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Abstract
The accurate and up-to-date trip matrix is essential for addressing various issues to transportation planning, traffic management and traffic operations. The accurate estimate of the travel pattern, in the form of trip matrices for a study area is obtained by carrying out traditional surveys like home interview survey, roadside origin-destination survey, etc. These traditional data sources for establishing the travel pattern are, however, time consuming and expensive. Hence, the estimation of origin-destination matrices from traffic counts, which are easily available, has been found to be a promising method by researchers since the early 1970s. Various techniques which have been proposed for the estimation of the O-D matrix from the link counts exemplify the complexity of the problem. The statistical inference approaches like Maximum Likelihood, Generalized Least Squares and Bayesian Inference approach have been effectively applied for the estimation of O-D matrices. This paper reports the implementation of the constrained GLS method (for networks considering with congestion and without congestion) for estimating the O-D matrix of a study area from link counts. A large network has been considered representing the city of Greater Mumbai located in Maharashtra State of India. The GLS algorithms presented by Bell (1991) for uncongested network and Yang et al (1992) for congested networks have been considered to estimate the O-D matrix from a prior matrix. Both the methods have been analyzed in this paper. 
Keywords: O-D matrix estimation; Generalized least square estimate; Traffic counts
Introduction
Accurate and up-to date trip matrices are used as a critical input in various traffic management, network design and analysis. Obtaining an elaborate O-D trip matrix directly from O-D surveys requires large amount of resources for expensive interview surveys and also for data editing and analysis. The O-D matrix estimation problem has been the subject of considerable amount of research from past 35yrs. Considering the extensive cost of building an OD matrix, from 1970s various methods have been attempted to find out the most likely O-D matrix in accordance with the traffic link count data. An updated O-D matrix is estimated using the current link counts and the prior O-D matrix so that it can reflect the current distribution of the travel pattern. The quality of the estimated matrix depends on the accuracy of both the traffic counts and the prior matrix. Hypothetically more the traffic counting stations are selected to the road network; more the accurate O-D matrix can be obtained. But due to resource limitations, it is not possible to select many counting stations. Links contains various information regarding O-D flows, with some links contain no information, different counting locations yield estimates of O-D flow as with different levels of reliability. Apart from the traffic counts and the prior matrix, the traffic assignment is the important analysis in the O-D matrix estimation problem. The estimation of O-D matrix from the link volumes can be considered as the inverse problem of traffic assignment. From the assignment model the link choice proportions are determined. The proportional assignment technique (generally all-or-nothing) is highly adopted where the route choice proportions are considered to be free from the link flows; means the network is considered without any congestion effects. But in cases where link flows effects the route choice of the travelers, the equilibrium assignment technique is used; where the congestion effects in the links is considered.
In this paper the mostly adopted statistical method, Generalized Least Square technique has been considered. O-D matrix is estimated from the GLS method proposed by Bell (1991) for uncongested network and by the method proposed by Yang et al (1992) for congested network. For the congested networks, the cost of traveling on a link depends on the flow and cost-flow relations for the link is used. A real network with 1264 nodes and 11881 O-D pairs has been considered representing Greater Mumbai region of Maharashtra State of India. 
The remaining of this paper is organized as follows. The following section provides an outline of the methodologies developed for O-D matrix estimation. A brief description of generalized least squares estimate including the problem formulation for O-D matrix estimation by Bell's and Yang et al, GLS algorithms are given in a separate section. The section following the above describes the study area and about the data collection, also gives the details of the large network. The results estimated on applying the constrained GLS algorithm on the large network has been presented in a separate section. In the last section, we draw some conclusions and on the further scope of the research.
An Outline of O-D Matrix Estimation Methods

From the Literature the O-D matrix estimation problem can be categorized into static O-D matrix and dynamic O-D matrix. A static O-D matrix estimation problem does not consider the time-dependent traffic flows and are assumed to represent a steady-state situation over a time period. These models are generally adopted for regional planning purposes. The dynamic models consider time dependent traffic flows. The observed traffic counts are for short time intervals. Dynamic estimations of O-D matrices have been found to be fundamental for development of advanced traffic management systems (ATMS) in recent years. This paper stresses on static O-D matrix estimation problem.
The O-D matrix estimation problem is an underspecified problem; can have many possible solutions producing same traffic counts. Some authors (Robillard, 1975; Tamin and Willumsen, 1989; Tamin et al, 2003) used gravity based model while others used statistical inference based models for networks with congestion and without congestion. Entropy maximization and Information minimization approach makes use of the information contained in the observed flows and have the flexibility to utilize other available information; have been introduced by Willumsen (1978) and Van Zuylen (1978), (See Van Zuylen and Willumsen, 1980). Several models which have been presented in order to estimate or update O-D matrices from traffic counts based on statistical inference techniques are Maximum Likelihood (ML), Generalized Least Squares (GLS) or Bayesian Inference (BI) estimators. Spiess (1987) proposed a model in which the elements of the priori matrix 
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O-D pair) is obtained by sampling a random Poisson distributed variable with unknown mean 
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 as the O-D matrix to be estimated. A maximum likelihood model is formulated to estimate these means. In 1984 Cascetta proposed a Generalized Least Squares estimate of the O-D matrix combining direct or model estimators with traffic counts using an assignment model. Bell (1984) showed that the GLS approach approximates the Entropy approach (by Van Zuylen and Willumsen, 1980) when the link flows are error free (see Bell, 1991). In consequence as GLS estimates of some smaller O-D movements may be negative which is impossible practically, Bell (1991) solved the GLS problem subject to inequality constraints and presented a simple algorithm. Maher (1983) developed a Bayesians inference based approach for the O-D matrix estimation. Bayesians approach considers flexibility in the degree of belief in different parts of the prior estimates which has been ignored by the previous studies where point values have been specified in the prior or target trip matrix. Cascetta and Nguyen (1988) considered two classical inference approaches; the maximum likelihood and the generalized least squares methods and contrasted to the Bayesian method. It has been stated that for GLS dispersion matrix the larger the number of links with similar characteristics included in the traffic count data set, the larger will be the variance reduction obtained. Lo et al (1996) proposed a statistical model incorporating the randomness of the link choice proportions in the estimation of the O-D matrix. Lo et al in 1999 further extended the study and developed a decomposition algorithm to efficiently solve the new approach for large networks. A statistical model with Poisson distributed O-D flows is developed for the estimation of the O-D matrix by Hazelton (2000). The inter-link dependency has been introduced and a multivariate normal (MVN) likelihood approximation and GLS techniques are used. But for practical cases these approaches are found to be too complicated. Hazelton (2001) further extended the study discussing the fundamental theoretical aspects of statistical inference for the O-D matrix. Li (2005) discussed about the Bayesians inference of the O-D matrix of a transport network. Yang et al (1992) presented how the generalized least squares technique and entropy maximization can be integrated with an equilibrium traffic assignment in the form of a convex bi-level optimization problem for the estimation of the O-D matrix. They implemented in a small network. Yang (1995) extended the bi-level programming problem and develops a model with heuristic algorithms to handle more realistic situation where link flow interaction cannot be ignored. Nie and Lee (2002) solved the linear programming model developed by Sherali et al (1994) and considered an exogenous K-shortest-path for determining the equilibrium path flow pattern. Nie et al (2005) further extended the study within the generalized least squares (GLS) framework in aspect of the limitations of the linear programming structure. 
From the review it has been found that considerable researches explored the problem of estimating static O-D matrix both for the congested and uncongested networks. Each methodology has its own advantages and disadvantages but still they are in use in various countries. Mostly authors used the statistical approaches (ML, GLS and BI) either without considering route-choice or with considering route-choice and applied for both the network conditions; with congestion and without congestion effects. The bi-level programming approach has been mentioned to have computational difficulty when applied for a large-scale network. Also the maximum likelihood method is found to be too slow for large networks. The GLS has been found to be difficult to implement. Most of the estimation methods used statistical sensitivity (relative error (RE), mean absolute error (MAE), root mean square error (RMSE) etc.) for the checking of the estimated O-D matrix, which requires knowledge of true O-D flows and traffic counts. But a typical approach for checking the quality can be done by comparing the estimated matrix with some observed data which has not been used in the estimation process. Also most of the developed model from the literature has been found to be applied only for small networks. But the transport network in most of the practical application is of large dimension. Hence the developed models should be assured whether can be used for larger networks. 
Generalized Least Square Estimate
Among a number of branches of regression analysis, the method of generalized least squares estimation based on the well-known Gauss-Markov theory has been still playing an essential role in many theoretical and practical aspects of statistical inference. Number of authors (Cascetta, 1984; Bell, 1991; Hazelton, 2000; etc. for uncongested network and Cascetta and Nguyen, 1988; Yang et at, 1992; Yang, 1995; etc. for congested network) considered GLS for estimating O-D matrices. As the observed traffic counts may have counting errors and in such cases GLS is considered to be the efficient method. The advantage of this approach from the other statistical methods is that no distributional assumptions are made on the sets of data and it allows the combination of the survey data relating directly to O-D movements with traffic count data. It takes into account the relative accuracy of the data. It has the possibility of incorporating explicitly differences in the accuracy of each data item prior to estimation. Let 
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where 
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depends on the sampling estimator adopted. In GLS only there is requirement of dispersion matrices. But in the absence of accurate dispersion matrices generally identity matrices are assumed. 
Terminology and Notations

Let,
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Without considering congestion:


Bell (1991) presented a simple algorithm solving a constrained GLS problem for uncongested network but its implementation for a large network has not yet been reported in the literature. In this paper the constrained GLS algorithm by Bell (1991) has been implemented and the O-D matrix is estimated for a large network. The algorithm has been coded in C++ language and the convergence of the algorithm is found. As formulated by Bell (1991) the constrained GLS estimates are obtained by minimizing the objective function 
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with respect to the elements of 
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where 
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 is the lower bound and is considered as zero. The above problem is solved by Lagrange equation and 
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where 
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 is the Lagrange multipliers. The algorithm for solving this problem iterates the above estimate of 
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Algorithm considered for the estimation
Step 1. Considering All-or-Nothing assignment the link use proportion matrix 
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 is estimated based on prior matrix.

Step 2. Lagrange Multiplier is initialized as 
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Step 3. Iteration:
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Repeated until it converges.
Considering Congestion:


Yang et al (1992) considered the congestion effects on the network and included the traffic assignment problem solved endogenously to obtain the route choice behavior of the trip makers. From the literature it has been found that this GLS algorithm, which is a bi-level programming problem, has not been tested with real world network. The uncertainties for both the target O-D matrix and traffic count data have been introduced. By combining the GLS and UE sub-problems, the following bi-level model has been formulated: 
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subject to                              
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where 
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 is the travel cost function. The link travel costs are calculated from a Bureau of Public Roads (BPR) type formula (BPR, 1964)
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where 
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 are the capacity and free-flow travel time of each link 
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 are the calibration parameters considered according to the link types. The heuristic algorithm described is a bi-level programming problem solves the upper-level (least-square maximization) problem and the lower level (equilibrium assignment problem) iteratively. The most commonly used algorithm for traffic assignment equilibrium problem is Frank-Wolfe Algorithm which has been used (Sheffi 1985). The algorithm is in the following form:
Step 1 Initialize:
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Step 4 Stop if stopping criterion is met else 
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           Stopping criterion:         
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The algorithm has been coded in C++ and executed in 2GB RAM machine.
Study Area and Data Collection

The study area for the present work has been taken as Greater Mumbai. The zoning system of the study area comprised of 46 zones in the island area and 59 zones in the suburbs. These 105 zones in island and suburbs are shown in Fig. 1 and Fig. 2 respectively. In addition to 105 internal zones, four external zones are considered. Thus total O-D pairs of 109 by 109 are considered with 1264 nodes; representing a large network. The network constitute of 2792 links. All intersection points in the network where the link characteristics change are coded as nodes. The traffic count data from the Western Freeway Sea- Link (WFSL) project (in Greater Mumbai) in the month of April 2005 is considered as the secondary database for the present study and is shown in Table 1. A detailed 24 hour traffic volume count survey was conducted for this project. Screen line count stations are established at all those points where the road links cross the screen line. Cordon stations are established at all those points where the external road links cross the cordon line. Detailed O-D surveys were conducted at all the cordon points. The traffic volume data were collected on 45 stations across the six screen lines and cordon count stations. The locations of these screen line and the cordon count stations are shown in Fig.3 and Fig. 4. The traffic volume surveys were undertaken for 24 hours for one day in case of important screen line stations and for other screen line count stations traffic surveys were undertaken for 16 hours i.e. from 7.00 Hrs to 23.00 Hrs. Only normal weekdays were considered for carrying out the traffic volume surveys. 
Results

In the prior O-D matrix which has been used, the intrazonal trips (within the zones) are neglected (which means the diagonal cells of the matrix are zero). Fig. 5 shows the prior trips for all 11881 (109x109) O-D pairs. The Bell’s algorithm found to terminate after 20 iterations as no changes occurred in the 21st iteration. The algorithm is found to converge and takes 45 mins CPU time for execution in Microsoft Visual Studio.NET compiler in a 2 GB RAM PC. When congestion effect is considered the algorithm by Yang et al has been found to converge after 4 iterations but it takes 34 hrs CPU time to converge. It takes a huge CPU time because of the estimation of the upper and lower level problem iteratively and in each iteration estimation of an inverse of a square matrix of size same as the number of O-D pairs. The estimated trips for the O-D pairs have been shown in Fig. 6 and Fig. 7 for both the algorithms. The prior matrix considered has total car trips of 6,65,745 in PCU with average O-D pair trips of 56 PCU. The estimated total car trips by Bell’s algorithm obtained to be 13,44,938 PCU with average O-D pair trips of 113 PCU. Whereas the Yang et al GLS algorithm estimated total trips of 9,14,873 PCU with an average O-D pair trips of 77 PCU.  Out of 11881 O-D pairs the trips between 1-5 O-D pairs have been shown in Table 2. Though intrazonal trips have been ignored in the prior matrix, but Bell's algorithm has been found to give some intrazonal trips. As shown in Table 2 zone 5-5 has trips 101 PCU. But Yang et al algorithm has been found to give no intrazonal trips if it has been ignored in the prior matrix. 
Conclusion and Future Work
In this paper O-D Matrix has been estimated using Generalized Least Square for a large size network for both the network conditions; with congestion and without congestion. The algorithm proposed by Bell (1991) has been found to be applicable for larger network and its convergence has been obtained. But large deviations have been observed in respect of few O-D pairs. Also this algorithm shows intrazonal trips in some cases if it has been ignored in the prior matrix. The Yang et al (1992) GLS algorithm has been found to estimate O-D matrix for the real network but it takes huge CPU time. Unlike Bell's algorithm this method does not give intrazonal trips.  For the present paper only the peak hour car trips has been considered. Similarly mode wise O-D matrix can also be obtained. The usual practice is to compare the results with the true matrix through the statistical measures of error (as root mean square error, RMSE). But in absence of true matrix for this large network, estimation of the statistical errors is not possible. Hence further work can be done to validate the results obtained for both the cases in due course of time through comparing with the screenline data. The work on this paper is ongoing and the discrepancies in the result can be further explained. 
Table 1. Screen line counts in both directions 

	Screen Line
	Links
	Traffic Counts
	Screen Line
	Links
	Traffic Counts

	S 11
	175-194
	25266
	S 11
	194-175 
	27371

	S 12
	159-186
	10032
	S 12
	186-159
	11777

	S 13
	174-193
	6022
	S 13
	192-173
	7777

	S 14
	180-189
	10382
	S 14
	 189-180
	11707

	S 15
	 187-196 
	7899
	S 15
	196-187
	7590

	S 21
	 283-360
	18770
	S 21
	360-283
	22034

	S 22
	317-315 
	13572
	S 22
	315-317 
	9048

	S 23
	 307-326
	6826
	S 23
	 326-307
	5585

	S 24
	 323-326
	3203
	S 24
	326-323 
	3333

	S 25
	 299-310 
	12288
	S 25
	310-299
	9655

	S 26
	 266-281 
	5941
	S 26
	281-266
	5941

	S 41
	439-600 
	25945
	S 41
	600-439
	28107

	S 42
	 449-619 
	7783
	S 42
	619-449 
	7783

	S 43
	 445-447 
	4768
	S 43
	 447-445
	4581

	S 44
	446-779
	1295
	S 44
	 779-446  
	1648

	S 45
	446-478 
	25919
	S 45
	 478-446
	24903

	S 51
	 637-638
	10609
	S 51
	638-637 
	13111

	S 52
	642-641 
	9724
	S 52
	 641-642
	6520

	S 53
	 652-654 
	27022
	S 53
	654-652
	32282

	S 54
	 984-988
	2607
	S 54
	 988-984
	3071

	S 55
	 986-1001
	16222
	S 55
	1001-986
	14914

	S 61
	733-708 
	7426
	S 61
	708-733
	9178

	S 62
	 727-723 
	6807
	S 62
	723-727 
	4564

	S 63
	 720-719 
	18915
	S 63
	 719-720 
	22597

	S 64
	1012-1013 
	1825
	S 64
	1013-1012
	2149

	S 65
	1000-1038 
	11355
	S 65
	1038-1000 
	10440

	S 71
	778-1042
	11189
	S 71
	1042-778 
	11545

	S 72
	1024-1043 
	8243
	S 72
	 1043-1024 
	9010

	S 73
	1039-1044
	14816
	S 73
	1044-1039
	14981

	S 74
	968-1045 
	14307
	S 74
	1045-968 
	14841

	S 75
	 1038-109
	10666
	S 75
	109-1038
	10870


Table 2. Showing the Prior and Estimated Trips for 25 O-D pairs
	O-D Pairs
	Prior Trips
	Estimated Trips

	Origin
	Destination
	
	Uncongested
	Congested

	1
	1
	0
	0
	0

	1
	2
	175
	175
	175

	1
	3
	701
	701
	701

	1
	4
	411
	2436
	411

	1
	5
	153
	2619
	153

	2
	1
	173
	173
	173

	2
	2
	0
	0
	0

	2
	3
	698
	698
	698

	2
	4
	415
	415
	415

	2
	5
	164
	979
	164

	3
	1
	769
	769
	769

	3
	2
	767
	1153
	767

	3
	3
	0
	0
	0

	3
	4
	1905
	3005
	1905

	3
	5
	755
	755
	755

	4
	1
	441
	441
	441

	4
	2
	459
	459
	459

	4
	3
	1918
	2417
	1918

	4
	4
	0
	0
	0

	4
	5
	502
	798
	502

	5
	1
	157
	157
	157

	5
	2
	171
	363
	171

	5
	3
	723
	723
	723

	5
	4
	477
	565
	477

	5
	5
	0
	101
	0
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Fig. 1. Traffic Zones in Island City of Greater Mumbai
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Fig. 2. Traffic Zones in Eastern and Western Suburbs
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Fig. 3. Location of Screen Lines in Island City
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Fig. 4. Location of Screen Lines and the External Cordon
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Fig. 5. Showing Prior Trips between 11881 O-D Pairs
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Fig. 6. Showing Trips between 11881 O-D Pairs obtained by GLS Algorithm (without considering congestion effect)
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Fig. 7. Showing Trips between 11881 O-D Pairs obtained by GLS Algorithm (considering congestion effect)
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