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Abstract

This study compares the performance of neural networks and logit models in the context of the singly constrained trip distribution phase of the 4-step transport planning model. A specific area of interest is researching the use of land use and socio-economic statistical data, in addition to the more typical distance-cost data, as predictor variables. The predictors can be related to the trip origin, as usual, or the destination. The paper presents a neural modeling method that incorporates these principles. It consists of: a) pre-processing transportation survey data; b) teaching a traditional feed-forward back-propagation neural network with the data; c) using the neural network on all possible origin-destination pairs, and d) post-processing the results to obtain trip distributions and trip counts for all origin-destination pairs. In particular, the post-processing is emphasized, as it is crucial when the neural network is used to model one origin-destination pair at a time without knowledge of other pairs. Various combinations of variables are used to find the best neural network parameters and predictor sets. The method is tested on real-world data with a 129*129 origin-destination matrix of the Helsinki Metropolitan Area. The errors of the best models, as measured against observed trip counts, are found to be slightly smaller than those of traditional logit models. The new predictor variables are found to bring surprisingly little value. However, interesting observations are made regarding the difference in predicting ability according to neural network evaluation methods and actual trip count measurements.

1.  
Introduction

An important part of the classical 4-step transport planning model is the second-phase trip distribution modeling. It is also arguably the most error-prone of the steps - scarce survey data and highly complex spatial interaction patterns have so far prevented high-quality modeling. So far, travel demand modeling and, especially, trip distribution forecasting have commonly been based on gravity or logit models (Ben-Akiva and Lerman 1985). They are quite stable and not too sensitive to sample size changes, but cannot really model non-linear relationships (Mozolin et al. 2000). Additionally, logit models do not explicitly use the attributes of the trip origin while choosing the destination. 

Since the beginning of the ’nineties, neural network models have been introduced as alternatives to traditional (statistical) modeling approaches. They have mostly been compared with doubly constrained gravity models (Fischer and Gopal 1994), with varying results. However, the results with significant performance increases have mostly been accompanied by unrealistically small traffic networks and only synthetic data sets. It seems that neural networks are not used anywhere for actual real-world trip distribution modeling.

This research examines the use of neural networks in the context of the single-constrained trip distribution phase of the 4-step transport planning model. A specific area of interest is the requirements on the neural network method when the predictor variables include, in addition to the more typical distance-cost data, land use and socio-economic statistical data. The method is tested on real-world data - a 129*129 origin-destination matrix of the Helsinki Metropolitan Area. Various combinations of variables are used to find the best neural network parameters and variable sets. The results are compared to results based on the traditional logit model.

The remainder of the paper is organized as follows. The next section presents the conventional methods of trip distribution modeling. The following section discusses the previous uses of artificial neural networks in this area. The chapter “Empirical analysis” describes the study area, the data used, and the neural network method used in the research. After that, the results and conclusions of the study are presented.

2.
Trip distribution modelling with convential logit models

The conventional solution when estimation trip distribution models is to use discrete choice models. Discrete choice models, like the logit model, postulate that the probability of individuals choosing a given option is a function of their socio-economic characteristics and the relative attractiveness of the option. The basic assumption of choice models is that each individual is attempting to maximize his or her utility. In other words, when a traveller has to make a decision in selecting an alternative from the available choice set he/she chooses the one which is the most attractive (or provides the maximum utility) for him/her (Ben-Akiva and Lerman 1985).

The attraction of available alternatives i for each individual n is measured with utility function. In a real situation there are attributes that can be observed by the modeller and attributes that remain unobserved. In Equation 1 the first term of the total utility Uin stands for the observed utility which is derived from the observed attributes.  This portion of the utility is usually marked with the letters Vin and it is called deterministic utility.  Additionally, the random portion for person n and alternative i is presented in term  
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​The deterministic component of utility function is usually expressed as a linear function of the attributes x1,...,xk. 
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where (1,...,(k are the coefficients to be estimated.  Variables can be included as either generic or alternative specific (Ben-Akiva and Lerman 1985).  In the case of destination choice, variables must be estimated as generic, which means that when considering the different choices travellers have equal perception toward this variable across all alternatives. 
In logit models it is assumed that the unobserved part of the utility (labelled (in ) is distributed  ​​​​​independently and identically following Gumbel distribution with a zero mean (Ben-Akiva and Lerman 1985). The value of random terms can, by definition, vary across different decision-makers and groups of persons as well as alternatives.

The multinomial logit model is the most widely used discrete choice model. It is easy to use and an estimation of its parameters is inexpensive.  The logit model gives a probability of a specific alternative to be chosen by an individual.  ​The choice probability for alternative i and individual n is given by (Ben-Akiva and Lerman 1985):  
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When modelling several dimensions of choice, e.g. destination and mode choice, the multinomial nested logit model is expressed as (Ben-Akiva and Lerman 1985):​​​​  
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where Pm|d is the mode choice probability, when the destination d has been chosen, Pd is the destination choice probability, Md is the set of all possible modes to destination d and D the set of all possible destinations and subscriptions m and d denote mode and destination choice, respectively.

In Equation 4 the log of the denominator of Pm|d has been used.  This term, labelled logsum or expected maximum utility, EMU (Ortúzar and Willumsen 1994), is the connection between the mode and destination choice. The parameter W estimated for logsum variable describes the similarity of the alternatives and it is estimated as an additional parameter of the model.

3.
Artificial neural networks applied to trip distribution modeling

Background of multilayer perceptron neural networks is presented before we proceed their application to the problem of trip distribution modeling. Artificial neural networks have proved to be difficult to define. Here is the definition used by Sarle:

[An artificial neural network] is a network of many simple processors ("units"), each possibly having a small amount of local memory. The units are connected by communication channels ("connections") which usually carry numeric (as opposed to symbolic) data, encoded by any of various means. The units operate only on their local data and on the inputs they receive via the connections. The restriction to local operations is often relaxed during training (Sarle 2006.)

Neural computation can, in theory, be used to solve any computational problem. In practice, neural networks have been found useful in classification and approximation problems, where the sample size of the learning material is fairly large and where simple rule-based solutions do not work. Examples of the latter are modeling very complex or non-linear functions (Statsoft 2006, Bishop 1995) - common situations when dealing with real-world data. It has also been found that although a neural network can be used to approximate arbitrary functions given raw input data, much better results will be achieved by preprocessing the data before using the neural network. Preprocessing is always data- and situation-dependent and may include normalizing the inputs, condensing input data (e.g. by thresholding the data according to some external knowledge), or reducing the dimensions of the input data (Koikkalainen 1999; Bishop 1995).

There are several learning methods: unsupervised learning can be useful, e.g. in-cluster analysis, but not very much in function approximation. Supervised learning, on the other hand, requires the discrepancy between the network’s output value and the target (desired output) value to be measured. The weights of the connections in the neural networks are then modified in order to minimize this discrepancy. The goal of the learning process is to find a model which responds rationally even to inputs that were not present in the input data. There are many possible pitfalls regarding this generalization, most importantly overfitting, where the network learns not only the signal, but also the noise in the input data. An overfit network extrapolates especially poorly (Sarle 2006). Several validation methods (e.g. hold-out and cross-validation) exist to prevent overfitting from happening.
There are numerous neural network architectures. Arguably the most popular one is the feedforward multi-layer perceptron model, a fairly simple and versatile architecture. As it is a feedforward method, the connections of the network do not form loops, which means it is also a fairly fast method. The neurons form layers: an input layer, a variable number of hidden layers, and an output layer. Figure 1 illustrates a network with one hidden layer, a common configuration. The number of input and output neurons is defined by the number of inputs and outputs, but the number of hidden layers and neurons is not limited at all. The choice of network topology affects the ability of the network to generalize, but unfortunately it is often more art than science; at least, there are no general rules for it. A multi-layer perceptron network can taught in several ways, the most common being back-propagation. In this method the errors are propagated back and weights are adjusted, starting from the output layer.
[image: image6.wmf]
Figure 1: A multi-layer perceptron neural network with one hidden layer.
The use of neural networks in traffic analysis has been studied, although not that much. One of the areas of interest has quite naturally been that of estimating traffic flows. The subject has been approached from several angles: on the micro-level by modeling individual intersections or congestions; by parameter estimation to optimize traffic flows, using the origin and destination matrix, and in strategic traffic modeling for traffic planning (Dougherty 1995). This chapter aims to give an overview of important previous research that may be applicable to neural computation-based trip distribution modeling, regardless of the actual subject matter or the methods chosen.

In 1993 Kikuchi et al. based their research on estimating an origin-destination matrix, using the number of generated and attracted trips (i.e. the row and column sums of the matrix) as predictors. They used a multi-layer back-propagation neural network, synthetic data, and a relatively small amount of origin and destination areas (Kikuchi et al. 1993).

A comparative study between a gravity model and a neural network model on estimating telecommunication flows between different parts of a large network was conducted a year later by Fischer and Gopal. Their traffic network had 32 areas and they used the same input data for both models. The conclusion was that a back-propagation neural network is systematically slightly better at estimating traffic flows (Fischer and Gopal 1994).

Mozolin et al. (2000) published a critical evaluation of multilayer perceptron neural networks in 2000 in which they compare the performances of said neural networks and a traditional interaction model, in this case a Maximum Likelihood Estimator (MLE). In the comparison the models were used to predict the future (and past) trip distribution; in other words, the models were trained with data from 1980 and tested on data from 1990, or vice versa. Several traffic network sizes were used, up to hundreds of nodes. The neural network was, again, a back-propagation network and the predictors used included the number of generated trips for origin, number of attracted trips for destination, and an impedance value, in this case the distance between the origin and the destination. With small traffic matrices the neural network model was found to work acceptably, although not as well as the MLE model. As traffic network size was increased, the difference becames more pronounced: the MLE model clearly outperformed the neural network model. It is important to note that this was only observed when predicting the future or past: when the models were trained and tested on data from the same year, the neural network was consistently better. Mozolin et al. suggest that the poorer prediction capability may be a consequence of the neural network’s ability to learn any hidden relations in the data – there is no way to know if the model uses traits of the traffic system that are specific to the year to predict trip distribution. The authors also doubt the suitability of the sigmoid function for model spatial interaction. Additionally, the skewed input data are recognized as a possible source of error: As most origin-destination pairs have a very low trip count (less than two trips), the neural network only learns to model small amounts of trips well. Some sample modifications were made to solve this, with no results.

Another approach was presented by Tapkin (2004). He presented a NETDIM neural network model, which was compared with a gravity model, a back-propagation neural network, and a modular neural network. The models were tested with three to 30 node traffic networks. Predictors included generation and attraction sums and the distances between nodes. The modular network was composed of several expert neural networks and a gating network, which decided how the opinions from the experts were weighted in the final results. In the NETDIM model an ordinary one-hidden-layer perceptron network was modified so that the input values were used not only as inputs to the hidden layer, but also as weights for the output layer. According to Tapkin, this architecture enabled the NETDIM model to outperform all of the comparison models.

Tillema et al. (2004) researched trip generation and distribution as a part of a larger Land-Use-Transport-Interaction model, mostly using synthetic test data sets. The trip distribution part of the study compares the estimation performance of a back-propagation neural network and a gravity model by varying the proportion of the training data size to the whole data set size. The traffic network size used was 15 nodes. The predictors included generated trip counts, attracted trip counts, and impedance values for the origin-destination pairs. The neural network performance was observed to suffer less from small training data set sizes and be better than the performance of the gravity model when practical real-world training data set sizes were used. The same phenomenon existed with real-world data calculated from traffic observations, although the performance difference was less pronounced (Tillema and Marseeven 2005, Tillema et al.  2004).

Hence, a multilayer perceptron network with some form of back-propagation learning algorithm has been by far the most common method in these studies, the only exception being Tapkin’s self-developed method. Additionally, all of the studies used only the input data of their chosen comparison method as predictors. Another common characteristic is the use of only the attributes of the destination area as predictors.
4.
Empirical Analysis

4.1
Study Area and Data Sources

Study area
The study area consists of four cities in the Helsinki Metropolitan Area: Helsinki (551,123 inhabitants), Espoo (209,667 inhabitants), Vantaa (176,387 inhabitants), and Kauniainen (8549 inhabitants).  The city center of Helsinki is located on a peninsula in the Gulf of Finland, and the metropolitan area forms a half circle around it with a radius of 25 to 30 km.  In 2000, car density in the area was about 346 cars per 1,000 inhabitants.  The public transport system in the area consists of bus and tram, commuter and ordinary trains, and one subway

line east of the city center.  Of the 2.4 million internal daily trips of the inhabitants of the area, 46 percent were made by car, 28 percent by public transport, and 25 percent by bicycle or on foot. 

Travel surveys 

Helsinki Metropolitan Area Council conducts a traffic survey every few years. They study from fall 2000 was used in this research as the observed traffic data. The data consists of trips made by 8666 citizens during one day. Trips are classified in four groups, of which only Other Home-based Trips was used in this research (the group contains trips originating from or returning to home not including work or school trips). The whole data base contained 26,683 internal trips.  Of those, 11,348 were other home-based trips  (Karasmaa et.al, 2003).  The models and forecasts are based on a 129 zones, which means that the observed trip matrix is fairly scarce: there are 16,641 possible origin-destination combinations.The average trip length of other home-based trips was 5.3 km.

All the required level-of-service data, with the exception of parking costs and transit fares, were generated by the Emme/2 network assignment procedure. The intra-zonal travel times were calculated using regression models based on the travel times of the observed OD-trips under five kilometers.  These travel times were generated by the Emme/2. The explanatory variable was square root of land area and the dependent variable was the observed intrazonal distance.  Different impedances were applied to different time periods.  The time periods used were peak hours in the morning (6.30 a.m- 8.30 a.m.) and in the evening (15.30 p.m.- 17.30 p.m.) and the day time (any other time).
4.2  
Logit model formulation
Table 1 contains mode and destination choice models for other home-based trips (Karasmaa et al. 2003a). The distance for walking trips is given in kilometers for a one-way trip between the origin and destination.  The distance variable was formulated as a piecewise linear function. The travel times, travel costs, are for a round trip. Travel times are in minutes, and costs are in FIM.  Parking cost is included in the car costs. Travel costs for public transport are zonal values, which have been crosstabulated from the mobility survey data based on the ticket type of the passangers.  Travel costs for car are based on 0.63 FIM/km (0.10 eur/km). The internal trip lengths and travel times are estimated using a regression model based on the observed distances and travel times of intra-zonal trips. The logit model formulatation is considered more precisely in Karasmaa et al. (2003a,b).  

Table 1:
Estimation results of other home-based trips using multinomial logit models.
	Variable
	HMA mode and destination choice models

	
	coefficient
	std
	t-ratio

	Distance 0-5 km (Walk)

Distance > 5 km (Walk)

Total travel time (Car, Ptr)

Number of transfers (Ptr)

Trip cost (Car, Ptr)

Parking cost (Car)

Parking accessibility (Car)

Cars/household (Car)

Company car share in the origin area (Car)

Walk dummy (Walk)​​

Car dummy ​ (Car)

Logsum

Scale-factor
	-0.9915
-0.3586
-0.0151
-0.2286
-0.0907
-0.1011

-0.2571

 1.2290
2.7900

 0.8940
-1.7190
 1.3200
 1.0000
	0.0225
0.0219
0.0020
0.0428
0.0057
0.0141

0.0466

0.0958
0.7400

0.1010
0.1350
0.0095
0.0000
	-44.0

-16.4
-7.6
-5.3
-15.8
-7.2

-5.5

12.8
3.8

18.7
-12.7
33.8
-

	Number of observations
	11,348

	( ²(c)                             
	0.2886

	Walk = Walk and bicycle

Ptr     = Public transport

Car    = Car
	Scale factor

- inhabitants                 1.00

- retail employment    12.26
- service employment   3.09


4.3
Neural network formulation
The feed-forward multi-layer perceptron network is chosen as the neural network model, as it is considered to be suited for most neural computation tasks and is relatively easy to implement. Some problems related to this architecture that have been mentioned in the context of traffic modeling are: the possible non-applicability of some transfer functions in modeling spatial interactions (Mozolin et al. 2000); fairly large demands for training data set size; a tendency to overfit (Fischer and Gopal 1994), and weak adaptability to skewed training data (Mozolin et al. 2000). Some precautions are taken so as to overcome these possible problems: the training is split into training, validation, and test data sets to prevent overfitting. the 'skewed' nature of the data is compensated by taking zero-trip observations into account, and several different transfer functions are tested to see if the problems observed by Mozolin et al. are visible. 
Virtually all previous research have used a small number of predictor variables, mostly the same variables that are used in a comparative logit model. One of the hypotheses of this study is that there may be other non-obvious variables (which may be related to the origin or destination or a combination of them) that are needed in order adequately to model trip distribution, and that neural networks may be able to use that information. A group of variables related to the traffic network, land use, and population is tested during the research, first by using neural computation evaluation methods, such as comparing the mean square error of the test set with a certain variable to the mean square error of the test set without the variable. As there are inherent problems with evaluating the importance of input variables in neural computing (Sarle 2000), and as the method includes significant post-processing of the neural network output, the predictor sets that are found to be best by this evaluation method are then used to model the actual trip counts and those are compared to observed trip counts.

4.4
Implementation issues
MathWorks' Neural Network Toolbox for Matlab is used for the modeling. A large number of different network architectures, variable sets, and functions were tested - a comprehensive test is impossible, but some observations about the choices and their possible effects can nevertheless be made. 

Architectures with one to three hidden levels were tried, but no discernible advantage was noticed when more than one hidden layer was used. Instead, training times increased significantly. Different transfer functions for the hidden layer and output layer were also tested. Tan-sigmoid was chosen for the hidden layer, but differences from other functions were not pronounced. In the output layer the log-sigmoid function seemed to perform best, especially when estimating the difficult low probabilities (where zero or close to zero trips were observed). Linear functions also did surprisingly well.

The optimal hidden unit number is, of course, related to the predictor variables used, and cannot be universally calculated. Still, tests with several different input variable sets all achieved the best performance with 10-22 hidden units. Several of the training algorithms available in the program were very good. Levenberg-Marquardt was eventually chosen, as it was consistently very good and also quite fast. The hold-out method was used with early stopping in order to shorten training time without sacrificing learning ability.

The method consists of four phases: pre-processing, training, using the network, and post-processing (Figure 2). 
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Figure 2: The phases used while training the network and  utilizing the network.
Pre-processing

The method has two kinds of inputs: predictor variables and survey data. Predictors are data related to the origin or destination or a combination of them (such as the amount of service jobs at the destination or the ratio of families with children to all families in the origin area). The survey data contain observed numbers of trips for all origin-destination pairs and they are used to calculate the desired output of the neural network. Predictor variables were calculated for all origin-destination pairs, using only variables with complete data for all pairs. Categorical variables were transformed into several binary variables, and all variables were normalized to interval [-1, 1]. 

Producing the desired output (the 'desirability of destination D from origin O') from the survey data has some pitfalls because of the scarceness of the survey data - some origin areas have very few trips to any destination. Two kinds of modifications were made in order to prevent skewed data: if an origin area had too few observed trips altogether, no observations with that origin were used. With practical tests the limit was set to a minimum of 60 trips from the origin. All other observed trips were used as teaching values for the neural network. Additionally, zero trip values were added to the data sets: if an origin had enough trips starting from it, a pseudo-observation of zero trips was added for every origin destination pair that did not have any observed trips.
Training the neural network

The network was taught using Matlab Neural Network Toolbox in the way described earlier in the chapter. The training consists of feeding the network all input-desired output pairs during every epoch, with the network adjusting its weights between epochs.

Using the neural network

The neural network implementation chosen does not take into account the relativity of the results for origin-destination pairs that have the same origin (in other words the fact that the neural network result is just a relative 'desirability' of the destination); the result for all origin-destination pairs has to be calculated before post-processing. The result is thus an N*N*T matrix of destination desirabilities (where N=number of areas and T=number of time groups).

Post-processing

To obtain an estimate of destination selection probabilities, the results must be post-processed in two ways: The first problem is that the output layer activation function used does not guarantee a positive result. The negative values are mostly very small and could be handled by normalizing, but as a larger stray negative value could affect the model badly, it was decided that all negative values would be replaced with zero. After that, all desirability values for one origin are linearly scaled so that their sum equals one. 

4.5
Tests

When different neural networks are compared before the post-processing phase, the mean square error test is used. In this context this means the average squared difference between all network outputs a and target outputs t in the test set:
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Neural networks and the logit model are also compared using the errors in aggregated trip estimates as a measure. Aggregation meant combining the values in the 129*129 matrix into a 4x4 matrix. The error value used was the squared difference between observed (o) and estimated (e) trips over the 16 origin-destination combinations.

[image: image9.wmf]å

=

-

=

16

1

2

)

(

16

1

i

i

i

e

o

E











(7)
5.
Results

This chapter describes the results that are achieved using three different comparison methods: comparing neural networks using mean square error; comparing neural networks using the number of estimated trips, and comparing the neural network method with the logit method using the number of estimated trips.

5.1
Comparing different neural networks using mean square error

The used software includes a metric for neural network error; the mean square error that is calculated for all three data sets (learning, validation, and testing) across all training epochs. Since the starting values for network weights are typically randomized, neural modeling is not deterministic. Because of this, all the models were trained several times and the median error of the test data set at the chosen stopping epoch was used as the error value for that model. 

Testing was conducted as follows. First, a comparison network was built using the logsum and amount of jobs in destination as the input variables. Possible new input variables were tested by adding one variable at a time to the comparison network and comparing the error values. All variables that had a discernible effect on the error are qualified for the next phase, where different combinations of the pre-selected variables were used to find the best combination. It was found that variables correlate quite strongly with each other, meaning that adding new variables has a diminishing return. The three-variable networks performed almost as well as the 10-variable set that was found to be the best. The following list (Table 2) presents the variables that were used to achieve the smallest mean square error.
Table 2:  Variables tested in trip distribution model.

	logsum 

	origin equals destination [Boolean]

	cars/household in origin area

	proportion of 18-34-year-olds in origin area

	number of jobs in destination area

	number of commerce jobs in destination area

	number of small (1-2 room) apartments in destination area

	destination is in city center [boolean]

	destination population

	number of 18-34-year-olds in destination area


One of the hypotheses in the study was that variables from both the origin and destination can be used, and that there may be unseen connections between them that neural computation can take advantage of. This is slightly supported by the results, as e.g. the percentage of 18-34-year-olds in the origin area and the number of 18-34-year-olds in the destination area only seem to lower the error when they are both present. Their effect is quite small, though.
5.2
Comparing different neural networks using number of estimated trips

Different neural network topologies and predictor combinations were tested by calculating the numbers of trips corresponding to the estimated shares of trips, using the post-processing procedure described in the previous chapter. It was noticed with some surprise that the results from the mean square error test and this trip number error calculation had a lower than expected correlation - a general correlation was there, but it was clear that the networks with the lowest mean square error were not necessarily the networks with the lowest trip number error. This phenomenon may be the result of the network learning some unwanted aspects - in other words, the post-processing utilized may prevent the model from achieving the best possible estimates.

A general trend in trip errors was that new input variables did not improve performance. In fact, when assessing by means of trip number errors, the best median result was achieved with a predictor set that consisted only of the basic variables (number of public transport transfers, number of jobs in the destination area, logsum) and the cars-per-household variable. This result is very different from the mean square error tests, where several variables were found to improve results. It seems that the function that the neural network is trying to learn and the function that results from the post-processing phase (and used to calculate trip numbers) are sufficiently different as to impede the modeling - severe consequences in that case are easily explainable, as small variations in the probability of choosing a destination may cause large changes in actual trip numbers. It is also possible that to successfully use more than a few variables, more training data would be needed.
5.3
Comparing the neural network method and a logit model method using number of estimated trips

The possible problems where the neural network may not be learning what it was supposed to - because of the post-processing - does not prevent comparison between a neural network using the predictor set with the best observed performance and a logit model. One should take into account that, judging from the fairly wide variation in the performance of the different neural network runs, that the results are probably not very close to the smallest possible error. On the other hand, it should be noted that the results presented here are for one network, selected because the performance was best – the worst networks performed more poorly to the tune of tens of percentage points, when judged by estimated trips.

The comparison of estimated trips for individual origin-destination pairs would be difficult, as the sample sizes of the real-world observations are so small. Instead, the estimated trip numbers for all origin-destination pairs were aggregated into a matrix of 16 pairs, depicting different combinations of four major areas in the Helsinki metropolitan area. These aggregated numbers for the neural network model and a logit model were then used with similarly aggregated observed trip numbers to calculate absolute and proportional errors for the models. 

The differences between estimated and observed trips are presented in Table 3 for the neural method and in Table 4 for the logit model. Helsinki city center is marked by Helsinki 1 and the suburban area by Helsinki 2. Tables 5 and 6 present the same errors as the ratios of observed trips. The results indicate that both methods seem to achieve roughly the same performance, with the neural network being slightly better if the errors are all summed. 

Table 3: Differences between neural network-estimated and observed trips 

	
	Helsinki 1
	Helsinki 2
	Espoo
	Vantaa

	Helsinki 1
	7577
	-5520
	-453
	-2356

	Helsinki 2
	-113
	-19512
	4780
	15328

	Espoo
	-15867
	3093
	15605
	-4152

	Vantaa
	-19050
	21913
	6782
	-9619


Table 4: Differences between logit model-estimated and observed trips 
  (Karasmaa et al. 2003)

	
	Helsinki 1
	Helsinki 2
	Espoo
	Vantaa

	Helsinki 1
	5268
	234
	-3787
	-2398

	Helsinki 2
	2299
	-1029
	-6558
	6560

	Espoo
	-8707
	26471
	-20272
	1892

	Vantaa
	-13285
	27539
	1593
	-15699


Table 5: Neural model trip estimate error as a ratio of observed trips (%)

	
	Helsinki 1
	Helsinki 2
	Espoo
	Vantaa

	Helsinki 1
	3
	-15
	-5
	-39

	Helsinki 2
	-0
	-5
	18
	41

	Espoo
	-36
	20
	5
	-30

	Vantaa
	-59
	99
	98
	-5


Table 6: Logit model trip estimate error as a ratio of observed trips (%) 
  (Karasmaa et al. 2003)

	
	Helsinki 1
	Helsinki 2
	Espoo
	Vantaa

	Helsinki 1
	2
	1
	-39
	-40

	Helsinki 2
	2
	-0
	-25
	18

	Espoo
	-20
	171
	-7
	14

	Vantaa
	-41
	124
	23
	-8


Errors were found to accumulate in the same origin-destination pairs. In particular, the error ratios show that the same pairs seem to be easy to model - all in-area trips and trips between Helsinki 1 and Helsinki 2 seem to be easy for both methods. Trips from Espoo or Vantaa (excluding in-area trips) were found to be difficult for both methods. This seems to indicate that the input variables which seem to work for inner-city areas (such as Helsinki 1) may not be applicable to more suburban areas (such as Espoo). Unfortunately, the aforementioned modeling problems prevented further observations on this. These results were seen in all the neural models produced, not just the one shown here. 

6.
Conclusions

This study compared the performance of neural networks and conventional logit models in trip distribution modeling. Conventional methods and some previous work on neural networks in this area were described. A neural computation-based method of modeling was presented, and various variable sets were tested in order to give the neural network the best possible input data. The method was evaluated in several ways and the modeling results were compared with the logit model results.

When the different neural network candidates were tested using the mean square error method, several new input variables were found to have a positive effect on the modeling accuracy. The best results were achieved with a ten-variable input set. However, this increase in accuracy was not seen when the estimated numbers of trips were compared to observed trips. In that case, the best variable sets were quite similar to the ones used by logit models. This inconsistency was assumed to be affected by the post-prosessing, which complicate the neural network training. 
The best neural network models were observed to be slightly better than the logit model when compared using the number of aggregated trips as the measure. However, some unexplained variability in the neural modeling was noticed. This was attributed to either not having enough training data or the post-processing phase of the method interfering with the modeling. It seems to be obvious, that the sample size needed when using neural networks is larger than estimating logit models. 
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