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Abstract

Data collected by GPS-based smart card fare collection system adopted by numerous agencies cannot readily be used for service planning purposes due to erroneous and incomplete travel data. Based on a database with more than 750,000 smart card boarding transaction records per month from a transit agency in the National Capital Region of Canada, this paper presents a multi-step method to develop a complete procedure which identifies and imputes incorrect or suspect data, then derives the most probable alighting bus stops and finally provides suitable origin-destination travel data necessary for the application of transit trip assignment algorithms.
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1. Introduction

Smart card automatic fare collection (AFC) systems have recently been adopted by numerous transit agencies throughout the world and the trend is growing. Although their principal objective is fare collection, they prove to be an excellent source of travel data, especially those integrated with automatic vehicle location (AVL) technologies, such as GPS. They provide detailed boarding transaction records, containing spatial and temporal information, for each individual cardholder in a continuous fashion. It would be of great interest for transit planners to mine through these archived data which have not been fully exploited.  

It is essential to recognize, however, that raw data from smart card AFC are far from being usable. In general, data from smart card AFC are problematic for two important reasons. First, although the system is designed to generate accurate transaction records, there are real-life circumstances which the system cannot anticipate and handle. Failure of drivers to follow proper procedures also introduces a substantial amount of errors into the system. Second, many AFC systems are entry-only, meaning that cardholders are only required to make a transaction when they board. This is especially true for bus transit where exit-reading poses some inconvenience. This practice prevents the system from directly collecting the alighting information of a ride, which is indispensable for establishing an origin-destination matrix used in transit planning. Steps of data refinement and enrichment must be formalized to establish a complete procedure in order to systematically exploit this promising data source. 

This paper presents a conceptual and pragmatic method to extract relevant information from smart card data suitable for transit service planning applications. After a brief literature review underlining the advancement in this area of research, the following paragraphs recall the necessary steps to develop a consistent procedure. Next, object-oriented concepts of transit service are described followed by an explanation of the data processing methods used to derive complete and consistent information. Different types of outputs are used to demonstrate the potential and the usefulness of smart card data for the purpose of service planning. Finally, the paper ends with a description of ongoing and future research towards the derivation of an integrated synthetic transit demand model for short- and medium term planning.
This study is based on a full sample of 763,570 boarding transactions from the smart card AFC system of the Société de Transport de l’Outaouais (STO). The agency operates a fleet of about 240 buses in the National Capital Region of Canada which comprises Ottawa and Gatineau (formerly known as Hull) as its two major cities. The dataset represents a complete month of transactions made by 21,813 different cards in the month of February 2005. Several features of the smart card AFC system make this particular dataset valuable. First, the whole bus fleet is equipped with GPS for boarding stop identification. Second, each smart card is individually identified with a photo and therefore limited to one user. Third, according to the STO, over 80% of the STO customers use the smart card as their method of payment. The market penetration is very high compared to other systems. In comparison, the Chicago Card (smart card AFC system of the Chicago Transit Authority) only accounted for 5.2% of all AFC transactions made within a 7-day period in 2004 as reported by Utsunomiya et al. (2006).
2. Literature review
Recently, there have been many attempts to study transit travel patterns from automated fare collection (AFC) data to improve planning. Navick and Furth (2002) used location-stamped AFC to estimate passenger miles, origin-destination patterns and bus load based on the assumption of symmetry – that the daily alighting pattern in one direction is mirrored by the boarding pattern in the other direction. It is an aggregated model since the individual cannot be distinguished in this type of farebox data. Barry et al. (2002) used AFC data from subway turnstiles to estimate origin-destination matrices. The transaction only contains the origin station as it is an entry-only system. An algorithm is applied to infer the destination station for each transaction based on two assumptions. The first states that for a high percentage of riders, the destination station of a trip is the same as the origin station of the next trip. The second assumption states that a high percentage of riders end the last trip of the day at the origin station of their first trip of the day. O-D matrices of a line were produced using a trip assignment model. Zhao (2004), using smart card data from Chicago, infers the destination station for individual trips and models the path choice in rail-to-rail sequences. Okamura et al. (2004) analyse AFC data from Hiroshima. The system uses non-rechargeable magnetic strip cards which must be read both at the entry and exit point. They explore topics such as on-board travel time, transfer trips and wait time as well as passenger classification using data mining techniques. Hofmann and O’Mahony (2005a), using an iterative classification algorithm, identify and analyse transfer trips from entry-only magnetic strip data in a medium-size European city. This algorithm reveals the importance of transfer trips and waiting time. Using the same dataset (2005b), they investigate the impact of adverse weather on bus transit operations by comparing performance measures. 

Bagchi and White (2005) use two samples of public transit smart card data from the UK to estimate turnover rates, trip rates per card and the proportion of linked trips. Utsunomiya et al. (2006) present several types of analysis that can be done using smart card registration and transaction data from Chicago which include walk access distance, frequency and consistency of daily travel patterns and comparison of usage by area of residence. Using data from the same transit smart card system as the one used in this paper, Morency et al. (2006) create clusters to classify different types of users according to their travel behaviours. Trépanier et al. (2007), assuming that a user alights at a stop closest to the boarding stop in the next trip, derives alighting stop from bus trips. Since smart card data contains transactions made by individual users, analysis should be done using a totally disaggregate approach (Chapleau, 1992), meaning that all information for an individual trip is conserved during the process and the results are only aggregated at the end of analysis. 

3. Main concepts used in service planning  

In order to establish a method to systematically utilize smart card data for service planning, several concepts have to be reviewed or defined. A schedule is usually established for a fixed-route network, which is often defined in transit manager’s handbook as “transit services where vehicles run on regular, pre-designated, pre-scheduled routes, with no deviation. Typically, fixed-route service is characterized by features such as printed schedules or timetables, designated bus stops where passengers board and alight and the use of larger transit vehicles” (Iowa DOT, 2005). 
Although it is well documented that demand varies according to the day of the week, the common practice within the public transit industry is to conduct service planning around the notion of an average week day (AWD), for which a schedule – timetable information – is developed. Other sets of schedules are constructed for Saturday, Sunday and holidays. This facilitates the vehicle and crew assignments and makes the timetable easier for travelers to follow. In addition, most transit agencies in Canada change their schedule one or more times during the course of a year to allow for the seasonal variations in demand. For example, the STO has two schedule changes per year whereas the Toronto Transit Commission makes about 10 changes a year. 
With those concepts in mind, an efficient relational database should include the following interrelated objects (here limited to fixed-route bus service, without loss of generality):

· Bus stop: point of boarding, alighting and transfer for a transit rider
· Bus route: a numbered transit line with a geometry constituted of an ordered sequence of stops; normally, two directions (in-bound and out-bound) are defined 
· Bus run: implies the movement of a vehicle along a route in a specific in-bound or out-bound direction, and with a planned departure time
· Vehicle block:  an assignment of a specific bus (and driver) to a sequence of runs

The concept of a typical vehicle block along with its related basic information is illustrated in figure 1. It explains the linkage between the spatial and temporal logics of these fundamental objects: a boarding transaction represents a time-space coincidence between the bus and the transit rider.

Figure 1. Illustration of a vehicle block composed of 3 consecutive runs (route-direction-departure time) and the related operational information.
In order to obtain an integrated and complete picture for the service (actual supply) and the ridership (revealed demand), a database of all the transactions, including boardings and transfers, is explored. For an AWD, the number of transactions is in the order of 35,000, and significantly fewer transactions occurred on Saturdays and Sundays. A smart card transactional database typically contains the following fields:

· a primary key for the unique identification of all boarding transactions;
· the smart card attributes which include the card identification number and fare type (elderly, adult, student, other);

· the transaction attributes which include the type of transaction (boarding or transfer as defined by the system), transaction time, bus number, run (route-direction-scheduled departure time) and the assigned boarding stop.
Figure 2 illustrates the temporal distribution of the transit users on a specific bus route (37 in both directions) on a typical weekday (Thursday February 10). Of the total of 1604 bus runs recorded for the entire network, this route and its variants amount to 108 departures (54 in-bound and 54 out-bound). The figure underlines the importance of scrutinizing the spatial and temporal aspects of the travel demand which varies according to location, time of day, days of the week as well as months of the year. Although methods presented in this paper focus on examining within-day variation, future research will include seasonal variation as well. 
Figure 2. The temporal distribution of the 6,955 boardings of route 37, the route with the highest ridership in the STO network, on Thursday February 10, 2005. Both the in-bound and out-bound directions are illustrated.
Ideally, the boardings of cardholders at different stops should appear logically in the database in a correct monotonic time and stops sequence. However, a significant amount of data, especially fields regarding run information and boarding location, turns out to be erroneous or suspect. Furth et al. (2006, p.16) made a similar finding: “The rate at which data is rejected for inability to match it to a route can be substantial, reaching 40% at agencies that were interviewed. Data matching was cited by many agencies as the single greatest challenge faced in making their AVL-APC data useful.” 

4. Error identification and imputation

Given that data accuracy is a persistent problem in AFC data, especially in bus transit where the boarding location varies, refinements must be made to improve data quality and to prevent further propagation of errors. It is important to note that most of the errors in the database are due to wrong, incomplete or false information introduced by the driver at the moment of starting a new run and the proportion of transactions containing erroneous and suspect values can reach 15%. Efficient processing requires the modeling of primary objects in which individual (disaggregate) data are submitted to spatial and temporal logics. Using an information approach, imputation is done for erroneous and suspect items according to the regularity in transit operations and by mining through cardholders’ historic travel patterns. The following paragraphs give an overview of the systematic data correction procedure. A more detailed description and the related motivation are fully documented in the paper by Chu and Chapleau (2007). 

Vehicle blocks are reconstructed from data for 20 weekdays of February 2005 during which the timetable was unchanged, with only minor exceptions. At the same time, statistics, namely the average and standard deviation of the number of boardings for every scheduled run on an AWD, are computed using all transactions. Table 1 shows an excerpt of the compilation. For example, vehicle block 102 contains the following 4 consecutive runs:

1) Route 27, direction 0 at 6:45 am (denoted 27-0-0645 where direction 0 indicates in-bound, normally towards Ottawa and 1 indicates out-bound, leaving Ottawa) has an average daily ridership of 40.8 passengers (standard deviation of 6.7). This run has been recognized in every weekday of the month.

2) 78-1-0751, serving in the opposite direction, has a significantly lower ridership of 8.2. This run was missed twice in the month. 

3) 77-0-0831 was not recorded 4 times in the month with an average of 24.4 boardings.

4) 37-1-0940 was correctly sampled in every weekday with an average ridership of just under 10.

A high variation coefficient, defined as the ratio of the standard deviation to the average number of transactions, may be an indication of the presence of transactions tied to an incorrect run. 
[Table 1]
Using spatial-temporal logics and concepts in public transit, erroneous and suspect route or boarding information is identified. Most of these flagged values are found in sequence. First, the correction procedure aims to impute the most probable run. The bus number and the corresponding transaction time are used to retrace a scheduled run in the appropriate vehicle block. Meanwhile, using a Bayesian approach and the validated (non-flagged) transactions in the travel history of the cardholders, the run that this group of users most frequently take at the same time on other days is identified. These two values compensate the shortcomings of each other and cross-validate. With the imputed run information, the most probable boarding stops are derived according to the cardholders’ historic travel patterns or by linear interpolation or extrapolation using distance and travel time registered in transactions.

5. A systemic approach to service planning modeling

5.1 Demand analysis

Traditional data collection methods, namely on-board survey, origin-destination survey, passenger counts and anonymous AFC data, all have limitations. Smart card AFC data can act as an interesting alternative by offering high-resolution spatial and temporal information. Many tasks in transit planning may be served directly by applying standard Geographic Information System (GIS) procedures to corrected boarding data. To demonstrate the potential, the following analyses have been achieved using transactions made on Thursday February 10.

Figure 3 illustrates the spatial and temporal distribution of boardings. The temporal element is divided into six 3-hour periods while the spatial element is partitioned into 1 km by 1 km grids. It is interesting to note that although the number of transactions is approximately the same during the morning (6:00 to 8:59 am) and the afternoon (3:00 to 5:59 pm) peak periods, the transactions are more evenly distributed in space in the morning peak than in the afternoon. The concentration of transactions in the afternoon reflects very well the intensity of activities in the central business district (CBD) of the City of Ottawa.
Figure 3. A 3-dimensional representation of the number of boardings on a weekday by 3-hour time period over the entire STO network. 
Figure 4 uses standard deviational ellipses, the two-dimensional or spatial equivalent of standard descriptive statistics for a univariate distribution, to illustrate the evolution of boarding dispersion within a day divided into the same six time periods. These ellipses have been calculated with freeware Crime Stat III (Levine, 2004), which is originally written for crime analysis. The black points in the figure symbolize physical stops of the network. The boarding pattern becomes progressively more compact up until the afternoon peak and gradually disperses afterward. Note that the long axes of morning peak (10.2 km) against afternoon peak (3.45 km) are markedly different.
Figure 4. Variation of the standard deviational ellipses illustrating the spatial component of all boardings from a weekday, by 3-hour period. 

The temporal boarding distribution per 15-minute interval for the entire network is portrayed in figure 5. The evolution of the ratio of long and small axes is plotted alongside as well. The ellipses are a good indicator of the spatial dispersion of the transit customers by hour of day. The figure reproduces very well the lower density residential area north of the Ottawa River where commuters originate and the high-density employment area of the CBD in the City of Ottawa where commuters begin their return trip.
Figure 5. Temporal distribution of boardings on the entire network along with the spatial distribution characterized by the standard deviational ellipses.
5.2 An experimental procedure to construct disaggregate trip data
As mentioned earlier, an entry-only AFC system does not capture the alighting stop of a ride. This most probable alighting stop can be inferred once the complete transaction history on every weekday, including the run and boarding stop information, of a card has been correctly re-established. The principle assumption is that a cardholder alights in a downstream stop closest to the stop where he/she boards onto the next route. Transactions from an individual smart card are examined in sequence. Looking at the next trip of the smart card, a simple algorithm is executed to find a downstream stop of the current transaction closest to the boarding stop of the next transaction. If the resulting distance is reasonable (say, inferior to the threshold of 1000 meters), the alighting stop is accepted. When the computed distance seems to be too athletic, the historic travel records of that particular card are mined for a similar transactions based on the route taken and transaction time. A more probable alighting location can be derived by examining the alighting location of those similar transactions, thereby identifying the missing link.

A load profile for a typical run can be constructed using smart card data as shown on figure 6. Apart from the aggregate load of the vehicle, each boarding and alighting is tied to an individual, providing very detailed information on each run. Inter-stop and line travel speeds can also be estimated. However, due to the coarse transaction time resolution of one minute and the absence of boarding towards the end of the line, supplemental information is required to derive the complete travel speed. 
Figure 6. Load profile of a typical run from route 37, direction 0 containing individual boarding and alighting information as well as estimated travel speeds.
5.3 Estimation of O-D matrices and network construction

With a complete set of enriched smart card transaction data in hand, the next stage of the research focuses on the estimation of origin-destination (O-D) trip matrices for several time periods, which eventually lead to a regular modeling and planning setup. According to the level of resolution required for the analysis, the supply part of the model will usually be a line-based, instead of the schedule-based approach. The line-based definition of a transit network is essentially derived from the geometry attributes of the bus routes. While the GIS network model is useful to visualize the services both for planners and users, the planning model should consist of a simplified geometric line-based network, with a level of service derived from the operational data (commercial speed and average headway) and O-D trip files corresponding to chosen planning time periods. The latter can serve as a reference to evaluate different network geometries and service plans.

To construct an O-D trip file, transactions made on the February 10 are used. The current model assumes that each transaction constitutes a trip with a trip purpose, which does not necessarily reflect the reality. Nearly 15% of the transactions on February 10, 2005 are considered as a transfer by the system. A transaction is automatically labelled as a transfer if the transaction time is within 120 minutes of the first transaction of the cardholder’s trip chain. Due to the inability of current practice to correctly identify transfer trips, ongoing research focuses on using spatial-temporal logics to obtain complete trips in order to establish true O-D matrices instead of O-D matrices for trip segments. Following the aforementioned procedure to derive alighting information, more than 92% of the alighting locations lie within 1000 meters of the next boarding stop and more than 81% of them within 300 meters. 

Figure 7 shows a specific location where, according to the derived information, a large amount of boardings and alightings occur. The points with the arrow pointer symbolize the revealed boarding stops whereas the other end shows the derived alighting stops. The numbers beside the arrows indicate the movement between pairs of bus routes. The short access distance among the routes suggests transfer movements. For a typical line-based transit trip assignment model, these seven bus stops can be coded as a single node (a radius of around 100 meters). The bus routes are geocoded according to the new nodes. 

Figure 7. The result of inferring the most probable alighting stop at the location where two bus routes (31 and 37, both directions) intersect. 
5.3 Results from transit trip assignment

The O-D trip file acquired from the boarding transactions can be loaded onto an accurately defined transit network using a transit assignment model, thus offering the capability to generate a number of performance indicators. Figure 8 shows the results of the transit trip assignment for an AWD onto a GIS network model. The three-dimensional line segments and its colour indicate the load profile. The total load represents about 93% of all trips since trips with an access distance (defined as the distance between the boarding and its previous alighting locations) over one kilometre are not included. The transit trip assignment allows the calculation of most travel demand statistics, including passengers-kilometers, passengers-hours, load factor, transfer wait time, etc.

Figure 8. The resulting network load profile from the transit trip assignment procedure for all trips carried out on a weekday.

Tamed smart card data generate a lot of potential for improving transit service. Planners can benefit from the analysis of very detailed space-time diagrams, such as a comparison between boardings in morning and afternoon peak periods for both directions of route 37 as shown in figure 9. The size of each bubble is proportional to the number of boardings. These diagrams provide planners with valuable information regarding the schedule adherence of each run, the presence of bus bunching as well as the number of boardings at each stop. 
Figure 9. Space-time diagrams of bus route 37 in both directions. 
Another possible experiment consists of conducting a multi-day comparison in order to characterize the “loyalty” of users to a given run. Figure 10 compares all the all runs between two consecutive Thursdays. The red curve indicates the proportion of users of February 10 who have also taken the same run on February 17. The calculation relaxes the constraint, by also including runs up to an hour earlier or later, as indicated by the blue curve. A higher regularity in the morning is observed while the afternoon peak is subject to a higher degree of variability. This can be attributed to the fact that most users have a more regular departure time from home than after an activity elsewhere. The high loyalty late in the evening and early in the morning can be explained by the lower number of runs.
Figure 10. The temporal evolution of the cardholder loyalty for the route 37 during the course of a day.

6. Conclusion

Location-stamped transit smart card data allow planners to perform demand and service analyses, such as estimating origin-destination matrices for the whole network at different time periods, generating load profiles of bus runs and creating time-space models of individual cardholder’s activity. This paper proposes a multi-step method to develop a complete procedure in order to fully exploit the potential of smart card data. After successfully improving the data quality and enriching the transactions with alighting information, the next step consists of identifying transfer trips in the transactions using spatial-temporal logics. The latter will lead to the construction of O-D trip files which can serve as a reference to evaluate different network geometries and service plans in short- or medium term planning, as well as to track the temporal (weekly and seasonal) variations in demand.
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Table 1. Example of two vehicle blocks (101 and 102) reconstructed from raw transactions of the 20 weekdays of February 2005.

	Vehicle Block Number
	Route Number
	Direction
	Scheduled Departure Time (hhmm)
	Average Number of Transactions
	Standard Deviation
	Ratio of Average over Standard Deviation
	Number of Days Present

	101
	42
	1
	0449
	1.5
	1.4
	0.95
	13

	101
	243
	0
	0500
	27.2
	3.9
	0.14
	14

	101
	39
	1
	0615
	13.8
	2.7
	0.2
	16

	101
	80
	0
	0725
	36.9
	7
	0.19
	17

	101
	437
	1
	0825
	18
	6
	0.33
	16

	101
	31
	0
	0935
	12.1
	2.9
	0.24
	17

	101
	31
	1
	1008
	9.3
	2.7
	0.29
	16

	101
	64
	1
	1100
	16.9
	9
	0.53
	13

	102
	27
	0
	0645
	40.8
	6.7
	0.17
	20

	102
	78
	1
	0751
	8.2
	2.6
	0.32
	18

	102
	77
	0
	0831
	24.4
	6.4
	0.26
	16

	102
	37
	1
	0940
	9.9
	3.4
	0.35
	20
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3:00 - 5:59 PM 13,803 2.88 3.45 1.20 31.3

6:00 - 8:59 PM 2,183 3.19 4.14 1.30 41.6

9:00 - 11:59 PM 1,030 3.17 4.03 1.27 40.2

12:00 - 2:59 AM 61 3.08 8.14 2.65 19.7
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Figure 4
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Figure 5.
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Figure 6.
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Figure 7.
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Figure 9.
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Figure 10.
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