the subscript N indicates that a normal distribution is applied while the subscript L indicates a lognormal distribution.

Table 2 and Table 3 report DUE and SUE assignment results, respectively. They are obtained assuming that a simulation is convergent when the 90% of cases is convergent with a threshold of 1% (according to eq. 15) for Area Maggi and Naples networks and with at threshold of 5% for the trial and non separable cost networks (marked by *). The acronym N.C. stays for “not calculated” and means that more iterations than 500 are needed for convergence. These tables report results according to the value of and the number of iterations for the three variables, link costs, flow and total costs. For each variable two values are given: the “first” column gives the iteration at which convergence is reached for the first time; the “last” column gives the last iteration at which convergence does not occur. Therefore the “first” column gives an idea of speed of convergence while the “last” one gives the number of iterations minus one needed for convergence.

Simulations for DUE assignments are shown in Table 2. Comparisons with the FW solution (except for the non separable cost network to which we cannot apply this algorithm) are quite satisfactory: final total costs are very close (exactly the same for Naples network) so as flows and costs on links. Computing time is indeed much higher than for FW algorithm though it is very short (Table 4).
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Table 2: Results for DUE assignments.
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Table 3: Results for SUE assignments. 

Many oscillations are observed both on small networks (trial and non-separable costs) and “Area Maggi” network. A very small value of  is necessary to achieve better performance. This is probably due to the fact that flow is near capacity and some similar paths for the same OD exist: this creates conditions that a small assignment of flow on these paths can change significantly the cost on links starting oscillations. The “Area Maggi” network is sensitive to though to a lesser extent: the many ODs constrained on a limited number of links contribute to slow down convergence.

Naples network is instead almost insensitive to  since results are very similar each other. It is due to the particular structure of the network where comparable paths for each OD are not very numerous due to the considerable  length of links.

Simulations for SUE assignments are shown in Table 3. There is no relevant difference among ten simulations and the final number of iterations has a very low variance. The role of  is very similar to that of DUE case. The best results are obtained with a very low value of pheromone, for small networks (trial and non-separable costs) and “Area Maggi” network. Lognormal distribution shows a little better results than the Normal one for the same value of . The “best” standard deviation is the highest in the non-separable cost network probably due to the necessity of exploring much more different solutions because of the indirect relationship between link cost and link flow. 

Naples network is still almost insensitive to ; for these simulations a little better results are achieved by using a Normal distribution and generally low values of standard deviation performs better. This can be explained by considering that, due to the particular structure of the network, it is not necessary to investigate many other paths than the present one.

In Table 4 computing time performance for the minimum number of iterations according to the variable flow is reported for each scenario. Convergence time is very low, below the second, for the trial and non-separable cost network; only “Area Maggi” network requires one dozen of seconds for convergence. 
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Table 4: Computing time for the minimum number of iterations. 

6. Conclusions

ACS is proposed in order to solve the DUE and SUE assignment problems. The modified version of this heuristic is suitable for application in almost all real cases due to its versatility without assuming simplifying hypotheses. The solution found by ACS does not depend on the shape of the objective function and therefore also the particular cases of non-separable cost link functions or multi-class demand can be tackled easy and successfully.

Applications to real networks show a computation time that is short enough (though not comparable to the speed of the Frank-Wolfe algorithm in the case of DUE) also in complex networks and it can be improved through a parallel programming that is easy enough to apply thanks to the similar nature of ACS, intrinsically parallel. The impact of pheromone decay is analyzed and we can suggest that its effects depend strongly on network structure and cost functions. Generally we expect that by increasing the value of  oscillations increase but this holds true only if the feasible set of paths is wide. Usually a few iterations are sufficient for the algorithm to converge (also for complex networks) and probably a better tuning of parameters could reduce it even more. The impact of standard deviation in cost perception distribution  is investigated as well and it shows how the stochastic nature of ACS can solve the SUE faster than DUE problems.

More research is necessary to investigate convergence mechanisms especially when the existence and uniqueness of convergence cannot be theoretically demonstrated and when decreases with the number of iterations as suggested by some authors (e.g. Li and Gong, 2003). Moreover, other models of cost perception, for example with a variance distribution function of its mean, could be tested. 
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