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Abstract

This research focuses on the so-called Asymmetric User Equilibria (AUE) in the sense that the travel cost is non-separable of link flows. We show that the route choice behavior under AUE can be modeled in a “link-node-destination” fashion. Hence AUE can be formulated as a multi-commodity network flow problem with non-separable travel cost, and further a nonlinear complementarity problem (NCP). The solution approach for the proposed model is based on a “decomposition + synchronization” scheme due to the special structure of the model. In particular, the Gauss-Seidel decomposition scheme is applied in this paper. To further improve the convergence performance, a synchronization nonlinear programming problem (NLP) is developed by deriving a particular merit function for the NCP model. Through solving the synchronization NLP, an optimal step size is computed for obtaining the next iterate in the Gauss-Seidel algorithm. Numerical examples are also provided in this paper, which illustrate the validity of the proposed model and solution approach.

1. Introduction and Motivation

Following Wardrop’s seminal work (Wardrop, 1952), numerous models and solution algorithms have been developed for the static traffic assignment problem, centered with the user equilibrium (Patriksson, 1994; Boyce et al., 2005). Majority of the solution algorithms have been focusing on the separable user equilibrium problem, based on the nonlinear programming (NLP) formulation by Beckmann et al. (1956). Here, “separable” means there is no link interaction in terms of computing link travel times; in other words, the travel time of a link depends on the traffic flow of the link only. Although a well-defined NLP, Beckmann’s formulation has a very special structure that the objective function is defined on aggregated variables (total link flows) and constraints are defined on disaggregated variables (path flows in this case). Therefore, standard NLP solution techniques are not feasible for solving Beckmann’s formulation directly for large scale problems since the dimension of the resulting NLP could be too large for any standard NLP solver to handle effectively. 
In order to efficiently solve Beckmann’s formulation, certain decomposition (or column generation) scheme has to be applied. In the literature, three major decomposition schemes have been developed, based on different aggregation levels, namely, the link-based, path-based, and origin- (or destination-) based. The Frank-Wolfe (FW) algorithm has a long history in the traffic assignment literature to solving Beckmann’s formulation (LeBlanc et al., 1975). FW is link-based and requires the minimum computer memory when implemented. However, the searching direction generated by FW tends to be perpendicular to the gradient of the objective function, implying the convergence rate of FW becomes very slow after certain number of iterations. Although many refinements of FW were proposed in the literature (Florian and Spiess, 1983; Fukushima, 1984; LeBlanc et al., 1985), it can only be used to produce approximate solutions. The gradient projection (GP) and disaggregated simplicial decomposition (DSD) are two path-based approaches. GP has different versions and the widely used one is due to Bertsekas (1976) and Bertsekas and Gallager (1987). In the transportation field, GP was firstly adopted by Jayakrishnan et al. (1994) and later extensively studied and tested by Chen et al. (2002). The DSD approach was proposed by Larsson and Patriksson (1992). Both GP and DSD showed significant improvements in terms of solution accuracy and convergence efficiency compared with FW; however, they also need much more computer memory to store path-flows. The origin-based algorithm (OBA) for symmetric user equilibrium (Bar-Gera, 1999) reformulates Beckmann’s model using origin-based disaggregated variables, thus having an aggregation level between the link-based and path-based algorithms. A distinctive feature of OBA is that it solves the traffic assignment on origin-based restricting sub-networks. Due to careful designs, OBA guarantees each sub-network is spanning and acyclic. Two advantages then follow. First, the sub-network is generally much smaller than the original network, implying it is more efficient to assign traffic flows on sub-networks. Further, since each sub-network is acyclic, no cyclic flow could be generated and network flow algorithms, e.g. finding the shortest path, can be much more efficiently performed. Therefore, OBA converges very quickly. Secondly, the memory requirement of OBA is much less than path-based algorithms because the aggregation level of OBA is much higher. Consequently, OBA can be used for solve large size traffic assignment problems (Boyce, 2004) that path-based algorithms may not be able to handle.
Current implementation of OBA, however, targets on Beckmann’s formulation only. Hence, it can not account for traffic interactions among different links. This is not as realistic as the asymmetric (or non-separable) case where the travel time of a given link is dependent on both its own flow and those on the adjacent links. The asymmetric traffic assignment, particularly the asymmetric user equilibrium (AUE), has also been extensively studied. Due to the asymmetry feature of the problem, AUE can not be formulated (at least directly) as an NLP; rather, a variational inequality (VI) or nonlinear complementarity problem (NCP) formulation has to be adopted (Smith, 1979; Dafermos, 1980; Aashtiani and Magnanti, 1981; Friesz et al., 1983; Nagurney, 1998). In particular, all NCP models proposed so far for AUE are path based. To solve AUE models, a number of algorithms have been developed, including the diagonalization method (Dafermos, 1983), the decomposition methods (Aashtiani, 1979; Pang, 1985), and the simplicial decomposition methods (Lawphongpanich and Hearn, 1984). The diagonalization approach relaxes link interactions at each iteration of the algorithm and then the relaxed problem can be cast as a standard NLP. Dafermos (1983) established conditions under which the iterative algorithm can converge globally. However, these conditions generally require strong monotonicity which may not be satisfied by traffic assignment problems. Aashtinai (1979) and Pang (1985) proposed decomposition schemes for solving asymmetric user equilibrium. In particular, Pang (1985) provided conditions under which the schemes can converge locally or globally. The condition by Pang for local convergence only requires strict monotonicity which is weaker than those by Dafermos. Since the defining set of AUE is linear, its solution can be represented as a linear combination of extreme points of the defining set (a polyhedron). The simplicial decomposition thus aims to find these extreme points. Lawphongpanich and Hearn (1984) established convergence conditions for simplicial decomposition and tested on small size problems. For detailed reviews of AUE models and algorithms, we refer to Patriksson (1994). 
All of the above AUE models and algorithms, nevertheless, were not fully tested for solving even medium size AUE problems. One reason is, as reported in Aashtinai (1979), that no efficient solution algorithm for solving a general VI or NCP was available at the time when these algorithms were proposed. Recently, in the mathematical programming community, Ferris et al. (1999) developed the path search algorithm which is considered as a break-through for solving large scale NCPs. The algorithm is globally convergent with a quadratic convergence rate. By combining the state-of-the-art solution algorithm for NCPs, Ban et al. (2006) developed a link-node complementarity model for AUE. The model is a counterpart of the link-path NCP formulation in the literature. To solve the model, an orgin-based algorithm, similar to that by Bar-Gera (1999) was developed and promising results were obtained.
In this paper, we develop an synchronization and decomposition algorithm for the class of link-node based complementarity model proposed in Ban et al. (2006). It turns out that the NCP formulation has a special structure such that the defining set is a Cartesian product of a number of lower-dimension sets. Therefore, certain decomposition scheme, e.g. the Gauss-Seidel decomposition, can be applied. To further improve the convergence performance, a synchronization nonlinear programming problem (NLP) is developed by deriving a particular merit function for the NCP model. Through solving the synchronization NLP, an optimal step size, instead of the conventional full step, is computed for obtaining the next iterate in the Gauss-Seidel algorithm. Numerical examples conducted in the paper demonstrate that the proposed algorithm can solve efficiently medium scale AUE problems.
This paper is organized as follows. The link-node based NCP formulation for AUE is presented in Section 2. In Section 3, the solution algorithm for the proposed model is provided. It starts with a decomposition scheme based on individual destinations. Then issues on how to determine the optimal step size is discussed. Section 4 provides numerical examples demonstrating the effectiveness of the proposed algorithm. Finally, concluding remarks and future research directions are given in section 5.

2. Link-Node NCP Formulation for AUE 
2.1 Link-Node NCP Formulation 
The static user equilibrium (UE) problem can be described using Wardrop’s first principle (Wardrop, 1952) which states that:

The journey times on all the routes actually used are equal, and less than those which would be experienced by a single vehicle on any unused route.

As depicted in Figure 1, the UE problem can be expressed mathematically as follows
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where S and A denote the sets of destination nodes and all links, respectively, in the network, 
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 is the disaggregated link flow on link (i,j) with respect to destination 
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 is the link travel time for link (i,j) which is a function of the aggregated link flow 
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. It is easy to see that (1) is equivalent to the following complementarity condition:
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(INSERT FIGURE 1 HERE)
Here “
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” is read as “perpendicular to”. For any two vectors x and y, 
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 represents the “transpose” of x. Together with the flow conservation constraints at each node 
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 in (3b) and the nonnegativity constraints in (3c), we have the following formulation for UE:
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where N denotes the set of nodes in the network and 
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 denotes the travel demand from node 
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 to destination s. Note that here we assume a node will never send trips to itself. Then as shown in Ban et al. (2007), the model (3) has the following NCP equivalence:
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Model (4) can be rewritten in a matrix form as:
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where the notations are listed as below:
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As shown in Ban et al. (2007), under certain conditions, the NCP model (5) has at least one solution. Therefore, several observations can be easily obtained for the NCP model (5). First, it is a well-defined NCP problem which has at least one solution. Second, it is defined on the disaggregated link flow variables, while the link travel time function can be treated as a function of the total link flow. Third, since the link travel time is a function of all 
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, model (5) can represent the asymmetric UE for which the link interactions need to be considered when constructing the link travel time function.

The Jacobian matrix of NCP (5) is as follows.
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It is easy to show that 
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, the Jacobian can be rewritten as (7).
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where Q is positive semi-definite if t is strictly monotone with respect to the total link flow 
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. Then we can prove that the matrix in equation (7) in positive semi-definite and the NCP model (5) has a unique solution in terms of the total link flow vector x (Ban et al., 2007). 
3. Solution Algorithm for AUE

3.1 A Decomposition Scheme
Although a well-defined NCP model, (5) is hard to solve directly for large scale multiple destination problems for two reasons. First, the dimension of the problem could be too large (LeBlanc et al., 1975); and second, the problem is “less monotone” with more destinations. Ban (2005) tested such a direct solve with certain regularity scheme by adding proximal perturbation to the Jacobian matrix M in (7). However, it is still only feasible for solving small to medium size AUE problems. In this paper, we propose a scheme to apply the decomposition method on individual destinations. The algorithm decomposes the single NCP (5) into multiple smaller size NCP problems, one for each destination. This is done by temporarily fixing the disaggregated link flows for all other destinations. 

In the literature, decomposition schemes can be grouped into two categories: the Gauss-Seidel (or sequential) decomposition and the Jacobi (or parallel) decomposition. While the Jacobi decomposition method is amenable to parallel computing, the Gauss-Seidel (GS) method has been proven to have better convergence since it can incorporate the newest available information (Bertsekas and Tsitsiklis, 1997). In this study, we will concentrate on the GS method.
Applying the GS method for our NCP model (5) means we need to solve, for each destination 
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 at iteration n+1, a decomposed sub-problem as follows.
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where 
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 at iteration n. Denote (8) as the decomposed NCP (DNCP). Therefore, At each iteration, instead of solving directly the original large dimension NCP problem with size 
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Clearly, if we assume 
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 is strictly monotone, 
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 is itself non-singular which makes (9) very easy to solve by NCP solvers. 

Traditional GS method utilizes the full step size (i.e., step = 1) to construct the next iterate. In this paper, we propose a “synchronization” scheme, a method that we use to construct the optimal step size for each individual destination in order to obtain the next iterate. For this purpose, a merit function will be devised which can monitor the convergence of the algorithm and help to design the step size. Denote the step size for destination 
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Here 
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 is the solution via solving the DNCP (8). Clearly, the next iterate is a convex combination of the current one and the solution obtained from solving (8). Note that we solely focus on the disaggregated link flows since, as shown in (8), while constructing the decomposed NCP for every destination, we only need to temporarily fix the disaggregated flows for other destinations. Moreover, equation (3b) is satisfied for the initial 
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Based on the above observations, we define a merit function for the NCP model (5) at iteration n by adopting the widely used Ficher-Burmeister (FB) function for VI/NCP (Fachinei and Pang, 2003, Chapter 1). It is shown in equation (11).
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where 
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In order to compute 
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[image: image55.wmf](

)

DNCP

s

u

 , 
[image: image56.wmf]S

s

Î

"

 and then perform a shortest path search with respect to destination s to obtain the minimum cost from any node to s. In particular, such a computation can be readily carried out by solving the following LCP (Linear Complementarity Problem):
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where 
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Equation (14) is a smooth NLP problem over boxed constrains with a small number of variables provided the number of destinations in the network is not large (normally hundreds even in a large network), which implies solving (14) is trivial. The GS method incorporated with synchronization, denoted as GS + SYNC, is listed as follows.
(INSERT FIGURE 2 HERE)
4. Numerical Examples
In this section, we test the proposed NCP model and the decomposition and synchronization algorithm on the Sioux-Falls and Anaheim networks. The purpose is to evaluate the effectiveness of the model and algorithm. The Sioux-Falls network has 24 nodes, 76 links, and 528 OD pairs and the Anaheim network contains 416 nodes and 914 links with 38 OD zones. The data for both networks can be found at: http://www.bgu.ac.il/~bargera/tntp/. The PATH solver developed by Dirkse and Ferris (1995) is adopted in this paper to solve the decomposed NCPs. The GS + SYNC algorithm in Figure 2, however, is implemented in Matlab.
4.1 Link Travel Time Function

Since we are dealing with AUE, we adopt the following link travel time function:
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, equation (15) will reduce to the standard BPR function. In this paper, we set 
[image: image82.wmf],

15

.

0

,

,

=

=

jl

ij

kj

ij

r

r

 
[image: image83.wmf]k

i

A

l

j

A

j

k

A

j

i

N

j

¹

Î

Î

Î

Î

"

,

)

,

(

,

)

,

(

,

)

,

(

,

. 
[image: image84.wmf]b

a

,

 are constants and we set 
[image: image85.wmf]4

,

15

.

0

=

=

b

a

 in our study. We should point out here that in the literature, there are a number of ways to construct the link travel time for AUE (Nagurney, 1984). Equation (15) is probably the most general expression which considers the impacts of all adjacent links to a given particular link.
4.2 Results Analysis
Figure 3 shows comparisons of the convergence between GS+SYNC and the pure GS methods (i.e., using the full step) on the Sioux-Falls network. In the figure, x-axis shows the number of iterations and y-axis is the objective value via solving the synchronized NLP (14). Obviously, the GS + SYNC method converges faster than the pure GS method, especially when an optimal solution is approached. Similarly, Figure 4 depicts the convergence performance of the GS + SYNC method vs. the pure GS method for the Anaheim network. This figure also depicts that the GS + SYNC method is slightly better than the pure GS method. Note that in both of the two figures, we use different scales for the objective values to clearly demonstrate the difference between these two methods.

(INSERT FIGURE 3 HERE)
(INSERT FIGURE 4 HERE)
From Figure 3 and 4, we can also observe that the GS + SYNC method only requires about 25 iterations to reach the level of accuracy so that the objective value of (14) is less than  1.0-4. For the Anaheim network, the number is reduced to 8. This clearly shows that the GS + SYNC method is efficient for solving AUE, especially for medium-size networks (like the Anaheim network).
5. CONCLUSIONS

In this paper, we proposed a decomposition + synchronization scheme for solving a class of link-node complementarity model for asymmetric user equilibrium. We first presented the link-node based NCP formulation for AUE recently developed in the literature. Built on this new formulation, a decomposition scheme was proposed based on individual destinations to convert the single large dimensional NCP into multiple smaller size decomposed NCPs. The decomposed NCPs can be efficiently solved by the path search algorithm developed in the mathematical programming community. To further improve the efficiency, especially to determine an optimal step size, we developed a synchronization scheme. The scheme calculated an optimal step size at each iteration of the algorithm by solving a synchronization nonlinear programming problem. Numerical examples showed that the proposed algorithm can solve medium size AUE with rapid convergence and has the potential to solve large scale AUE problems.
For future study, we need to rigorously prove the convergence of the proposed algorithm. Further, this paper tested the algorithm on selected medium size AUE problems and evaluations of the algorithm for solving large scale problems are needed in future studies. 
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Figure 1 Illustration of the UE Condition
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Figure 2 Gauss-Seidel Algorithm with Synchronization Enhancement
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