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Abstract

This paper analyses dynamic system optimal traffic assignment, and describes how an optimal dynamic road pricing strategies can be derived accordingly. Dynamic system optimal assignment is formulated to distribute traffic such that the total transport system cost is minimized. Although such assignment is not a realistic representation of network traffic, it provides a bound on how we can make the best use of the road system, and as such it is a useful benchmark for evaluating various transport policy measures including road pricing. Numerical examples are provided for illustration. Some concluding remarks are given. 
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1. Introduction 

Time-dependent network models have several advantages over the conventional time-independent ones. On representing the characteristics of the transport system, the time-dependent models consider traffic flows and travel times to be time-varying. On the travel demand side, the time-dependent traffic models capture the temporal variation in travel demand over time. Such network models provide important insight into the dynamics of peak periods and sensitivity of travellers’ behaviour in response to different transport policy measures. In the network model, the travellers’ behaviour is represented by a dynamic traffic assignment. The dynamic traffic assignment follows two principles: dynamic user equilibrium and dynamic system optimum. Dynamic user equilibrium assignment has been the focus in the past two decades. As a result of previous research (see for example Friesz et al., 1993; Friesz et al., 2001; Heydecker and Addison, 2005), we have gained substantial knowledge on the formulations, properties, and solution methods of dynamic user equilibrium assignment. Dynamic system optimal assignment is an important yet relatively underdeveloped area. Dynamic system optimal assignment process suggests that there is a central “system manager” to distribute network traffic over time in a fixed study period. Consequently, the total, rather than individual, travel cost of all travellers through the network is minimised. Although system optimal assignment is not a realistic representation of network traffic, it provides a bound on how we can make the best use of the road system, and as such it is a useful benchmark for evaluating various transport policy measures such as road pricing. 
This paper analyses dynamic system optimal assignment. The analysis of dynamic system optimising flow is applied to investigate optimal dynamic road tolling strategies. Similar to its static counterpart, we show that the optimal road toll in dynamic setting is equivalent to the “dynamic externality” which travellers impose on each other in a dynamic system. We further develop solution algorithms to calculate dynamic system optimal assignment and the associated optimal tolls.

This paper is organized as follows. In Section 2, we review the travel cost functions adopted in this study and the formulation of dynamic user equilibrium assignment. In Section 3, we present the formulation and optimality conditions of dynamic system optimal assignment. We also provide a detailed interpretation of the dynamic system optimality conditions. Section 4 presents the solution algorithms for solving the dynamic traffic assignments. The solution algorithms are developed using a dynamic programming approach. Following this, we show some numerical calculations and discuss the characteristics of the results in Section 5. Finally, some concluding remarks are given in Section 6. 

2. Travel cost and dynamic user equilibrium assignment

2.1 Travel cost functions   

We consider the total travel cost 
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 encountered by each traveller departs at time s and travels along route p between an origin-destination pair in the network has three distinct components. The first component is the time spent on travelling along the route, which is determined by the travel time model that is adopted. In addition to the travel time, we add a time-specific cost 
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 is determined as a linear combination of these costs as 
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in which the term 
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 represents the travel time along the route which can be calculated from the cost of using each link on the route at the time it will be reached by following the vehicle trajectory. Following Daganzo (1995) and Mun (2001), we consider the travel time 
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 at the time of entry s to each link a on a route to be a linear non-decreasing function of link traffic volume 
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where 
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 denote the free flow travel time and the capacity of the travel link respectively. The reason of adopting 
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 as a linear function is that the first-in-first-out (FIFO) queue discipline, which is a crucial property for analytical dynamic traffic models (Carey, 1992; Nie and Zhang, 2005), cannot be guaranteed for non-linear version of it (Mun, 2001; Nie and Zhang, 2005)
.
2.2 Dynamic user equilibrium assignment 

In this study, travellers’ responses are represented by their choices of routes of travel and times of departure. It is assumed that all travellers make their travel decisions according to a common criterion that their individual costs associated with the travel are minimized. Under such mechanism, the system will reach a stable state that is called dynamic user equilibrium. Following Hendrickson and Kocur (1981), for an assignment to be in dynamic user equilibrium of simultaneous choice of travel route and departure time, the total travel cost should be the same for all travellers between each origin-destination pair in the network, no matter what combinations of departure-time and route that the travellers have chosen. The dynamic user equilibrium assignment is stated as a complementary inequality for the inflow 
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where 
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 is the set of all routes between origin-destination pair od, 
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 is the total travel cost with which travel will take place between origin-destination pair od. All travel between each origin-destination pair is achieved at the same cost 
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3. Dynamic system optimal assignment 

In contrast with dynamic user equilibrium, dynamic system optimal assignment assumes that travellers cooperate in making their travel choices for the overall benefit of the whole system instead of their own individual benefits. 
3.1 Formulation 
The system optimal assignment with departure time choice for fixed travel demand can be formulated as the following optimal control problem, which seeks an optimal inflow profile 
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 that minimizes the total system travel cost within the study period, T. The total travel demand with in the study period is fixed and given by 
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subject to:
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Equation (5) ensures the proper flow propagation along each route, in which 
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 for each link a. Equation (6) is the state equations that govern the evolution of link traffic, 
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 represents the link outflow rate at time s. Equation (7) defines the cumulative inflow 
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. Equation (8) specifies the amount of total throughput Jod generated in the system within the time horizon T. Condition (9) ensures the non-negativity of the control variable. Given a positive inflow 
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 is guaranteed to be positive (see for example, Astarita, 1996). Hence, we do not add explicit constraints to ensure the non-negativity of 
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. The traffic models considered in this paper satisfy FIFO structurally, hence we do not need to add any explicit constraint for this. In the present study, the formulation and analysis for the dynamic system optimal assignment are restricted to networks in which origin-destination pairs are connected with mutually distinct travel routes consisting of one single link.

One technical difficulty is that with the traffic models above, the time lag between changes to the control variable, 
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, is state-dependent. This state-dependent control theoretic formulation is unorthodox. Its properties and application to dynamic user equilibrium were studied by (Friesz et al., 2001). The necessary conditions for dynamic system optimal assignment are given by the following the proposition. 

Proposition 1: The necessary conditions for the optimization problem (4) – (9) can be derived as 
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Proof:

See Appendix A in Chow (2007). 
(
In condition (10), the notation 
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 are the multipliers, or called the costate variables in optimal control terminology, associated with constraints (5), (6), (7), and (8) respectively. From the other stationarity conditions at optimality, we determine that 
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The magnitude of 
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 is dependent on the total travel demand, 
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. The detail of this can be referred to Chow (2007). 

3.2 Interpretation of the optimality conditions and its implication on dynamic road pricing 
In the expression (14), the value of 
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 refers to the additional travel cost imposed by an additional amount of traffic, us, at time s to existing travellers in the system. Numerically it is equal to the total change in the value of the total system travel cost 
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in which ds represents the incremental time step
. The calculation method of 
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The costates 
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 represents the sensitivity of the value of the objective function Z with respect to the changes in the state variables 
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and hence 
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Quantity in (14) represents the net change in the total system travel cost with respect to a unit change in the traffic volume that enters the link at time s and exits at time 
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Proposition 1 shows that the dynamic system optimal assignment can be reduced to an equivalent dynamic user equilibrium assignment formulation in which additional components of the cost, 
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 in order for the transport system to operate optimally. This analytical result shows that there is a substantial difference between the traditional analysis on static transport system (for example Sheffi, 1985) and the current analysis of dynamic transport system. To optimize a dynamic transport system, in addition to paying for his/her own externality 
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4. Solution algorithm
This section illustrates the algorithm for solving dynamic system optimal assignment. The algorithm is structured as a combination of forward-backward dynamic programme: to be solved forward in the order of departure time interval for assignment flow profile; solved backward in time for the corresponding externality and costates. The study period in continuous time, T, is discretized into K intervals each of length 
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 at the late end of the time interval. Within each departure time interval k, the assignment inflow is calculated by using Newton method, which converges with an order of convergence at least 2 (Luenberger, 1989, p202).
The algorithmic procedure is described as follows.  

Step 0: Initialisation 

0.1 Choose an initial equilibrium cost 
[image: image77.wmf]*

od

C

;  

0.2 Set the overall iteration counter 
[image: image78.wmf]1

:

=

n

; 

0.3 Set 
[image: image79.wmf]0

:

)

(

=

k

e

a

  for all links a and all times k, 
[image: image80.wmf]]

,

0

[

K

k

Î

. The notation 
[image: image81.wmf])

(

k

e

a

 represents the assigned inflow to link a between times 
[image: image82.wmf]s

k

D

 and 
[image: image83.wmf]s

k

D

+

)

1

(

. The total number of simulated time steps is denoted as 
[image: image84.wmf]s

T

K

D

=

/

 and the total number of parallel links is denoted by A;  set time index 
[image: image85.wmf]0

:

=

k

;

0.4 Set costates 
[image: image86.wmf]0

:

)

(

=

k

a

l

 for all times 
[image: image87.wmf]]

,

0

[

K

k

Î

;

0.5 Set the link index 
[image: image88.wmf]1

:

=

a

;

0.6 Set the time index 
[image: image89.wmf]0

:

=

k

;

0.7 Set the overall iteration counter 
[image: image90.wmf]1

:

=

i

n

.

Step 1: Network loading
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 at the current iteration. The network loading algorithm “Algorithm D2” described in (Nie and Zhang, 2005) was adopted for this purpose. 

Step 2: Calculating externality

Calculate the externality 
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Step 3: Determining the auxiliary inflow

3.1 Calculate 
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3.2 Calculate 
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3.3 Calculate the auxiliary inflow 
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3.4. If 
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Step 4: Determining step size

Search for an optimal step size 
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Step 5: Calculating costate variables
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5.6. If 
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, then go to step 6; otherwise k:= k - 1 and go to step 5.3.

Step 6: Stopping criteria

6.1 Define 
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 as a measure of disequilibrium, which is equal to zero at system optimum. If 
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 is greater than the predefined maximum number of overall iterations or 
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 is sufficiently small, i.e. 
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 is a test value, then go to Step 6.2; otherwise set n:=n+1 and go to step 0.5;
6.2. Check if the total throughput 
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 from the system is equal to the predefined total demand Jod for the o-d pair. If yes, then terminate the algorithm; otherwise update 
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, and go back to step 0.2.

Discussion

A crucial point in solving dynamic traffic assignments is to consider the time-varying variables at the appropriate time. Heydecker and Verlander (1999) showed that a predictive manner should be adopted for plausible assignment results. In a predictive discrete time formulation, the travel cost, which is calculated forward in time due to causality, associated with this flow should be considered at the end of the interval (i.e. at the time 
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), rather than at the start of the interval (i.e. at time 
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). When we calculate the costate variables (in Step 3.1), the values of the costates are considered at the start of the time interval 
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 instead of the end of the interval. This is because, contrasting with the travel time which is calculated forward in time, the costate variables are calculated backward in time. The consequence of considering the cost at an inappropriate time was illustrated in Heydecker and Verlander’s (1999) report. 

The auxiliary inflow at each departure time interval k is calculated such that the associated 
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. With this inflow, the sum of the total travel cost and the externalities remains constant over time. Moreover, this auxiliary flow are calculated based on the traffic conditions at the last iteration, while the corresponding values of costates are calculated based on the traffic conditions at the current iteration. As a result, they are not consistent, and we adopt a step size search (Step 4) as a heuristics to accommodate this. 

5. Numerical examples

This section uses numerical calculations to demonstrate the analysis presented in this paper, including the assignments and the system optimizing time-varying toll. 

Figure 1 shows a network with a single origin-destination pair connected with two parallel travel routes consisting of one single link. Link 1 has free flow time 3 mins and capacity 20 vehs/min, and link 2 has free flow time 4 mins and capacity 30 vehs/min. Furthermore, the origin-specific cost is specified to be a monotone linear function of time with a slope -0.4. The destination cost function is piecewise linear, with no penalty for arrivals before the preferred arrival time 
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, and increases with a rate 2 afterwards. The length of the planning horizon 
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, where T=100, is set such that that all traffic can be cleared by time T. The total amount of traffic 
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 is taken as 800 vehs. 

As a benchmark for comparison, Figure 2 shows the corresponding profiles of link inflows and the total travel cost at dynamic user equilibrium. Dynamic user equilibrium assignment can be calculated by using the solution algorithm for dynamic system optimal assignment and setting all externality and costate terms to be zero. The assignments show good equilibrations for all travel time models adopted, in which the measure of disequilibrium 
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 is below 10-17 in all cases. The assignment period to route 1 is from time 18 to time 49, and to route 2 is from time 21 to 49 which is shorter due to its higher capacity and hence traffic can be cleared more efficiently. The link flow volumes using route 1 and route 2 are 380.25 (vehs) and 419.75 (vehs) respectively. 

As mentioned in Section 2.1, the total travel cost indeed consists of the travel time and the sum of time-specific costs. For further illustration, Figure 3 plots the cost components and the associated inflow and outflow profiles on route 1. The cost components on route 2 follows similar pattern and hence they are not included here for brevity. Figure 3 shows that the time-specific costs are decreasing over time until departure time 39. It is because travellers depart after time 39 will arrive at the destination at time 50.1 which is after the preferred arrival time 50. As a result, those travellers will be added a positive arrival specific cost. In addition, the figure shows that the link travel time increases with time when the inflow is higher than the outflow and vice versa after time 39. Overall, the sum of all these travel cost components is constant over time.  

The total system travel cost 
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 is 12,465.2 veh-min at dynamic user equilibrium and it is understood that it is not the minimum yet. Figure 4 shows dynamic system optimal assignment. With the same total demand Jod, the period of assignment to link 1 expands from times [18, 49] to times [4, 56], while that to link 2 expands from times [21, 49] to times [6, 50]. In general, the inflow profiles are more spread at system optimum in order to reduce the intensity of congestion. In the figure, the legend “total travel cost” refers to values of 
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 and the legend “total travel cost + toll” refers to the value of 
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 on each route. 
The time-varying toll of  
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 is to be imposed on each traveller in the system according to the departure time s of each traveller to drive the system from user equilibrium state to system optimal state. The time-varying tolls on each route are calculated and plotted in Figure 5. In general, the tolls increase for travellers whose departure time would lead to an early arrival at the destination; decreases for travellers who would arrive late. It provides important insights and a benchmark to understand and evaluate management strategies for dynamic network traffic.
With the addition of the time-varying toll, the associated total system travel cost 
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 at system optimum is decreased from 12,465.2 veh-min in user equilibrium to 11,447.3 veh-min. Contrast with dynamic user equilibrium, it is seen that the total travel cost 
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 is not equal for all departure time s which implies some travellers can be better off while some of them have to be worse off for the good of the whole system. 

To illustrate the cause of the decrease in total system travel cost, Figure 6 shows the link traffic volumes, which are directly related to congestion, at dynamic user equilibrium and dynamic system optimum. Interestingly, yet importantly, the results show that, with the link travel time function in Equation (2), the system optimal assignment has to allow congestion, which can only be managed and minimized, even at system optimum. This implies that the previous analyses on dynamic system optimum using bottleneck model (see for example Vickrey, 1969; Arnott et al., 1998) in which congestion can be completely eliminated do not generally apply. 

Finally, as shown in Figure 4, the “total travel cost + toll” is not in good equilibration at system optimum in which the measure of disequilibrium can only reach 0.04. Indeed, solving the dynamic system optimal assignment is difficult, since the solution procedure involves solving two dynamic programmes simultaneously and consistently: solving the network loading forward in time for the state variables and solving the costate equations backward in time for the costate variables. Although the dynamic system optimal solution that we achieved shows a reduction of more than 8% over the dynamic user equilibrium assignment, we are still exploring a better algorithmic procedure for better quality solution. 
6. Concluding remarks
This paper developed a comprehensive framework for calculating dynamic user equilibrium, system optimum, and dynamic system optimizing road toll. The knowledge generated in this paper provides important insight into the management of peak traffic dynamics and travellers’ behaviour. We also presented solution algorithms for solving the dynamic traffic assignments and the time-varying toll. The solution algorithms were developed using a dynamic programming approach. We applied the algorithms to numerical calculations and the characteristics of the results were discussed. We showed that the system optimal assignment has to allow congestion that can only be managed but not eliminated even at system optimum. This implies that the previous analyses on dynamic system optimum using the bottleneck model do not apply generally. Nevertheless, further study is still required to improve the performance of the solution algorithm for calculating system optimal assignment. 

In the present study, the formulation and analysis presented were restricted to networks with multiple origin-destination pairs connected with mutually distinct routes consisting of single links. In case of networks with multiple origin-destination pairs with overlapping routes, traffic entering the network during the journey time of a traveller from other origins downstream can influence the travel time of travellers from its upstream. As a result, some special computational technique, for example Guass-Seidel relaxation (see Sheffi, 1985; Patriksson, 1994), is required. The basic idea of such relaxation scheme is to decompose the assignment problem for networks with overlapping routes connecting multiple origin-destination pairs into several sub-problems. In each sub-problem, we calculate the assignments for one origin-destination pair, and temporarily neglect the influences from the flows between other origin-destination pairs. When equilibrium or system optimum is reached for the current origin-destination pair, we proceed with calculations for another pair. The procedure is repeated until equilibrium or system optimum is reached in the whole network. The relaxation scheme is not guaranteed to converge, but if it does, the solution will be the final assignment pattern (see Sheffi, 1985, p217). In case of travel route with multiple links, difficulties brought in when we have to calculate the derivatives of route exit time (see for example Balijepalli and Watling, 2005). As shown earlier in proposition 2, changing the inflow to a link on the route during one time interval will induce perturbations in the link travel time, the link outflow, and hence the inflow to subsequent link(s) in several succeeding time intervals. Hence, the dimension of time intervals to be considered in calculating the derivatives will expand exponentially along the route. We are currently investigating the strategies to cope with this “curse of dimensionality”. Efficient computing methods for system optimal assignments in general networks are still under investigation, however, the work reported in the present paper provide a solid and necessary foundation for future research on this. 

Finally, on capturing the traffic flow, this paper treats traffic as physically dimensionless in which vehicles queue vertically. However, much literature has shown that capturing the physical dimension of traffic is crucial for modelling realistic traffic behaviour (see for example Daganzo, 1998; Lo and Szeto, 2002), although most models that explicitly consider the physical dimension of traffic are also shown to be difficult to apply and solve. Incorporating the physical effect of traffic into the present framework is an important future research. The outcome will be a network model that simultaneously represents both the economics of travel behaviour and the physics of traffic flow in a dynamic framework. The resulting model will be more realistic and reliable for use in practice. 
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Figure 1 Example network
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Figure 2 Dynamic user equilibrium assignment    
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Figure 3 Inflow and travel cost components on route 1

[image: image136.emf]0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

Departure time (min)

Inflow (veh/min)

0

5

10

15

20

25

30

Cost (min)

Route 1 Inflow Route 2 Inflow

Route 1 Total travel cost Route 2 Total travel cost

Route 1 Total travel cost + toll Route 2 Total travel cost + toll


Figure 4 Dynamic system optimal assignment
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Figure 5 System optimizing tolls
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Figure 6 Link traffic volumes















� We chose to adopt this linear travel time model simply to ensure the FIFO queue discipline. Nevertheless, the present analysis is not confined to linear travel time models where non-linear form can still be adopted, provided that one has to verify that FIFO to be satisfied with the non-linear travel time model adopted (see for example Balijepalli and Watling, 2005).


� The inflow � EMBED Equation.3  ��� is a continuous quantity with respect to time. Strictly speaking, the value of � EMBED Equation.3  ��� is zero if we refer to only one particular instant, and hence it will not be effective on the cost � EMBED Equation.3  ���. To validate the analysis, we propose a notation � EMBED Equation.3  ��� to represent the change in inflow within a time interval rather than at a particular time instant. 
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