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Abstract
Recently, an analytical model for real-time estimation of travel times along signalized arterials was developed.  The application of the model on two arterial sites and comparisons of the estimated travel times with simulated and field data show that the model accurately predicts travel times on the selected sites.  In this paper, we present several important extensions and refinements to account for the effects of detector placement and queue spillovers. The model is also modified to construct trajectories of individual vehicles in the time-space and estimate queue lengths in a disaggregate manner.  We also describe the integration of the model into an archival data management system for continuous measurement and monitoring of traffic performance along arterials.
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1. Introduction
Analysis and monitoring of operating conditions on signalized arterials and networks requires estimates of performance measures for both system operators and users.  There is a need for models and systems to estimate travel times, delays and queue lengths based on real-time surveillance data.  These tools can help traffic engineers and managers to monitor the traffic performance on arterials, assist them in the development and implementation of improved control strategies and to provide reliable travel time information to the users.  

Performance measures for arterials are typically based on historical data using planning models or Highway Capacity Manual procedures. Such approaches are not well suited for real-time applications especially for congested conditions.  The results from the application of several conventional approaches on two arterial sites indicate that these methods produce large differences against field and simulated values (Skabardonis, et al, 2004).   

A number of approaches have been proposed to provide travel time estimates based on surveillance data.  Most of the proposed models are quite site specific and cannot be readily applied to other environments. Recently, advancements in detector technologies can provide vehicle signatures to re-identify vehicles for travel time estimation. However, the cost of such detector systems is much higher as compared to conventional loop detectors, which makes the practical implementation prohibitively expensive especially on large signal systems. For a detailed review of the vast literature on estimation of travel times and other performance measures on arterials the reader can refer to Skabardonis et al. (2004).
Recently an analytical model was developed to estimate the travel times on arterial streets based on data commonly provided by system loop detectors  and the signal settings at each traffic signal (Skabardonis and Geroliminis, 2005).   The model is based on kinematic wave theory to model the spatial and temporal queuing at the traffic signals and considers the signal coordination in estimating traffic arrivals at the intersection.   The model is straightforward to implement and unlike other approaches does not depend on site specific parameters or short term traffic flow predictions that make very difficult their transferability to other locations.  The application of the proposed model on two arterial sites and comparisons of the estimated travel times with simulated and field data show that the model accurately predicts travel times on the selected sites.  

The purpose of this paper is to propose and evaluate several extensions and enhancements to the analytical model for travel time estimation including the effects of detector placement and queue spillovers. The model is also modified to construct trajectories of individual vehicles in the time-space and estimate queue lengths in a disaggregate manner. The research is part of an ongoing project to develop an on-line performance measurement system for signalized arterials and networks (Arterial Performance Measurement System—APeMS). 

The next section of the paper briefly describes the existing analytical model for arterial travel time estimation.  The model extensions are described in Sections 3 and 4.  The application of the extended model to two arterial networks is presented in Section 5.  The last section summarizes the study findings, and outlines ongoing and future work.   

2. Model for arterial travel time estimation
The analytical model calculates travel times on each signal cycle.  Input to the model consists of loop detector flow and occupancy data in each cycle, and the signal settings (cycle length, green times and offsets).  The travel time is modeled as the sum of the free flow time and the delay at the traffic signal. The delay at the traffic signal is calculated as the sum of a) the delay of a single vehicle approaching a signalized intersection without any interaction with other vehicles, b) the delay because of the queues formed at the intersection, and c) the oversaturation delay, the additional delay caused when the arrival rate is greater than the service rate at the signal. The application of the analytical model on two arterial sites and comparisons of the estimated travel times with simulated and field data showed that the model accurately predicts travel times at the selected sites. The proposed model formulation and applications are described in detail elsewhere (Skabardonis and Geroliminis, 2005).
The delay of a single vehicle assuming no interactions with other vehicles is calculated analytically from the deceleration, acceleration and the waiting time at the signal.  Analytical expressions are derived for the delay as a function of the estimated arrival time at the signal and the signal state. The delay of a single vehicle ds over the signal cycle as a function of the virtual arrival time t at the signal is:
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where  r is effective red time,  T  is the driver’s reaction time , uf is the  free flow speed, γd and γdm are the normal and emergency deceleration rates, and γα is normal acceleration rate. The first expression of the delay represents the case where the vehicle stops at the signal because of the red phase, while the second one is the case where signal turns green before the vehicle stops. It is also found that total delay is not sensitive to typical range of values for parameters T, γα, γd and γdm. 

Queuing delay is defined as the delay because of the queues present at the traffic signal.  In the absence of queues all the vehicles would depart by following the trajectory BC in Figure 1, so the queuing delay is the area of the triangle BCD.  As it is shown in Figure 1, the delay increases from 0 to a maximum delay at point C, and then decreases to zero for the vehicle that passes through point D in the x-t diagram.
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Figure 1: x-t diagram at a single signal (Skabardonis and Geroliminis, 2005)
The queuing delay is estimated according to the kinematic wave LWR theory (Lighthill and Whitham, 1955), (Richards, 1956), so to explicitly consider the temporal and spatial formation of queues. We assume a piecewise linear flow-density relationship (fundamental diagram) with parameters uf (free-flow speed), c (capacity), kj (jam density), and w (congested wave speed).  The queuing delay of the n-th vehicle stopping at the signal 
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(2)

where Ls is  the reciprocal of the jam density kj , Lqm  the distance at which the queuing delay is maximum, and Lq  is  the maximum back of the queue (the farthest point the queue extends throughout the cycle). For n=0 or n > Lq/Ls , the queuing delay is zero. It is easy to prove that by summing equations (1) and (2), we obtain: 
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(3)

where dn is the total delay of the n–th delayed vehicle during a cycle, and  hn is its headway from the previous vehicle.

Signals along arterial networks operate as coordinated with a common cycle length and vehicles arrive in platoons. The estimated arrival time of vehicles at the intersection stopline depends on the offsets between the adjacent signals and the time vehicle passed the detector line. The model explicitly takes into account the offsets by predicting the virtual arrival of a vehicle at a signal assuming free flow conditions (Geroliminis and Skabardonis, 2005) and based on equations (1) and (2) estimates the total delay. The actual departure time of the vehicle from the stopline is the sum of the virtual arrival and the total delay.
Oversaturation delay is defined as the additional delay caused when the arrival rate during cycle m exceeds the service rate at the traffic signal. In this case, some queued vehicles depart in the subsequent cycle(s).  Thus, these vehicles join the queue at this link more than once and their total delay should be increased by an amount equal to the red interval r of cycle m+1 (when a vehicle rejoins a queue is moving at the saturation flow c). Also, the red time of the next cycle m+1 is extended by 1/c for each vehicle which rejoins the queue.  When the total extended red is greater than the green phase g of the next cycle, then vehicles are delayed for more than two red intervals. This extended red time should be applied in equations (1) and (2) for the first vehicle which satisfies n∙Ls>Lq and all the following vehicles until the queue clears. 
3. Treatment of queues
The above described model has been formulated for arterial systems with detectors placed sufficiently upstream from the intersection stopline (midblock locations), so the detector measurements are not affected by the presence of queues at the traffic signal, and provide the arrival rates at the signal. However, when queues extend over the detector the vehicle arrivals are not known.  Also, the existing model assumes that queues never spillover to the upstream intersection. When spillovers from the downstream signal block the outflows at the upstream intersection stopline, the queue discharge rate is smaller than the saturation flow. In such situations, the actual delays are greater than the ones estimated by the model.  In this section, we present the model extensions to account for both long queues and queue spillovers.  

3.1 Long Queues

When queues extend over the detector, we observe high values of detector occupancy (close to 1) for a fraction of the cycle, and the flow measurements are the departure rates from the queue, not the vehicle arrivals.  Therefore, the existing model neglects the delays upstream of the detector location. The total delay estimated during the first signal cycle is the area of trapezium (KALM) instead of the triangle (KAN)—Figure 2a.  In the existing model, this effect was approximated by applying to the model the space mean speed measured from the detector instead of the free-flow speed.  The model is extended to predict the arrival rates at the signal even in cases detectors are not placed sufficiently upstream from the stopline.
Assuming a triangular flow-density relationship, drivers departing from the upstream signal reach the detector location at free flow speed uf in the absence of queues. Based on this observation it is possible to identify the critical value of occupancy od for which the queues extend over the  detector for a fraction of a cycle length. The space mean speed 
[image: image6.wmf](

)

s

ui

for a time interval i can be estimated from the detector measurements as: 
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where q(i) and o(i) are flow and occupancy in time interval i and Leff is the effective vehicle length (the average vehicle length plus the detector length). Thus, if 
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are the average flow and occupancy measured by the detector during a cycle, the critical value of occupancy od during a cycle C is 
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(4b)
We can predict the arrivals upstream of the detector at distance Lm upstream from the stopline based on the following observations: flows near zero imply the presence of the queue, and when flows at capacity are followed by sufficiently smaller ones, this indicates that the queue has cleared and the flow measurements represent arrival rates. Also, vehicles are moving at free flow speed when approaching or departing from the queue, and vehicles move from the jam state to the saturation flow state (Figure 2a) following the congested wave of speed w.  
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Figure 2: a. Space-time diagram

b. Flows at distances Ld and Lm vs. time

The distance Lm is the maximum length of queue which can be identified using data from a detector placed at distance Ld upstream of the stopline. The distance Lm is calculated from the geometry of trapezium (ABCD):
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The implementation consists of the following steps:

1. If  
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, then the original model applies 
2. If measured flow is near zero and occupancy close to 1 for t1<t<t2 and at capacity for t2<t<t3, then flow at 
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3. For all other t’s 
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4. Apply the model for 
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Figure 2b illustrates the implementation of the model extension for the traffic conditions shown in Figure 2a.  Note that if flows at capacity are followed by near zero flows without intermediate smaller flows, the queue lengths may exceed Lm (region E of Figure 2a). This indicates that in cases of very long links either the detector should be placed further upstream or more detectors are required. 

Data from loop detectors are not usually obtained in high resolution, so times t1, t2 and t3 have to be estimated based on data collected in intervals large compared to one second (typically 20 to 30 seconds). The time t2 that vehicles start to discharge from the detector at capacity occurs at time interval Ld/w seconds after the beginning of the green time (the time it takes for the wave to reach the detector location by traveling backwards with speed w). Given that 
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during a cycle C can be written as the sum of two terms:
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The first term is the average occupancy during the intervals vehicles cross the detector at free flow speed, i.e., vehicles that have not joined the queue or have discharged from the queue upstream of the detector. The second term expresses the fraction of the cycle at jam occupancy (ojam) when vehicles are stopped on the detector because of the queues.  The time interval τ that the detector is occupied by stopped vehicles is estimated assuming ojam(1:
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The estimation of the time the queue clears t3 and vehicles stop to discharge at capacity depends on the time interval the data are collected. Time t3 belongs to the first interval for which flows smaller than capacity are measured (say this interval i).  Considering conservation of flow and by assuming that flows during interval i are at capacity before time t3 and equal to qi+1 afterwards,
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where T is the length of the time interval the data are collected, qi is the flow measured in interval i and t3 measures from the beginning of interval i. In the case the time t1 occurs during interval i+1, detector is occupied by stopped vehicles between t1 and the end of interval i+1. Then, flow qi+1 in equation (8) is not the measured flow from the detector but it is modified to 
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 is the starting time of interval i+1. 
3.2 Queue Spillovers

When queue spillovers from the downstream signal block the outflows from the upstream intersection stopline, the queue discharge rate is lower than the saturation flow and the actual delays are greater than the estimated by the model. Spillovers also occur when turning vehicles fill up the available storage length of turn bays and block the through movements. To account for spillover conditions, we extend the model to a) identify spillover conditions, and b) adjust the available green times.  The identification of spillovers is based on the observation that queue discharges at rates smaller than the capacity c.  So, the methodology focuses on simultaneously recognizing the presence of queues and smaller discharge rates using loop detector data.
If spillovers occur at link i+1 then the number of vehicles served from the upstream link i is equal to the number of vehicles measured from the detector, assuming that because of oversaturation, the queue length in the upstream signal is greater than Ld. This system is equivalent regarding the service rate and queue lengths to a system with these characteristics:
1.   infinite capacity of the downstream link (i.e., no blocking traffic)

2.   actual green time during cycle t+1 equal to:



[image: image29.wmf]11

1

i

tt

t

ii

effi

i

sat

NN

gg

c

N

++

+

=×=



(9)

where 
[image: image30.wmf]i

sat

N

 is the maximum possible number of vehicles that signal i can serve and
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is the detector counts at signal i during cycle t+1. By this transformation, the estimated delays by the model incorporate the blocking effect. 

If there are no spillovers, then the maximum value of τ estimated using equation (7) is equal to the duration of the red time r for the cycle C, because the maximum speed of the shockwave is the congested wave speed w which occurs when the arrival rate is equal to the saturation flow.  By applying τ = r, we obtain:
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Therefore, queue spillovers exist when the measured occupancy is greater than the critical value osp given by equation (10). Figure 3a shows the time interval τ  that the detector is occupied by stopped vehicles for different values of average occupancy and flow during a cycle (C = 90sec and Leff  = 6 m in the Figure).  Figure 3b shows occupancy – flow pairs for which we have spillovers for different values of green times. Note that the white region in Figure 3a represents infeasible pairs of occupancy-flow. To obtain the average flow for a given occupancy in the white region the average flow for a cycle excluding interval τ should be higher than capacity c. The slope of the boundary line equals to the product of congested wave speed w and effective vehicle length Leff. 
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Figure 3: a. τ for different values of flow and occupancy (C=90sec)
b. flow – occupancy pairs when spillovers occur for different values of green time (C=90sec) 

4. Model Applications
4.1 Lincoln Avenue, Los Angeles
The selected test site is 1.42 mile long stretch of a major urban arterial north of the Los Angeles International Airport, between Fiji Way and Venice Boulevard in the cities of Los Angeles and Santa Monica.  The study section includes with seven signalized intersections with link lengths varying from 500 to 1,600 feet.  The number of lanes for through traffic per link is three lanes per direction for the length of the study area.  Additional lanes for turning movements are provided at intersection approaches. The free flow speed is 35 mph. Traffic signals are all multiphase operating as coordinated under traffic responsive control as part of the Los Angeles ATSAC central traffic control system.
Figure 4 shows the estimated travel times along the arterial during the morning peak analysis period (6:00 – 10:00 am) obtained from the original model (called SMS), the extended model (shown as LQ) and microscopic simulation.  The results clearly show that the extended model has better performance particularly during the periods of oversaturated traffic conditions. This is also clearly shown in Figure 5, which shows the probability density function of the relative error for the two models.

Figure 4: Simulated vs. estimated (LQ and SMS model) travel times for Lincoln Ave. 
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Figure 5: Probability density function of the relative error for LQ and SMS model

Figure 6 shows the estimated delay per vehicle for links #3 and #5 of the test arterial.  Both these links experience high delays and queue spillovers.  The spillovers in link #3 are because of the short length of link #4 (around 450ft). In link #5, the high delays are due to spillovers from vehicles in the left turn pockets that blocked the through movements. The presence of long queues is evident in both links for many cycles.  Figure 7 shows the individual trajectories of vehicles for link #5 produced by the model.
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Figure 6: Delay per vehicle for links #3 and #5 in Lincoln Ave.
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Figure 7: Individual trajectories in a time-space diagram for link #5 in Lincoln Ave.

4.2 El Camino Real Ave
The test site is part of a major arterial in the San Francisco Bay Area and consists of twelve signalized intersections from the 2nd Ave. to the 28th Ave.  Traffic signals along the corridor operate as semi-actuated system, coordinated on the El Camino Real.  The typical phase sequence is lead-lag design on phase 1 and 5 which are the south/north bound left-turn movements on El Camino Real. Bus frequency is 10 minutes (6 buses/hr) during the analysis period.  Bus free-flow speeds and dwell times were obtained from the AVL bus system; The AVL system utilizes differential GPS system to continually provide the bus position along the arterial.  Figure 8 shows the bus travel times along El Camino Real per time of day provided by the AVL/GPS system and estimated by the model.
[image: image38.png]travel time (sec)

380 -

350 -

320 -

290 -

260 -

230 -

200

— model

= buses GPS

7:00

7:30

8:00

8:30

9:00

11:00

11:30

12:00

12:30

time

13:00




Figure 8. Graph of travel times for El Camino Real Ave. (estimated vs. buses GPS data)
Conclusions
Several extensions and enhancements were developed and implemented to the analytical model for arterial travel time estimation.  The model extensions explicitly address the issues of long queues and spillovers that are occurrence on arterials in urban areas. Also, a transit signal priority algorithm was developed and implemented that is based on information readily available for transit management systems.  The extended model does not require additional data or parameters for its implementation; it requires data commonly provided by system loop detectors (flow and occupancy) and the signal settings (cycle length, green times and offsets) at each traffic signal.   The results of the application of the extended model show that the model accurately estimates travel times for a wide range of traffic conditions. 
The model has also been integrated into a pilot arterial performance measurement system (APeMS).  APeMS is an archival database management system. It receives data from surveillance systems, stores and processes the data, and calculates performance measures in real-time.  Algorithms have been developed to estimate additional performance measures commonly used by operating agencies, e.g., number of stops, cycle failures, and travel time reliability.  Current and historical information on the performance measures in tabular and graphical form are provided via a standard web interface accessible via the internet.  Figure 9 shows a sample plot generated by the APeMS system.  Currently, APeMS is being implemented in the City of Los Angeles ATSAC signal control system with over 3,200 signalized intersections. 

Figure 9.  Sample APeMS Plot: flows vs. time per intersection approach
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