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ABSTRACT
The value of travel time savings is an essential value in transportation. The discrete choice models provide estimates of this value, but these are strongly dependent on the model specification. There are theoretical bases to support variations in the VTTS with the travel and individual socio-economic environments, and nonlinear utility functions can accommodate these variations. Nowadays, popular random variations with the Mixed Logit model can be combined with different kinds of systematic variations. A general expression is presented. In practice, it is necessary to select the kind of variations to specify. The capabilities of random coefficients to reproduce systematic variations are studied.
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SYSTEMATIC AND RANDOM VARIATIONS OF THE VALUE OF TRAVEL TIME SAVINGS IN DISCRETE CHOICE MODELS.

1. Introduction 

The subjective value of travel time savings (VTTS) is the amount the individual is willing to pay in order to reduce by one unit his or her travel time. In the last few decades, a lot of research on valuation of time and a time allocation theory, founded in the works of Becker (1965), DeSerpa (1971) and Evans (1972), has been developed. The VTTS is an essential value in the evaluation of transportation investments because it is the most important component of user benefit. The substitution mechanism between time and cost is decisive in the transportation choices. The discrete choice models provide estimates of the subjective value of time as the rate of substitution between time and money from the estimated utility function. The estimates obtained from discrete choice models are not the social value of travel time savings that must be used in evaluation (see Gálvez and Jara-Díaz, 1998, Jara-Díaz, 2000 and Mackie et al., 2001).

There are mainly two approaches for the specification of the utility function (Cherchi, 2003). The first one can be called theoretical and it deduces the best composition and functional form of the utility function from microeconomic theory. The utility used in discrete choice models is a conditional indirect utility function which has to be deduced from an individual program of optimal resource allocation. There are several frameworks to derive this utility from the direct utility and the restrictions. The most popular is the one presented by Train and McFadden (1978) and expanded upon by Jara-Díaz and Farah (1987). The second one is the empirical approach, which considers that the best utility function is the one that better fits the data. The functional form is expressed as general as possible, and the data themselves place restrictions on this form (Gaudry and Wills, 1978). 
The value of travel time savings (VTTS) obtained from discrete choice models is strongly dependent on the specification of the model (Gaudry et al., 1989). There are theoretical bases to support variations in the VTTS with the travel and individual socio-economic environments (Jiang and Morikawa, 2004).

Linear in parameters and variables models with fixed coefficients provide constant VTTS. If interactions between individual and alternative attributes are specified, in a kind of nonlinear specification, the VTTS presents systematic variation (see Cherchi and Ortúzar, 2002) across the population. It is usual to specify systematic variations with the socio-economic environment in models like multinomial or nested logit.

If the transportation alternatives attributes are specified themselves in a nonlinear form, the VTTS becomes dependent on the level of the attribute. The use of nonlinear utility functions is based in both economic and psychological theories (Koppelman, 1981). Therefore, the value of time in nonlinear models, like the Box-Cox logit (Gaudry and Wills, 1978) or with logarithmic expressions for cost (e.g., Ben-Akiva et al., 1987), can vary with travel cost or travel time. They could be viewed as systematic variations across choice situations.

In the last decade, the random coefficients logit has increased its popularity among researchers and practitioners due to its flexibility (McFadden and Train, 2000) and apparently easy estimation (Hensher and Greene, 2003). The mixed logit allows random variations of VTTS in the population, with any statistical distribution (see Hess et al., 2005).
The combination in the same specification of the different classes of variation mentioned before is possible with the Box-Cox Mixed Logit model (Orro, 2005).
After this introduction about VTTS, we present the background of how nonlinear utility functions have been used in discrete choice models. We introduce nonlinearity in the formulation of the mixed logit to develop the Box-Cox Mixed Logit model. Afterwards, we show the variation in the value of travel time savings with the variation of the utility expression for different models, and we classify the sources and kinds of variation. 
Different series of synthetic data are created to study the capabilities of random coefficients to reproduce systematic variations. The distribution of the VTTS is calculated for different combinations of systematic and random variations. Forecasts are made for a set of changes in the attributes. In several cases, we find that random coefficients may adequately reflect systematic variation between individuals, for prognosis and VTTS distribution. In the case of systematic variation between situations, random variations without taking into account nonlinearities can lead to incorrect prognosis and interpretation (Orro, Novales and Benítez, 2005). Estimations with a real data set are also provided.

2. Nonlinear utility functions in discrete choice models

Discrete choice models are used in transport to study travel behaviour, and in particular, to predict mode and, less often, destination choices. In current practice, the most usual models are the multinomial logit (McFadden, 1973) and the nested logit (see Ortúzar, 2001, for development details). Within the framework of the theory of maximizing random utility, the individual is assumed to know the utilities of the available alternatives and to always choose the alternative of greatest utility. For the analyst, this utility of alternative i for individual n (Uni) can be specified with a representative component (Vni) which is function of observed variables describing the alternative (xn) and the individual (si), and a random component (ni).


[image: image38.emf]Random variation across 

individuals, systematic 

across situations

Random variation across 

individuals, same 

distribution of 



nit

Random variation across 

individuals, undefined 

distribution

Systematic variation 

across situations

Systematic variation 

across individuals

Constant across 

individuals and situations

Characteristics of VTTS

Box-Cox mixed logit

Mixed Logit (constant 

cost coefficient)

Mixed logit (random 

coefficients)

Box-Cox Logit

Cost/income 

Multinomial Logit

Linear Multinomial 

Logit

Subjective VTTS Utility Specification

Random variation across 

individuals, systematic 

across situations

Random variation across 

individuals, same 

distribution of 



nit

Random variation across 

individuals, undefined 

distribution

Systematic variation 

across situations

Systematic variation 

across individuals

Constant across 

individuals and situations

Characteristics of VTTS

Box-Cox mixed logit

Mixed Logit (constant 

cost coefficient)

Mixed logit (random 

coefficients)

Box-Cox Logit

Cost/income 

Multinomial Logit

Linear Multinomial 

Logit

Subjective VTTS Utility Specification

niicniitnini

Ubcbt

 

it

ni

ic

b

VTTS

b



ni

niicitnini

n

c

Ubbt

w

 

it

nin

ic

b

VTTSw

b



   

ct

ii

niicniitnini

Ubcbt



 

1

1

t

i

c

i

itni

ni

ic

ni

bt

VTTS

b

c











ninicninitnini

Uct

 

nit

ni

nic

VTTS







niicninitnini

Ubct

 

nit

ni

ic

VTTS

b





   

ct

ii

niicninitnini

Ubct



 

1

1

t

i

c

i

nitni

ni

ic

ni

t

VTTS

b

c














(1)
The original model proposed by Domencich and McFadden (1975: 54) assumes a linear function of a parameter’s vector () and the variables Zk. The variables Zk may be linear or nonlinear functions of one or more variables (xn and si), provided that the functions are fully specified a priori (Koppelman, 1981).
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The linear in parameters formulation is not overly restrictive, in theory. Any continuous indirect utility function can be approximated on a compact set to any desired degree of accuracy by an appropriate linear in parameters specification, and Zk can incorporate complex transformations (e.g. logs, reciprocals, ratios or empirical functions) and interactions of the raw data (McFadden, 1981: 220). However, in practice, relationships which are linear in the underlying variables are employed in many situations without explicit consideration of either theoretical or empirical evidence for using a nonlinear transformation.
As Ben-Akiva and Lerman (1985: 174-179) point out, we do not often have well-founded prior knowledge of these nonlinear transformations of the variables, and we want to test empirically a wide range of nonlinear functions of the variables. An initial approach is to test transformations of the variables maintaining linearity in the unknown parameters. 
A first option is a piecewise linear approximation. We can estimate a coefficient for each range of the corresponding variable. The disadvantages of this approach are the loss of degrees of freedom and the determination of the endpoints of the ranges. 

The second approach is to represent a nonlinear function by a power series expansion that includes the linear specification as a special case. In practice, the elements of the polynomial are highly correlated, and the series must be truncated at a low degree. The second order terms of cost or time can be justified from a microeconomic viewpoint, with a truncated conditional indirect utility function derived from a second-order expansion of the utility in a Cobb-Douglas form (see Jara-Díaz, 1998: 55-58). If the share of income and free time spent in transport were significantly different from zero, the second order terms in travel cost, travel time, or both should be included in the specification, with interactions between time and cost (see also Jara-Díaz and Videla, 1989 and Espino, 2003: 13-14).

The last approach is to test nonlinear transformations of variables that are non‑linear in the unknown parameters. We can use the Box-Cox transformation (Box and Cox, 1964) for non-negative variables:
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(3)
where  is an unknown parameter. The BC transformation defines a family of functions that includes as special cases the linear (= 1) and the logarithmic (= 0) transformations.
Gaudry and Wills (1978) analyze the Box-Cox and Box-Tukey transformations in different travel demand models. One of the models developed in this article is called Box-Cox Logit, although it is not a disaggregated discrete choice model based on the random utility maximization (RUM), but a generalized market share model with an analogous formulation. Some of the first discussions about the use of these transformations in RUM discrete choice models can be found in Hensher and Johnson (1981: 186-191) and Koppelman (1981).
Although most of the applications use linear in parameters utility functions, several researchers and analysts have been working in nonlinear utility functions with Box-Cox transformations.
3. The Box-Cox Mixed Logit Model
The Box-Cox mixed logit model (Orro, 2005) is based on the random coefficients specification of the mixed logit model (see Train, 2003). It incorporates the possibility of applying a Box-Cox transformation to some or all of the utility function's strictly positive independent variables.

In the random coefficients approach, the decomposition is treated in a slightly different way from how it is presented in equation (1), although completely equivalent. One assumes that the utility of alternative i for individual n can be specified as
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where:

· the coefficients  represent the individual’s tastes, and vary within the population according to a distribution set by the analyst, with density function f(|) dependent on certain underlying parameters  (e.g., the distribution mean b and standard deviation ), so that the coefficient of individual n can be expressed as 
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, with  being a random variable with a standardized distribution (zero mean and unit variance) analogous to that of the corresponding coefficient;

· the x (we do not consider explicit distinction between individual and alternative variables now) are attributes of alternative i, characteristics of the trip, or socioeconomic characteristics of the individual, and to some or all of them is applied the BC transformation of parameter  :
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· and the  are independent and identical Gumbel errors, analogous to those of the MNL model.

With this specification, the probability that individual n will choose alternative i for a given value of the coefficients n is the well-known logit expression:
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(6)
Since the analyst does not know the values of the coefficients, the integral has to be calculated with the density function of the coefficients in the population:
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As it is usual in mixed logit models, in general this integral will not have an analytic solution, and will be calculated by simulation, using R draws of the distribution function:
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(8)
The estimation of the model consists in obtaining the parameters which will be those underlying the coefficient distribution (b and ) and the exponents of the BC transformations (). The process is carried out by means of maximum simulated likelihood, maximizing the simulated log-likelihood of the sample:
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(9)
where ynj equals one if individual n has chosen alternative j, and zero otherwise.

4. Variations of the value of travel time savings with the alternative utility expression
The reassignment of time from travel to another activity (i.e. work, leisure, etc.) has a value for the individual. The theories of time allocation provide different concepts of the value of time and the value of saving time. DeSerpa (1971) defined three kinds of value of time: value of time as a resource, value of time as a commodity and value of time savings. Different authors have contributed to value of time analysis (see Jara-Díaz, 2000 and Jiang and Morikawa, 2004).
The subjective value of travel time savings (VTTS) is the willingness to pay for unit travel time savings. This value can be obtained as the rate of substitution between time (t) and cost (c) in the utility expression estimated in a discrete travel-choice model. The VTTS for individual n if he uses alternative i is (including a single dimension of travel time for simplicity):
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The estimation of a “value of time” is present in the early transportation applications of discrete choice models (Ben-Akiva and Lerman, 1985: 3). Cherchi (2003) presents a revision of mode choice models and the estimation of subjective values of time. Wardman and Waters II (2001) compile the state of the art of estimating a VTTS and the various factors which influence it.

As Jara-Díaz (2000) points, the interpretation of the subjective value of travel time obtained from equation (10) depends on the underlying theory that generates such utilities. For example, in the general framework presented in Jara-Díaz (1997), the rate of substitution between travel cost and travel time calculated from his modal utility gives the difference between the value of time as a resource and the value of time as a commodity.
The VTTS can be interpreted as consisting of the value of re-assigning time to other activities, as well as the value of the direct change in the utility of travel, and the value of the change in consumption patterns (Jiang and Morikawa, 2004). Therefore, the individual VTTS can vary with the alternative uses of the saved time to other activities, the travel environment (purpose, travel time, travel cost, comfort, etc) and the individual socio-economic environment (income, physical conditions, behavioural patterns, age, sex, etc.). It is necessary to specify the utility of the alternative for the individual to obtain this variation in the equation (10). For example, in an MNL with a linear in time and cost utility:
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where iasc is the alternative specific constant of the alternative i, the VTTS becomes constant:
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(12)
The subjective value of time when the Box-Cox transformation is employed is different from that in the MNL model (see Gaudry et al., 1989). It now depends on the levels of the variable and on the transformation parameters, as well as on the time and cost coefficients. For a specification which is linear in the transformed time and cost variables, the VTTS for individual n and alternative i become variable with the level of time and cost:
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(13)
If we know the source of a variation in the VTTS, we can incorporate in the discrete choice utility function a systematic variation with the value of an attribute. Systematic variations between individuals can be incorporated with interactions between socioeconomic variables and the time and cost (see Fowkes and Wardman, 1988 and Ortúzar and Willumsen, 2001: 260-262). The systematic variation between travel situations (journey time or cost) can appear in nonlinear specifications of these attributes as presented above (e.g. Gaudry et al., 1989). If we do not know, or we are not interested in knowing the source, we can specify random variations (with mixed logit models). We can also combine systematic and random variations between individuals (e.g. Algers et al., 1998) or between situations (Orro, 2005). Several expressions of the utility and the value of time that they imply are shown in table 1, where we use b for non-random coefficients.
From the empirical point of view, we can establish a general modal utility function that can accommodate all these sources and kinds of variation. A possible expression is an extension of the equation (4) derived in Orro, Novales and Benítez (2006) in a Box-Cox Mixed Logit framework:
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The systematic variation between individuals in the perception of the alternatives is accommodated through the coefficients 
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 and the individual socioeconomic attributes 
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. The individual coefficients 
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 provide random variation between individuals in the perception of the alternatives. The coefficients of the transformations of the level of service variables are also specified with a constant component 
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, a random variation between individuals 
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 and a systematic and random variation with the socioeconomic attributes 
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. The Box-Cox transformation provides systematic variation of the value of time between situations if it is specified for time or/and cost.
The VTTS with this expression of the utility is:
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(15)
The utility expression presented above is too complex to be used in usual practical applications. As Train (2003:145) says: “There is a natural limit on how much one can learn about things that are not seen”. It would be necessary to study different kinds and sources of variation and select the ones which allow a better fit and a better theoretical foundation. A lot of recent studies have selected random variations with a mixed logit specification. The aim of the experimental part of this paper is to analyze the capabilities of random coefficients to reproduce systematic variations.
5. Application to synthetic data

5.1. Random coefficients vs. systematic variation between individuals

In the past few years, random coefficients specification of the mixed logit model has been extended among researchers and practitioners. The model allows contrasting the presence of random taste heterogeneity. However, it is usual to consider only the random variation, without taking systematic variations with socioeconomic attributes into consideration. We have studied the implications of this choice with synthetic data in the framework of simulation experiments suggested by Williams and Ortúzar (1982). We try to analyze if random variations can replace systematic variations to some extent in the calculation of the value of travel time savings. We also study the forecast differences with the diverse specifications.
We created a simulated population of individuals who follow the assumptions of random utility maximization theory. We specify systematic and random variations of the time coefficient with sex (S), age (E) and income (I). The level of service variables are time (T) and cost (C). The utility function is:
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(16)

The simulated population consists of 100,000 individuals. The socioeconomic individual characteristics are drawn from pre-defined distributions. We assume a probability of 50% to be male (S = 1); a uniform distribution for age between 0 and 100 years and a normal distribution for income with mean 7 and standard deviation 4. It is obvious that we do not try to reproduce a real population. The alternative attributes are drawn from uniform distributions shown in table 2. The random variations are normal and the errors are independent Gumbel, with scale parameter 1. This is our synthetic data set 1. The VTTS is:
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(17)

Four specifications were analyzed: 
· Multinomial Logit, constant VTTS (MNL_1)
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· Multinomial Logit, systematic VTTS variation between individuals (MNL_2)
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· Mixed Logit, random VTTS variation (ML_1)
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· Mixed Logit, random and systematic VTTS variation between individuals (ML_2). This is the one presented in equation (16). It can recover the simulated situation.
The aim of this study is to know the VTTS distributions obtained with incomplete specifications, which could be used in a real situation, and the effect on the forecasts. We take samples of 10 000 individuals from the entire population (results with other samples and populations can be seen in Orro, Novales and Benítez, 2006).
To study the practical influence of an erroneous specification, we shall compare the results for different transport policy measures. We propose five policies of change (based in Cantillo and Ortúzar, 2005 and Munizaga et al., 2000). The five policies include three of small changes (P1, P2, P3) and two of strong policy changes (P4, P5), as detailed in table 3.
The 2 test was used to analyze the goodness of the forecasts of the different models for each policy (see Munizaga et al., 2000):
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where 
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 is the model estimate of the number of individuals choosing alternative i, and Ni is the actual (simulated) number. The value of 
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 should be greater than 5 in all cases. The result should be contrasted with the critical 2 value at the desired confidence level with i ( 1 degrees of freedom (Cantillo and Ortúzar, 2005). For three alternatives, the critical value at 5% with two degrees of freedom is 5.99. If the obtained value is lower than the critical value, it cannot be rejected that the forecasts are statistically equal to the real results.

The results obtained for the parameters with the different specifications are shown in table 4. With these results, the forecasts for the 5 policies of change are carried out, and the results are synthesized in table 5. The targets are the individuals of the sample that would make that choice with the individual real values simulated when we generate the population. Subsequently, the percentage differences are shown with respect to the objective value with each model and the  2 tests described. As can be seen in the table, the models that do not include the random variations present statistically significant errors in the prognosis in this case. Nevertheless, the ML_1 model, which considers only random variations, correctly does the forecasts. 
Afterwards, the distributions of the VTTS in the sample, which are reflected in figure 1, are analyzed. Presented are the simulated real individual values, the systematic component of the real values, the results with the model that only considers the systematic variation (MNL_2), and the distribution provided by the model that only considers the random variation (ML_1). In table 6, the characteristics (mean and standard deviation) of the distributions obtained are shown. The MNL models do not adequately reflect the characteristics of the value of time in this sample. Although it is an attractive possibility, individual parameters for the mixed logit model have not been estimated.
For this distribution of random and systematic variations, it has been shown that considering only the random variations allows reflecting the real situation with enough accuracy, both for forecasts and interpretation of values of time. On the other hand, considering just the systematic variations leads to errors in the prognosis as in the interpretation.

We test in Orro, Novales and Benitez (2006) a population with extremely dominant systematic variation. In that case, the random variation can also reproduce the mean and the standard deviation of the VTTS. The forecasts are not statistically different from real results in all the models tested.
5.2. Random coefficients vs. systematic variation between situations

We test in a similar way the capabilities of random coefficients to replace systematic variations between situations. In this case, we specify a systematic variation between situations with a nonlinear in time utility and estimate different models.
The population consists of 100,000 individuals who have three available alternatives. The variables are generic and its generation is described in table 7. SE is a dummy socioeconomic variable of the individual specified in alternatives 2 and 3. We take samples of 10,000 individuals. More details on synthetic data generation and several additional cases with other samples and populations can be found in Orro, Novales and Benitez (2005), and in Orro (2005).

The utility function used in the simulation is:
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In this particular case, with generic variables, the exponential specification of the attributes is equivalent to that of a Box-Cox Logit with appropriately corrected coefficients. The value of time in this specification is:
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Four specifications were analyzed: 
· Multinomial Logit (MNL)
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· Mixed Logit, random VTTS variation (ML)
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· Box-Cox Logit, systematic VTTS variation between situations (BCL), that can recover the real one
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· Box-Cox Mixed Logit, random and systematic VTTS variation between situations (BCML)



[image: image36.wmf](

)

(

)

CT

nj

asclsls

njjSEnCnjTTnnj

USECT

ll

bjbbhe

éù

=+×+×++×+

ëû


(26)
The results obtained for the parameters with the different specifications are shown in table 8. The t-statistic of the significance of the parameter is given in parentheses (against 1 in the case of the BC exponents), and the test of the difference with respect to the real value is given in brackets. The values obtained with the ML model need more analysis. With the large sample, the standard deviation of the time parameter T was significantly different from zero, which is the real value (see Orro, 2005 and Orro, Novales and Benítez, 2005 for verification with additional experiments). Also, the ML model is a significant improvement over MNL with this sample. Therefore, if —as usual— no model with a BC transformation is specified, a Mixed Logit model would be chosen in a real situation, with the understanding that there is a random variation in the individuals' tastes.
The reality is that, in this simulated population, no such differences between individuals exist in the form of how they value time. For each level of the attributes of cost and time, however, the valuation is different, in what we have called systematic variation between situations. Given that these attributes are randomly distributed in the population (in the experiment with a uniform distribution), the values assigned to time in this sample also present a variation that is apparently random. While the result was therefore to be expected, its interpretation as random variations is incorrect. This circumstance would also be detectable with statistical tests of nonlinearity. Swait and Bernardino (2000) and Cherchi and Ortúzar (2004) warn about problems in interpretation of this type for differences in specification other than nonlinearity.

Table 9 gives the forecasts of the models with the same criteria as those in table 5. One observes that neglecting the nonlinearity that is present leads to significant errors in all the policies. The errors are similar in MNL and ML. The forecasts of the BCML model, which includes the correct case, are close to the BCL values. The reason for these errors in ML forecasts is as follows: changing the values of the attributes with respect to the initial values also caused the distribution of the values of time in the population to vary. Therefore, the values obtained in calibration would not be valid for forecasting in this case.
6. Application with real data
To test the Box-Cox Mixed Logit framework, we use a database on the choices of modes for journeys inside the conurbation of the city of Madrid generated in a 24-hour time period. This database corresponds to the 1996 home survey carried out to a set of 25,140 homes and 75,772 individuals. From this set, a subset of 6,974 individuals was chosen to obtain specific information of their mobility behaviour. There are other estimations with this database (Vázquez et al, 2004; Benítez and Vázquez 2004).
Due to the fact that we are not concerned with correlation issues, we select 2,770 observations of transit journeys for individuals that do not have the car alternative. Additional information about data and other estimations can be found in Orro (2005: 233-258). The limitations of the data, which are not obtained specifically for the estimation of discrete choice models, make this application more useful to test the methodology than to obtain an accurate estimation of the behaviour of the population, due to the lack of accurate measurement of attributes of non-selected alternatives.
The alternatives are urban bus (B), intercity bus (BI), underground (M), railway (FC) or a combined alternative (C). We have several socioeconomic attributes and travel characteristics, but they are not used in the estimations presented here. The level of service attributes are in-vehicle time (TN), out-of-vehicle time (TO), and cost (CT) in pesetas (166.386 pesetas = 1 €).
We present the comparison between models with random variations, with systematic variations between situations, and the combination of both of them. The results are shown in table10. The last model is a mixed logit estimated with the transformation of the attributes obtained in the Box-Cox Logit.
We can observe how the ML seems to show that there is a significant random variation in the sample and the BCML shows an additional nonlinearity (systematic variation between situations). However, if we estimate a ML with the transformation of the variables, we can see that, in the case presented, there is not additional heterogeneity and the standard deviations appear not-significant. Of course, this result can not be extended to any situation. It seems to be necessary to test if random variation is being confused with nonlinearity in attributes. This represents a potential risk for forecasting and interpretation.
7. Conclusions
The use of nonlinear utility expression in discrete choice models in transportation allows considering systematic variations in the value of travel time savings. The inclusion of the Box-Cox transformation in discrete choice models with random coefficients is a viable alternative.

If nonlinearity is not specified and we only use random coefficients, at least in the studied cases, we obtain reasonable results for systematic variation between individuals. However, if systematic variation between situations (with the time and cost of the journey) are present, we found that there is a risk of making errors in forecasts and interpretation. Further research is necessary to be able to generalize these conclusions.
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Table 1. Characteristics of VTTS for different discrete choice models
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Table 2: Alternative attributes distributions. Synthetic data set 1.
	Variable
	Name
	Alternative 1
	Alternative 2
	Alternative 3

	Cost
	Cj
	Uniform 3-5
	Uniform 4-8
	Uniform 2-4

	Travel time
	Tj
	Uniform 5-15
	Uniform 3-12
	Uniform 8 - 16


Table 3: Change policies. Synthetic data set 1.

	Policy
	C1
	C3
	T2

	P1
	
	
	- 20 %

	P2
	
	+ 25 %
	

	P3
	-15%
	
	

	P4
	
	
	- 50 %

	P5
	
	+ 100 %
	


Table 4: Estimated parameters. Synthetic data set 1.
	
	
	MNL_2
	ML_2
	MNL_1
	ML_1

	Parameter
	Real
	Estim.
(t)
	Estim.
(t)
	Estim.
(t)
	Estim.
(t)

	1asc
	1
	0.5071
(12.55)
	0.98
(17.01)
	0.502
(12.49)
	0.9642
(16.8)

	2asc
	2
	1.2402
(17.47)
	2.0174
(19.72)
	1.2296
(17.44)
	1.985
(19.44)

	C ls
	-1.5
	-0.9042
(-42.25)
	-1.4652
(-33.84)
	-0.8969
(-42.31)
	-1.4429
(-33.56)

	T ls
	-0.5
	-0.3569
(-24.11)
	-0.4406
(-13.47)
	-0.4927
(-65.69)
	-0.9537
(-32.55)

	T
	0.3
	
	0.121
(1.41)
	
	0.6214
(22.51)

	TS
	-0.3
	-0.0714
(-7.44)
	-0.2842
(-8.48)
	
	

	TS
	0.5
	
	0.5307
(11.51)
	
	

	TE
	-0.003
	-0.0011
(-5.5)
	-0.0036
(-7.2)
	
	

	TE
	0.005
	
	0.0056
(9.33)
	
	

	TI
	-0.03
	-0.0074
(-6.17)
	-0.0335
(-8.82)
	
	

	TI
	0.05
	
	0.0535
(12.44)
	
	

	(S)LL
	
	-6935.21
	-6508.64
	-6984.47
	-6619.15


Table 5: Comparison between predicted and simulated values. Synthetic data set 1 
	Policy
	Alternative
	Target
	MNL_2
	ML_2
	MNL_1
	ML_1

	P1
	Alt. 1
	2962
	1.92%
	-0.84%
	1.96%
	-0.99%

	
	Alt. 2
	5184
	-0.36%
	0.86%
	-0.36%
	0.94%

	
	Alt. 3
	1854
	-2.06%
	-1.06%
	-2.12%
	-1.06%

	
	
	2
	1.95
	0.80
	2.03
	0.96

	P2
	Alt. 1
	4104
	-2.67%
	0.35%
	-2.74%
	0.18%

	
	Alt. 2
	4405
	0.44%
	-0.26%
	0.45%
	-0.18%

	
	Alt. 3
	1491
	6.06%
	-0.20%
	6.21%
	0.02%

	
	
	2
	8.48
	0.09
	8.92
	0.03

	P3
	Alt. 1
	4512
	-1.66%
	0.44%
	-1.69%
	0.27%

	
	Alt. 2
	3643
	-0.89%
	-0.23%
	-0.92%
	-0.14%

	
	Alt. 3
	1845
	5.81%
	-0.62%
	5.96%
	-0.40%

	
	
	2
	7.77
	0.17
	8.14
	0.07

	P4
	Alt. 1
	1867
	5.79%
	-3.79%
	5.82%
	-4.29%

	
	Alt. 2
	6828
	1.35%
	1.38%
	1.45%
	1.58%

	
	Alt. 3
	1305
	-15.35%
	-1.79%
	-15.90%
	-2.15%

	
	
	2
	38.24
	4.40
	40.74
	5.75

	P5
	Alt. 1
	4800
	-4.91%
	0.12%
	-5.03%
	0.06%

	
	Alt. 2
	4850
	2.88%
	0.17%
	2.92%
	0.25%

	
	Alt. 3
	350
	27.41%
	-3.97%
	28.40%
	-4.34%

	
	
	2
	41.88
	0.57
	44.50
	0.69


Table 6: VTTS distributions characteristics. Synthetic data set 1

	 
	Real
	Systematic
	MNL_2
	ML_1
	MNL_1

	Mean
	0.673
	0.675
	0.552
	0.661
	0.549

	Standard deviation
	0.483
	0.141
	0.062
	0.431
	-


Table 7: Generation of variables. Synthetic data set 2.
	Variable
	Name
	Alternative 1
	Alternative 2
	Alternative 3

	Cost
	Cj
	Uniform 3-5
	Uniform 4-8
	Uniform 2-4

	Travel time
	Tj
	Uniform 5-15
	Uniform 3-12
	Uniform 10 - 20


Table 8: Estimated parameters. Synthetic data set 2.
	Parameter
	Real
	MNL
(t significance)

[t real value]
	BCL
(t significance)

[t real value]
	ML
(t significance)

[t real value]
	BCML
(t significance)

[t real value]

	1asc

	2.04
	1.311
	1.943
	1.351
	1.955

	
	
	(14.74)
	(15.96)
	(14.32)
	(15.77)

	
	
	[-8.2]
	[-0.79]
	[-7.31]
	[-0.68]

	2asc

	2.9
	2.028
	2.727
	2.083
	2.744

	
	
	(17.04)
	(18.25)
	(16.76)
	(17.91)

	
	
	[-7.33]
	[-1.15]
	[-6.57]
	[-1.02]

	SE
	1
	0.978
	0.997
	1.005
	1.006

	
	
	(11.43)
	(11.6)
	(11.64)
	(11.6)

	
	
	[-0.25]
	[-0.03]
	[0.06]
	[0.07]

	C ls

	-4
	-0.819
	-3.197
	-0.844
	-3.192

	
	
	(-27.48)
	(-5.34)
	(-26.07)
	(-5.2)

	
	
	[106.69]
	[1.34]
	[97.44]
	[1.32]

	T ls

	-3
	-0.963
	-3.446
	-1.025
	-3.532

	
	
	(-50.72)
	(-8.7)
	(-32.05)
	(-8.03)

	
	
	[107.22]
	[-1.13]
	[61.76]
	[-1.21]

	T
	0
	
	
	0.187
	0.371

	
	
	
	
	(4.83)
	(1.49)

	
	
	
	
	[4.83]
	[1.49]

	C

	0.1
	
	0.204
	
	0.210

	
	
	
	(-6.85)
	
	(-6.59)

	
	
	
	[0.89]
	
	[0.92]

	T
	0.5
	
	0.422
	
	0.420

	
	
	
	(-10.93)
	
	(-10.51)

	
	
	
	[-1.47]
	
	[-1.46]

	(S)LL
	-3142.36
	-3067.77
	-3139.25
	-3067.48


Table 9: Comparison between predicted and simulated values. Synthetic data set 2
	Policy
	Alternative
	Target
	MNL
	BCL
	ML
	BCML

	P1
	Alt. 1
	21662
	4.02%
	0.86%
	4.04%
	0.88%

	
	Alt. 2
	77392
	-1.10%
	-0.21%
	-1.13%
	-0.23%

	
	Alt. 3
	946
	-1.72%
	-2.18%
	-0.23%
	-1.71%

	
	
	2
	44.65
	2.40
	45.28
	2.36

	P2
	Alt. 1
	34639
	0.27%
	0.71%
	0.29%
	0.72%

	
	Alt. 2
	64061
	-0.75%
	-0.43%
	-0.74%
	-0.43%

	
	Alt. 3
	1300
	29.62%
	2.05%
	28.59%
	1.94%

	
	
	2
	117.84
	3.48
	110.04
	3.45

	P3
	Alt. 1
	40155
	-3.72%
	-0.19%
	-3.72%
	-0.23%

	
	Alt. 2
	57738
	2.41%
	0.20%
	2.43%
	0.23%

	
	Alt. 3
	2107
	4.86%
	-1.80%
	4.34%
	-1.90%

	
	
	2
	94.03
	1.05
	93.39
	1.26

	P4
	Alt. 1
	5722
	34.21%
	-3.35%
	33.98%
	-3.35%

	
	Alt. 2
	94214
	-2.11%
	0.21%
	-2.14%
	0.20%

	
	Alt. 3
	64
	53.42%
	-12.87%
	108.48%
	-2.40%

	
	
	2
	729.90
	7.90
	779.10
	6.84

	P5
	Alt. 1
	35014
	0.35%
	0.76%
	0.39%
	0.76%

	
	Alt. 2
	64745
	-0.55%
	-0.43%
	-0.55%
	-0.43%

	
	Alt. 3
	241
	96.64%
	5.76%
	90.82%
	4.86%

	
	
	2
	227.45
	4.00
	201.23
	3.82


Table 10: Estimated parameters. Madrid data set.

	
	
	ML
	BCML
	BCL*
	ML (BCML)*

	Parameter
	Estim.
(t)
	Estim.
(t)
	Estim.
(t)
	Estim.
(t)

	ASC BI
	b1
	-1.7438
(-7.89)
	-1.0077
(-7.71)
	-0.951
(-7.07)
	-0.979
(0.122)

	ASC M
	b2
	-1.7356
(-13.48)
	-1.4257
(-13.92)
	-1.4465
(-14.36)
	-1.437
(0.113)

	ASC. FC
	b3
	-1.6606
(-6.93)
	-1.0427
(-7.11)
	-0.9626
(-6.42)
	-1.004
(0.129)

	ASC C
	b4
	2.16
(14.79)
	1.8393
(20.17)
	1.9729
(21.03)
	1.896
(0.094)

	TO mean
	b5
	-0.6156
(-17.54)
	-629.3918
(-93.62)
	-0.6984
(-5.29)
	-0.703
(0.238)

	TN mean
	b6
	-0.1035
(-9.16)
	-38.2351
(-4.52)
	-0.6617
(-3.23)
	-0.625
(0.052)

	CT
	b7
	-0.0146
(-9.13)
	-0.0079
(-7.9)
	-1.2944
(-7.65)
	-1.324
(0.238)

	TO s.d.
	5
	0.435
(13.3)
	84.219
(9.36)
	
	0.1
(0.053)

	TN s.d
	6
	0.1561
(8.53)
	9.251
(151.65)
	
	0.123
(0.204)

	TO BC parameter
	5
	
	-1.7429
(-26.73)
	-1.506
(-18.81)
	-1.506
(fixed)

	TN BC parameter
	6
	
	-1.0074
(-25.67)
	-1.0657
(-8.45)
	-1.0657
(fixed)

	SLL
	
	-1966.47
	-1593.31
	-1596.29
	-1594.652

	* Estimations with scaled data


Figure 1: VTTS distributions. Synthetic data set 1.
[image: image37.emf]0

1000

2000

3000

4000

5000

6000

7000

8000

-0.68-0.53-0.38-0.23-0.08 0.08 0.23 0.38 0.53 0.68 0.83 0.98 1.13 1.28 1.43 1.58 1.73

VTTS

Individuals

Real Systematic MNL_2 ML_1





























































































































PAGE  
28

_1226426858.unknown

_1226509807.unknown

_1226510279.unknown

_1230870960.unknown

_1233300744.unknown

_1230768416.unknown

_1226510394.unknown

_1226510060.unknown

_1226510172.unknown

_1226510245.unknown

_1226509836.unknown

_1226426895.unknown

_1226427106.unknown

_1226478726.unknown

_1226480673.unknown

_1226426903.unknown

_1226426875.unknown

_1226426884.unknown

_1226426867.unknown

_1226420001.unknown

_1226426324.unknown

_1226426755.unknown

_1226426306.unknown

_1207744721.unknown

_1226390059.unknown

_1226390081.unknown

_1226390110.unknown

_1207744851.unknown

_1215042352.unknown

_1215047560.unknown

_1212741032.unknown

_1207744740.unknown

_1155539255.unknown

_1185207547.unknown

_1155464175.unknown

