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ABSTRACT 

Markov traffic assignment has been recently proposed to model the temporal traffic flow evolution under day-to-day variation, and to understand driver’s day-to-day route-choice behavior adjustment process. However, some recursive or approximated methods are needed to estimate the second-order time-invariant covariance matrix of the path flow random vector. This paper presents a novel method of efficiently computing the exact solution of the covariance matrix with less computational efforts. A numerical study is conducted on computing the analytical formulation for the second-order covariance matrix, and using the Markov Chain Monte Carlo (MCMC) algorithm to simulate the path flow stationary distribution.

1. introduction 
The traffic equilibrium analysis has become the important advance in the field of traffic network modeling. The concept of user equilibrium was first proposed by Wardrop (1952), followed by the stochastic user equilibrium by Daganzo and Sheffi (1977). The equilibrium traffic flows are considered as the best predicted traffic flows in the long run and have been widely used for a variety of transportation planning purposes.
Equilibrium analysis, however, only pays attention to a single ideal flow distribution while ignoring day-to-day traffic flow variation from travel supply and demand. From observation of real traffic networks, there is evidence of significant day-to-day variation in travel demands, traffic volumes, and travel times (May and Montgomery 1987; Hanson and Huff 1988; Mohammadi 1997). In order to model the traffic assignment under this day-to-day variation, Cascetta (1989) was one of the first to develop a stochastic process approach of modeling day-to-day traffic flow evolution, namely the Markov traffic assignment. Markov traffic assignment models have recently been extensively studied (e.g., Davis and Nihan, 1993; Cantarella and Cascetta 1995; Hazelton, 2002; Watling and Hazelton, 2003; Hazelton and Watling, 2004). These models capture the traffic flow pattern under day-to-day variation by means of a stationary probability distribution in terms of a path flow random vector. Furthermore, day-to-day Markov assignment models provide insight on drivers’ day-to-day behavior adjustment process such as their day-to-day learning and information updating processes. This day-to-day dynamic approach of modeling dynamic traffic network assignment has the advantage that various individual behavior assumptions on a driver’s route choice can be taken into account (e.g., Yang and Liu, 2006).  
For the Markov traffic assignment models, computing the large transition probability matrix is analytically difficult and computationally expensive. To overcome this difficulty, Davis and Nihan (1993) showed that the overall behavior of the traffic flow stochastic process could be approximated by the sum of a nonlinear expected dynamical system and a vector autoregressive (VAR) linear Gaussian process as travel demand grows large. Yang (2005) and Yang and Liu (2006) generalized this conclusion to the situation where a driver’s inertia in changing routes could be modeled as a flow-dependent random variable. In all of their models, the stationary path flow distribution will be characterized by the mean (e.g., stochastic user equilibrium) and covariance structures of multivariate normal distribution. 

The second-order covariance structure of a random path flow vector is of particular interest in Markov traffic assignment models because it measures the variation of traffic flow over time. Davis and Nihan (1993) provided a recursive formulation in computing the time-dependent covariance matrix. Later on, Hazelton and Watling (2004) used an approximated method of estimating the equilibrium covariance matrix. However, their approaches are either iterative or approximated ones, and none of them could obtain the analytical solution of the stationary covariance matrix efficiently.  

In this paper, we propose a novel approach to solve the equilibrium covariance matrix exactly and analytically. Our conclusion is that under the mild assumption, i.e., that the transportation network is symmetric (i.e., the Jocobian matrix of link travel time function with respect to link flow is symmetric), the analytical solution of the covariance can be computed with much less computational burden. The underlying path flow stochastic process is based on the work of Yang (2005) and Yang and Liu (2006). 
The remainder of this paper is organized as follows.  In section 2, we will study the underlying stochastic process and its expected deterministic counterpart.  

An iterative method to compute the time-dependent covariance matrix will be presented in section 3.  Section 4 will present how to obtain the exact solution for the equilibrium covariance matrix.  Section 5 presents some computational results of computing the mean and the covariance matrix for the stationary multi-normal distribution. Finally, we discuss concluding remarks in Section 6.
2. Convergence of the PATH FLOW Stochastic Process 

In this study, it is assumed that the travel demand is fixed and day-to-day static, while the elastic demand can be extended by adding a dummy route indicating not traveling (Cascetta, 1989). To reflect the fact that travel demand and traffic flows can take non-negative integer values, we would consider the situation where travel demand is a large and finite positive integer, and the path flow state space is a finite fine grid. 
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t

X

 is a vector in the finite state space 
[image: image13.wmf]}

:

Z

{

K

0

N

x

x

i

i

n

N

r

=

Î

=

å

+

. The normalized state vector can be expressed by  
[image: image14.wmf]}

{

1

N

t

X

N

and therefore the normalized space will be 
[image: image15.wmf]}

P

 

,

,

,

2

,

1

,

0

 

,

:

R

{

K

Î

=

=

Î

=

p

N

k

N

k

x

x

p

n

N

r

L

.

In the literature of transportation network analysis, it is usually assumed that the route cost and link cost functions can take real-valued flow variables. When the demand goes to infinite, the finite state space 
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. Let the route cost function be defined as 
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 the link-route incidence matrix, and 
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Yang (2005) and Yang and Liu (2006) show that the stochastic process 
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where 
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The convergence theorem 4.3 and 4.4 in Yang (2005) show that the Markov chain 
[image: image42.wmf]}

{

1

N

t

X

N

 will converge to the deterministic process (1) in probability as the travel demand goes to infinite. However, this result does not provide any insight to judge the extent of the difference between the stochastic and deterministic processes for large but finite demand. We will address this question in the paper.

Our first assumption is the convergence of the initial state 
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 and that their augmented difference at the initial condition converges to a multi-normal random variable in distribution, i.e., 
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Followed by the argument in Cascetta (1989), it is straightforward to show that route flows 
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. We state the first and second moments of a general multinomial distribution in Proposition 1.
Proposition 1 Suppose random variables 
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Now let us consider the rescaled difference between the stochastic motion and the expected deterministic approximation at 
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Our claim is that the first term
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The second term
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Combining both terms above, we can conclude that the suitably rescaled difference between the stochastic process and its deterministic approximation at 
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Hence 
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3. An Iterative Method to Solve the Covariance Matrix

Conditional on the road information on the day 
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In the following, the reconsideration percentage 
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The choice probability to select path 
[image: image112.wmf]p

 at day 
[image: image113.wmf]t

 in the widely used logit model can be expressed as 
[image: image114.wmf]å

-

-

-

-

=

j

t

j

t

p

t

p

x

F

x

F

))

(

exp(

))

(

exp(

1

,

1

,

,

q

q

p

. Denote the Jacobian matrix of choice probability vector with respect to route travel cost 
[image: image115.wmf]))

(

(

))

(

(

x

F

p

x

F

D

ij

=

p

. It can be shown that this Jacobian matrix is symmetric and negative semi definite in 
[image: image116.wmf]r

n

R



[image: image117.wmf]

EMBED Equation.3[image: image118.wmf]î

í

ì

¹

=

-

-

=

-

-

-

-

-

j

i

x

x

j

i

x

x

x

F

p

t

j

t

i

t

i

t

i

t

t

ij

 

),

(

)

(

    

)),

(

1

)(

(

))

(

(

1

1

1

1

1

p

qp

p

qp



 
   
       (6).

The covariance matrix 
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 can be computed by iterating (4) over time. In addition, one important question is whether matrix 
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In fact, if the covariance matrix 
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Theorem 2 states the sufficient condition for the existence of the stationary covariance matrix 
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Theorem 2 also provides us an iterative method to compute the covariance matrix 
[image: image161.wmf]*

S

 provided 
[image: image162.wmf]1

)

(

2

*

<

x

D

p

. 

(1) Suppose the initial condition 
[image: image163.wmf]0

=

S

0


(2) In the (k+1)th  iteration, 
[image: image164.wmf]T

k

k

x

Dv

x

Dv

x

)

(

)

(

)

(

 

*

*

*

1

S

+

G

=

S

+


(3) If 
[image: image165.wmf]g

£

S

-

S

+

2

1

k

k

, where
[image: image166.wmf]g

 is a predefined tolerance, e.g., 
[image: image167.wmf]5

10

-

=

g

, then stop. Otherwise, go to step (2).

4. The Exact Solution of Covariance Matrix 
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Theorem 4 The exact solution to the equation (7) can be obtained analytically if the link travel cost function is symmetric.

 Before proving Theorem 4, first we need to do the projection such that the projected matrix is non-singular and diagonalizable. One way to do this projection is proposed by Sanholm (2006). Let the matrix
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From the analysis above, matrix 
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Then one has the following equations,
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For the last equation in (11), equivalently, 
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Compared with the solution algorithm of the iterative method, the direct method to compute the exact solution has the advantage that it can provide the exactly solution of stationary covariance matrix 
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 and it requires much less computational efforts. Furthermore, in terms of convergence, the direct method does not require the condition 
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 from the iterative method. When the link travel time function is symmetric and the choice probability is extreme value distributed (e.g., logit and probit models), we show that how to compute the exact covariance matrix 
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 analytically. In addition, it is worthwhile noting that we can compute the analytical solution for the inverse matrix 
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If the stationary covariance 
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 exists, the behavior of the Markov chain 
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. Our fist application can be to use Markov Chain Monto-Carlo (MCMC) simulation, for example, Metropolis-Hastings algorithm (Wendy and Angel, 2002), to simulate some realizations of the long term behavior. After “burning in” the samples in the early stage, we can use the large number of further samples to approximate the statistical characteristics. Suppose that there are no external shocks (e.g., incidents, construction, and special events) imposed to the transportation network. From our day-to-day analysis, one observation is that through drivers’ learning process, the traffic flow may approach a “stationary” state. With the fast development of ITS, link count data become more and more feasible, providing the possibility to fit into the traffic data to our model. 

5. Experimental results 
In this section, we compute the mean and covariance matrix of the stationary invariant distribution in Markov traffic assignment, and use MCMC to simulate the realization in terms of the invariant distribution. The simple test network will be the 
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 grid network with 9 nodes, 12 links and 6 routes from origin 1 to destination 9. The total O-D flows are 500 vehicles. The route and link correspondence is shown in table 5.1.
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Figure 5.1 The 
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 Grid Network

Table 5.1 Route and Link Correspondence in the 
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 grid network

	Route
	Links

	1
	1-2-3-6-9 

	2
	1-2-5-6-9 

	3
	1-2-5-8-9 

	4
	1-4-7-8-9 

	5
	1-4-5-6-9 

	6
	1-4-5-8-9 


The link travel time function is 
[image: image350.wmf]3

1.5[10.15()]

a

a

a

x

C

t

=+

, where 
[image: image351.wmf]a

x

 is the link flow and 
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. All nine links have the same capacity 2400 vehicles. The initial point of normalized route flow vector is randomly chosen as 
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If we have the ability to compute the stationary covariance matrix 
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, we can apply some MCMC techniques to generate a Markov chain whose stationary distribution is multi-variate normal 
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 and all the examples of the Markov chain are independent of the past conditioned on all information on the previous day. In the following, we will apply the Metropolis-Hastings algorithm to produce a Markov chain with stationary distribution 
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. More details about the Metropolis-Hastings algorithm can be found in Wendy and Angel (2002).
Let us study the case where perception error parameter 
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 and the exact solution of the stationary covariance matrix is
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Our first step is to apply the Metropolis-Hastings algorithm to simulate the multi-variate normal distribution with mean 
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 and covariance matrix 
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. Figure 5.2 shows the Markov chain samplings of normalized flow on route 1 after “burning in” the first 2000 iterations. The quantile- quantile plot (Q-Q plot) shows that the MCMC samples statistically observe the normal distribution in figure 5.3. 
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 Figure 5.2 MCMC Samples of Normalized Flow on Route 1
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Figure 5.3 Q-Q plot of MCMC Samples versus Standard Normal
In fact, the normalized route flows should range from 0 to 1, which is the probability distribution of total demand over the finite routes. However, the multi-variate normal distribution does allow the case where the sample runs beyond this range. In other words, we need to truncate the multi-variate normal to assure that the samples lie in the range of 
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 and 0.5. Figure 5.4 illustrates the case where the equilibrium normalized route flow is 0.1284. In the limiting case 
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Figure 5.4 Normal Probability Distribution Function with Truncation
6. Concluding remarks
In this paper, we have proposed a novel approach to solve the stationary covariance matrix analytically and exactly in Markov traffic assignment. The main difficulty in finding the analytical solution for the stationary covariance matrix is that the Jacobian matrix of the choice probability function with respect to the route flow might be singular and non-diagonalizable. Intuitively, our idea is to project this Jocobian matrix from the space 
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 such that the projected Jocobian matrix could be diagonalizable. The conclusion is that if the transportation network is symmetric then the analytical solution of the covariance and its inverse can be computed directly with much less computational burden.  

With the fast development of ITS, link count data become more easily to obtain. One interesting direction for our future work is to use the real traffic data to validate our day-to-day traffic flow evolution in discrete time. For instance, use chi-square test to check whether the link count data really observe the multi-variate normal distribution that our model predicts. In addition, we are also interested in how to use the link count data to do some maximum likelihood estimation, for example, to estimate the travel demand and the perception error parameter over the population. 
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