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ABSTRACT
Many transport studies rely on Stated Preference surveys to obtain estimates of the parameters of utility functions that are then used to produce forecasts of demand volumes on the various components of transport networks, under varying conditions of supply, prices, etc.

One popular technique to obtain the Stated Preference data is based on the presentation to the interviewee of a small set of (normally two) alternatives, asking her to express her choice, accompanied by a degree of confidence or intensity of that choice, like "strong preference", "moderate preference", "indifference", etc. These semantic choices are then translated into a numerical scale of probability of choice, where the numerical values associated with each level of intensity are either predefined or also subject to a bet fit estimation procedure. The estimation of the utility function coefficients in the Logit model is then made by searching the best fit between the differences of the utilities of the alternatives being compared and the logarithms of the quotients of their probabilities.

The problem with this approach is that the utilities of the alternatives vary on a continuous scale, whereas the probabilities of choice of each alternative (and thus their quotients) are predefined in a small set of discrete values, only as large as the semantic scale adopted, typically with only 5 values. The consequence is that the interviewee is forced to a reduced set of possibilities of expression of her preference and that the quality of the calibration is always very poor.
This paper explores a new approach for the translation of the semantic scale, in that each level of intensity of preference is translated not by a number but by a membership function, in the terminology of fuzzy logic. This means that, for instance, instead of translating "moderate preference" (of A over B) for the numeric probability values 0.7 (and 0.3), we will say that the use of the expression "moderate preference" by the interviewee will be represented by a membership function that takes its highest point at a probability value of A equal to 0.7, and gradually degrades to zero on both sides of that highest point.. The peak point of the membership function can also be left free for the calibration exercise.
Calibration of the parameters of the utility function can still be done by the least squares method, with an acceptable increase in the complexity of computations. 

In a test carried out with synthetic data based on studies previously conducted with the traditional method, the quality of the calibration is much better with the new method, and we believe this improvement should be systematic, as the formulation proposed here has a much better correspondence with the way that preference levels are represented in people's minds.

INTRODUCTION

Many transport studies rely on Stated Preference surveys to obtain estimates of the parameters of utility functions that are then used to produce forecasts of demand volumes on the various components of transport networks, under varying conditions of supply, prices, etc.

One popular technique to obtain the Stated Preference data is based on rating experiments, with presentation to the interviewee of a small set of (normally two) alternatives, asking her to express her choice, accompanied by a degree of confidence or intensity of that choice, that expression being made over a series of predefined terms like  {"strong preference for A", "moderate preference for A", "indifference"} or {“always A”; “probably A”, “indifferent”}, and the corresponding statements in favour of B (Ortúzar and Garrido, 1991). These semantic choices are then translated into a numerical scale of probability of choice, with most studies adopting the series {0.9; 0.7; 0.5} for those three levels of intensity of preference.  

The estimation of the utility function coefficients in the Logit model is made by least squares, searching the best fit between the differences of the utilities of the alternatives being compared and the logarithms of the odds (quotients of their stated probabilities), making use of the Berkson-Theil transformation (Bates and Roberts, 1983). Figure 1 shows the typical aspect of (X,Y) graphs showing in X the differences of utilities of alternatives and in Y the logs of the odds.

(Insert Figure 1)

Because there is no obvious reason for those numerical values to be the most appropriate translators of the semantic statements, (Ortúzar and Garrido, 1994) explored this model with the additional freedom of taking those numerical translators as parameters, and including them in the least squares estimation procedure. 
The quality of the estimation in this less constrained version is generally improved, but the fundamental problem remains: the utilities of the alternatives are expressed by a polynomial expression that takes values on a continuous scale, whereas the probabilities of choice of each alternative (and thus their quotients) are predefined in a small set of discrete values, only as large as the semantic scale adopted, typically with only 5 values. The consequence is that the interviewee is forced to a reduced set of possibilities of expression of her preference and that the quality of the calibration is always very poor.

A COMPELLING CASE FOR ADOPTION OF FUZZY LOGIC
This interpretation of the cause for the relatively poor quality of the calibration procedure strongly suggests that a search for improved results be made by incorporating elements of fuzzy logic: it is obvious that when the interviewee says “moderate preference” or “probably will choose A”, the underlying meaning is not a numerical value of probability but rather a range of values or a vague expression of the order of magnitude of that probability. This corresponds exactly to the notion of membership function in the terminology of fuzzy set theory (Zadeh, 1975).
The geometric shape of the membership function is not predetermined, some of the most usual ones being a trapeze or a continuous curve of symmetrical shape. The reason for choosing one or the other is normally related with the computational complexity it entails in the problem being studied. Figure 2 shows examples of the two cases for a situation where the point of highest value of the membership function was assumed to be 0.7 (thus corresponding to the semantic expression “moderate preference”).

(Insert Figure 2)
For calibration purposes, besides the points of (the probability scale associated with) highest membership value, the trapeze shape requires two more parameters, namely the top width and the base width, whereas the continuous shape may require one or more, depending on the function being used. That continuous shape may or may not be symmetrical around the highest level of membership, just like the trapeze shape may release this assumption, at the cost of two more parameters (we then have the top center to left, top center to right, base center to left, base center to right). We should avoid that trapezes have wider tops than bases, but at the limit they can have a triangular shape (single point at the top level of the membership function) or a rectangular one (top equal to base, i.e. all points within a certain domain with the maximum value of the membership function).
(Insert Figure 3)
For the continuous curve, a good solution seems to be the Beta distribution, because of its reduced number of parameters (two, plus a scale parameter) and great geometrical flexibility. 

The adoption of fuzzy set theory in this paper is only in relation to the translation of the semantic statements, while preserving the traditional formulation of discrete choice problems, based on the random utility framework, so staying quite distant from the formulation adopted in (Vythoulkas and Koutsopoulos, 2003).
Problem Formulation and Resolution
In conformity with the random utility framework, we assume that the utility of a transport alternative A presented to an interviewee for a comparison of preferences against another alternative B may be expressed by
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where the X variables represent measurable attributes of that alternative, the parameters represent the coefficients (weights) of those attributes in the polynomial function corresponding to the deterministic part of the utility V(A), and represents its random component. Naturally, the utility of alternative B may be expressed in a similar manner. The total number of attributes considered in the utility function is taken as k.
When comparing two alternatives in the framework of the multinomial logit model, we obtain the following result through the Berkson-Theil transformation:
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which allows estimation of the parameters by the least squares method using multiple linear regression.
The term on the left hand side of equation (2) is the result of the expression of the preference (direction and intensity) of the interviewee for one of the alternatives in presence. 
By keeping to the number of five possible statements and imposing symmetry, we have to deal with three different preference categories: “Strong Preference” (for A or for B), “Moderate Preference” (for A or for B) and “Indifference”. Given that the interviewee is only allowed to express her preference through one of five pre-determined statements, the common practice is to replace that term by one of the five values {2.197; 0.847; 0.000; -0.847; -2.197} corresponding to the natural logs of the ratios {90/10; 70/30; 50/50; 30/70; 10/90}. 
In this paper we take the expression of preference as a fuzzy statement, which implies that the set of parameters to be estimated is extended to include also the parameters of the membership functions of the established categories for the survey of binary comparison. We do not force the fuzzy statement “strong preference for A” to be distributed around the probability 90% (of choice of alternative A), and similarly for “moderate preference” with 70%.
Representation of Preferences 
In order to use the Least Squares (Errors) method for estimation of the parameters of the utility function and of the membership functions, we have to start by defining how to represent the preferences stated by the respondents, the answers of the model, and how to measure the error between these two sets. 

In the traditional process, that is very straightforward: the error is the difference between the natural logarithm of the odds (ratio of probabilities) corresponding to the declared level of preference and the difference of the utilities of the alternatives being compared. These utilities depend on the parameters of the logit model and it is precisely through the minimization of the (sum of squares of these) errors that we estimate the optimal values of those parameters.
But in the case of fuzzy logic the declared level of preference no longer translates onto a single numerical value of probability (and thus of the odds), but rather to a membership function. This leads to a different formulation of the calibration exercise, more in line with fuzzy logic: in fact, if we jointly consider the formal membership functions of the 5 mentioned preference classes, a typical image would be something like shown in Figure 4.

On the other hand, for a given set of answers, and for any particular combination of the parameters of the utility function, we can obtain values of U, and derive from these the corresponding probabilities of choice of alternative A, [p(A)], based on a transformation of Eq. (2). This is useful because the membership functions are normally expressed in the domains of probabilities, but the Us are expressed in equivalent units to the log of the odds. 

(Insert Figure 4)
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So, an empirical distribution of the membership functions may be obtained and plotted, by computing the relative frequency of statements for each preference class in each (arbitrarily small) interval in the domain of utility differences, converted to the domain of probabilities as shown above. The size of each elementary interval used for this computation should be related with the sample size and distribution of the values of the differences of the factors of utility across the probability scale. As we are computing relative frequencies of statements for each preference class, the sum of the membership functions at any point of the probability domain will be, by construction, equal to 1.0.

The resulting graph will have an aspect similar to that show in Figure 5, with the shape and “width” of the membership function representing each preference class depending not only on the answers of the interviewees but also on the coefficients of the utility function. There we may immediately see that for most of the range of probability values there will be statements in favor of more than one preference class. 
If we plot together these empirical membership functions and the usual model translation of each preference class by a single numerical value of p(A), the result will be something similar to that shown in Figure 6, with one vertical segment trying to represent the wide diversity of situations empirically stated as corresponding to that class of preference. Calibration adjusts the parameters of the utility function (and with them the shape of the empirical membership functions, making them very “narrow”) and the position of the vertical segments so that the latter are aligned with the peaks of those membership functions, but it is easy to see that this is indeed a poor adjustment. 

(Insert Figure 5)

For this type of graphical representation, this is the equivalent of the situation portrayed in Fig. 1 with the more traditional axes of Differences of Utilities for x, and Ln(odds) for y.

(Insert Figure 6)

In line with the reasoning of fuzzy logic it is more appropriate to drive the calibration exercise by minimization of the squares of differences between the two families of membership functions, formal and empirical. These differences will be computed as integrals (or summations over very small intervals) of the differences between the membership function level in the two families and in each of the preference classes, across the whole range of probabilities. 
It is important to note that these membership functions are nor probability distributions: in particular the area below each of the curves is not forced to any particular value. Instead, it is the sum of the function levels over the 5 classes (both in the formal and in the empirical families), for any point in the p(A) axis that is forced to be equal to 1.0. These 5 values represent how likely it is that a given value of p(A) is translated by the respondents in each of the preference classes.
Objective Function
In symbolic terms, the objective function may be translated as:
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where FM (p,k) and EM (p,k) respectively represent the Formal Membership function of class k at probability level p. K is the total number of preference classes, most frequently five.
The optimal value of this objective function will be 0, corresponding to a perfect fit of all formal and empirical membership functions across the whole domain, i.e. range of probabilities.
The interesting thing is that the efforts in the optimization exercise are separate although interdependent: the family of formal membership functions depends only on the parameters of the trapezes or continuous curves, whereas the family of empirical membership functions depends only on the parameters of the utility function. Of course, to minimize the differences between the two families, both sets of parameters are subject to manipulation.
Using Trapezoidal Membership Functions 

Full specification of the 5 trapezes under acceptance of these conditions would seem to imply a large number of parameters to be estimated, all of them in the X-axis of Figure 2, i.e. probability levels: Direct explicit specification of the 5 functions would require 18 points, 3 for each of the half-trapezes of the extreme classes (1 and 5), and 4 for each of the trapezes of the intermediate classes (2 to 4). 

These expressions are of general applicability, but a few constraints may simplify the calibration in the case of trapezes. Assuming that the order of presentation of the two alternatives in each card does not influence the direction and intensity of preference stated (except for the obvious reversal between A and B), then:
· Indifference must be centered at the 0.5 level of probability

· The membership functions of symmetrical preference classes (i.e. “moderate preference for A” vis-à-vis “moderate preference for B”) must be symmetrical with respect to the probability level 0.5. Similarly, the membership function of the “indifferent” class must be symmetrical about the probability value 0.5;

· The latter statement does not imply (or prohibit) that each membership function has a symmetrical shape.
But the conditions of symmetry about the 0.5 probability, and full coverage of the spectrum of probability [0; 1] with a sum of the membership function values equal to one leave us only 5 degrees of freedom: Multiple possibilities exist for the selection of those 5 parameters and our choice has been (using only the first three classes, corresponding to the right half of Figure 2): the angle point of Trapeze 1; the center point of Trapeze 2; the half-width at the top to both sides of Trapeze 2 (they need not be equal); and the half-width at the top of Trapeze 3.
As the empirical membership functions shown in Figures 5 and 6 suggest, it is quite normal that the top membership level of any preference class is lower than 1.0, as there will be (at least one) other preference class active at the same point of the p(A) axis. However, the shape of trapezes and the constraint that the sum of membership function levels is equal to 1.0 for every point in the probability domain seem to be compatible only in the case when the top levels of the trapezes are all fixed at that level of 1.0. 

Using Beta Distribution-based Membership Functions 
The Beta distribution has several advantages for the purpose of this paper, as it is defined within a finite interval, has only two parameters, and may take very different shapes depending on the values of those parameters, ( and (. A scale parameter B is also used to adjust the value of the area under the curve.
The probability density function (pdf), the mean and variance of the Beta distribution are given by
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These parameters ( and ( can also be estimated from the mean (m) and variance (v) by
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In our case, these analytical expressions were of course used as membership functions, and there is no constraint on the integral of any of them to sum to one. Rather, the constraint is on the sum of the membership values across the preference classes to be equal to one for all values of the domain (probability range). But the analytical expression and the formulas for the moments are still applicable.
For the adjustment of the Beta (formal) membership functions to the empirical membership functions, the process was as follows, for each preference class. This is made repeatedly for each set of values of the utility function, as these are the ones that define the empirical membership functions:

1. Compute the mean, the variance and the integral of the empirical membership function, according to equations (7);

2. Estimate the values of ( and ( that correspond to those mean and variance on the Beta distribution, according to equations (8);

3. Estimate the scale parameter B((, () that equals the integral of the Beta formal membership function to that of the empirical membership function.
The values of the scale parameters thus obtained are used as initial guesses, but these parameters are then subject to calibration, together with those of the utility function.

Quality of calibration
In the formulations adopted here we are not trying to obtain the best fit between two series of numerical values, so it is meaningless to measure a “coefficient of determination” or something similar, to compare it with the value obtained with the traditional calibration method as presented in the introduction.

In the end, what we want to measure is the adequacy of the model of stated preferences to obtain good estimates of the probability of choice of each alternative in future situations, based on the Multinomial Logit model, which goes directly from the utilities to the probability of choice.
But instead of the traditional calibration process, where a “crisp” transformation of utilities into probabilities is made, we adopt an alternative path where the fuzzy character of the expression of preference is recognized. 
Calibration is best made according to Equation 5, searching for the best possible fit between the two sets of membership functions across the preference classes. All values of the objective function are positive but very good values will be close to zero.
Using this equation it is possible to understand whether less good results arise from too much inconsistency in the sample (strange empirical membership function), from inadequacy of the adopted forms to describe the formal membership functions, or simply from too much dispersion (or quite a few outliers) in the preferences expressed by interviewees. 

In practice this calibration exercise has to be conducted with a numerical procedure based on a computer package of some mathematical sophistication, since there will be typically 3 or 4 parameters to calibrate in the utility function, plus 4 geometrical parameters to calibrate for the formal membership functions in the case of trapezes or 5 scale parameters in the case of beta distribution.
Such computational tools are currently widely available and can easily be used allow directly as add-ons over spreadsheets, where the basic survey data is collected, cleaned and receives the first analyses. So, as long as the sample size allows the formulation of a calibration process implying some 8 parameters, there should be no reason on the computational side to prevent its adoption.
Of course, for the subsequent use of the Multinomial Logit Model, only the utility function parameters will be required, but the calibration of the fuzzy membership functions is needed for adequate translation of what goes in people’s minds when they express their preferences in such a simple and restricted lexicon.

AN EXAMPLE
To show the application of this approach in comparison with the traditional one, a synthetic set of data has been prepared, inspired in real data obtained in various projects involving public transport. Preference for synthetic data has been based both on the need to get a good cover of a large range of situations (differences in values of all the attributes), better than any specific project – looking only at specific types of intervention – had called for; and at the same time to avoid very low values of R2 in the traditional calibration process, as it sometimes happens in real projects. For instance, in the real cases presented as the basis for exploration of the impact of releasing the traditionally fixed levels of probability at 0.1, 0.3, 0.5, 0.7 and 0.9, (Ortúzar and Garrido, 1994) report R2 values between 0.31 and 0.48. 
A sample of 504 binary comparisons was generated, considering three attributes: number of transfers, headway of services and travel time. Figure 1 represents this data set in a traditional calibration exercise by Least Squares, with pre-fixed levels of the odds. 
The estimated value of the coefficient of determination was 0.6238 (better than most real cases), and the coefficients of the utility function were estimated with the following means and t-stats. The trade-offs of each transfer in terms of headway and travel time are also shown (see Table 1).
(Insert Table 1)
To assess the advantage of releasing the fixed points of odds we ran the same software (the Regression routine within Excel) under a macro for varying combinations of that pair of odds – moderate and strong preference - in a fine mesh. The best result obtained was obtained for the dominant probabilities of strong preference at 0.800 and of moderate preference at 0.675, and has produced a small gain in R2 with a value 0.6359, with some changes for the means of the coefficients (respectively -0.4152; -0.0507; and -0.0708) but very similar trade-offs (8.19 and 5.87). 
Clearly, even if the change in the values of the probability values  assigned to the semantic statements of “strong preference” and “moderate preference” were significant – especially in the first one - the gain obtained in the calibration from these degrees of freedom was very marginal.
In the case of trapezes, calibration of the fuzzy logic model on the basis of Eq. 5 (minimizing the “integral” of the square of the differences between the formal and the empirical membership functions), involved a total of 8 parameters to calibrate, 5 defining the trapezes and 3 corresponding to the coefficients of the utility function. Given the size of the data set (504 cards), the integral was replaced by a sum over discrete intervals, each of them with a probability width of 0.05. This was solved with the Evolver application from Palisade Corporation, based on a genetic optimization algorithm.
This has led to a value of the objective function of 0.1250 (zero would be optimal), and to the following set of parameter estimates (Table 2).

(Insert Table 2)

The values of the parameters of the utility function are now somewhat different from those obtained with the earlier approach, leading to a slightly higher value of the trade-off of headway to transfers and a clearly higher trade-off of travel time to transfers.
Figure 7 shows the two families of membership functions (formal in full line, empirical in dotted line). It is interesting to note that the trapeze forms that led to the best calibration are all of a triangular shape and quite a bit of width of the empirical membership functions (albeit generally are membership levels of 0.25 or below) is still left outside the trapezes of the formal membership functions.
(Insert Figure 7)

Next, the application of the Beta distribution is shown, following the steps indicated above. No constraints were imposed on symmetry of the membership functions, neither on the ceiling of those functions. As a consequence, the calibrations results were much better on the objective function (0.00950), indicating a very close adjustment indeed.
The resulting estimates for the utility function parameters and the parameters for the Beta distributions are presented in Table 3.
(Insert Table 3)

The values of the parameters of the utility function are still different from those obtained with the earlier approaches, leading to much lower values of both trade-offs.

Figure 8 shows the two families of membership functions (formal in full line, empirical in dotted line). The Beta distribution shapes have now allowed a much tighter fit between formal and empirical membership functions, since for virtually the whole range of probabilities there were more than one formal membership functions active. The much lower value of the objective function is a numerical representation of the graphically visible much better fit (0.00950 versus 0.1265 with the trapezes).

This reinforces the value of the fuzzy logic calibration of stated preference rating experiments, as we see the model capable of providing a very close representation of the statements made by respondents. In this example, this is obtained with calibrated values of the parameters of the utility function that lead to a much wider shape of the empirical membership functions than in any of the previous approaches. 

(Insert Figure 8)
CONCLUSIONS 
We have presented a new approach to the calibration of the Multinomial Logit Model through Stated Preference rating experiments, based on the recognition that the semantic statements of direction and intensity of preference are a natural case of application of fuzzy logic by the interviewees.

The traditional method of calibration forces a continuous distribution of values of the differences of utilities of alternatives onto a small discrete set of odds of choosing one of them, doing this through linear regression. The calibration results obtained are never very good and could never be, as is easy to see graphically in Figures 1 and 6. The only way to obtain a good value of R2 would be to have considered only a small set of short ranges of values of the differences of utilities (the X variable), so that they would fit nicely into the five values of the odds possible in the framework of the experiment. But that specification would strongly reduce the explanatory power of the logit model for the wide variety of situation occurring in the real world, which is the final purpose of the whole calibration exercise.

Recognition of the fuzzy nature of the semantic expression of preference allows the identification of two different but interdependent calibration problems: that of the parameters of the utility function – for which we have kept the traditional linear polynomial functional form – and that of the parameters of membership functions corresponding to each of the allowed semantic expressions of preference – for which we tested the trapeze form and the Beta distribution form. 

In both cases the results are better than with the traditional approach, but the flexibility of the Beta distribution, its small number of parameters, and the much better adjustments than can be obtained make it the recommended choice for this novel approach. 
Calibration is a bit more complicated than in the traditional way, but the additional computational burden is more than compensated by the formal adequacy of the process and the much greater insight gained into how differences of utilities between alternatives are translated into probabilities of choice of one over the other. 
The calibration approach based on the minimization of the sum of squares of differences between the formal and empirical membership functions is very revealing of the structure of preferences underlying the responses and leads to high quality calibration results. 

The insight obtained through this calibration approach is by itself of great value, with explicit representation of the empirical and formal distributions of preferences in each class. This seems to provide very valuable opportunities for studies of market segmentation, trying to obtain more concentrated empirical membership functions in each segment (similar preferences), and then calibrating them with the formal distributions.
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TABLE 1 Results obtained with the traditional calibration approach (Least Squares)
	
	No. of transfers
	Headway (mins.)
	Travel Time (mins.)

	Mean
	- 0.5998
	- 0.0749
	- 0.1025

	t-stat
	-12.3564
	-15.3448
	-21.5753

	Trade-offs with one transfer
	---
	8.01
	5.85


TABLE 2 Results obtained with the fuzzy logic calibration approach, based on trapezes
	
	No. of transfers
	Headway (mins.)
	Travel Time (mins.)

	Mean
	-0.85456
	-0.09927
	-0.11391

	Trade-offs with one transfer
	---
	8,61
	7,50

	
	
	
	

	Angle point of Trapeze 1
	Center of Trapeze 2
	Half-width top-left in Trapeze 2
	Half-width top-right in Trapeze 2
	Half-width top-right in Trapeze 3

	0,988
	0,694
	0.000
	0.000
	0.000


TABLE 3 Results obtained with the fuzzy logic calibration approach, based on curves of the Beta distribution
	
	No. of transfers
	Headway (mins.)
	Travel Time (mins.)

	Mean
	-0.50477
	-0.07774
	-0.16233

	Trade-offs with one transfer
	---
	6.493
	3.110

	
	
	
	

	
	Class 1 = Strong Preference
	Class 2 = Mod Preference
	Class 3 = Indifference
	Class 4 = Reverse Mod Preference
	Class 5 = Reverse Strg Preference

	(
	5.8821
	4.1024
	2.8733
	2.0504
	1.0247

	(
	1.0839
	1.7162
	3.1096
	4.1541
	6.5987

	Scale
	6.9346
	2.4314
	1.0000
	1.9737
	7.1643


FIGURE 1 (X,Y) Graph representing the regression basis for the traditional calibration of the Logit model parameters (with pre-fixed levels of the odds associated with the preference statements).

FIGURE 2 Membership Functions of Trapeze and continuous symmetrical shapes.
FIGURE 3 Extreme cases of Membership Functions of Trapeze shape (triangular and rectangular).

FIGURE 4 Typical overall aspect of formal membership functions for the 5 classes of preference.

FIGURE 5 Typical overall aspect of empirical membership functions for the 5 classes of preference.

FIGURE 6 Joint representation of a set of empirical membership functions and of the traditional model representation of each class of preference by a single numerical value.

FIGURE 7 Joint representation of empirical and trapeze shaped formal membership functions for the data set in the example.
FIGURE 8 Joint representation of empirical and Beta-distribution shaped formal membership functions for the data set in the example.
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[image: image14.emf]Membership Functions in the domain of Probabilities
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[image: image15.emf]Empirical Membership Functions 

(for given coefficients of utility Function)
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[image: image16.emf]Classical Approach: Formal and Empirical Membership 

Functions in the domain of Probabilities 
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[image: image17.emf]Trapeze Formal and Empirical Membership Functions in the 

domain of Probabilities 
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[image: image18.emf]Beta Distrib. Formal and Empirical membership Functions in 

the domain of probabilities
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